Natürliche Kolloide, einschließlich Nanopartikel, sind in der Umwelt ubiquitär und wichtige Sorptionspartner für Arzneimittel wie Antibiotika. Es ist jedoch fast nichts darüber bekannt wie Abwasserbehandlung sowie Bodentyp die Prävalenz von Kolloiden und kolloidassoziierter Antibiotika modulieren. Auch Auswirkungen von Kolloiden auf die Bioverfügbarkeit von Antibiotika im Boden sind unklar. Wir stellen die Hypothese auf, dass i) große Teile der Antibiotika im Abwasser, im Boden und im Sickerwasser an Kolloide gebunden sind, und dass ii) eine Veränderung der Abwasserqualität sowie iii) verschiedene Bodentypen die Zusammensetzung der Kolloide sowie den Anteil der daran gebundenen Antibiotika verändern. Wir gehen davon aus, dass iv) die Bindung von Antibiotika an Kolloide deren Bioverfügbarkeit und die Selektion von Antibiotikaresistenzgenen verringert, während die Pflanzenaufnahme von Antibiotika nicht durch Abwasserbehandlung beeinflusst wird, da dadurch zwar geringere Gesamtkonzentrationen verglichen zum unbehandelten Abwasser erreicht werden, diese jedoch besser verfügbar sind. Um diese Hypothesen zu testen, werden wir i) Antibiotika in der kolloidalen und echt gelösten Phase von unbehandeltem Abwasser, Boden und Sickerwasser des Säulen- und Feldexperiments im Phaeozem analysieren. Um Veränderungen in der Kolloid-Antibiotika Assoziation aufzuklären, die ii) durch Veränderungen der Abwasserqualität und iii) des Bodentyps verursacht werden, werden wir Antibiotika in gelöster und kolloidaler Form in mit behandeltem und unbehandeltem Abwasser bewässerten Leptosolen und Vertisolen analysieren (Säulen- und Feldexperiment). Die Auswirkungen von iv) Kolloiden auf Bioverfügbarkeit und Selektion von Antibiotikaresistenzgenen, wird durch ein Satellitenexperiment zusammen mit SP 3 bewertet, in dem minimale Hemmkonzentrationen und Wachstumskurven für Bakterien in Lösungen in An- und Abwesenheit von Bodenkolloiden bestimmen werden. Um reale Böden mit unterschiedlichen Kolloidzusammensetzungen aus verschiedenen Bodentypen einzubeziehen, werden wir dort zusätzlich Antibiotikakonzentrationen sowie minimale selektive Konzentrationen unter Verwendung isogenresistenter und anfälliger Stämme in der echt gelösten und kolloidalen Fraktion des zentralen Inkubationsexperiments bestimmen. Die v) Pflanzenaufnahme von Antibiotika wird im zentralen Säulen- und Feldversuch quantifiziert. Zum besseren Verständnis der an der Antibiotikabindung beteiligten Kolloidphasen erfassen wir die kolloidale Größenverteilung sowie ihre Zusammensetzung mittels Feldflussfraktionierung für alle Abwasser- und Bodenproben. Die Verknüpfung der Informationen über Kolloid-Antibiotikum-Wechselwirkungen mit den Gesamtkonzentrationen (SP 2) und mikrobiologischen Parametern aus den anderen Teilprojekten liefert eine einmalige Chance, erstmalig ein tieferes Verständnis zu erhalten, welche Rolle Kolloide für die Mobilität und Bioverfügbarkeit von Antibiotika in Böden unter Abwasserbewässerung spielen.
Humanpathogene Bakterien, die Resistenzen gegen mehrere Antibiotikaklassen aufweisen, stellen ein Risiko für die öffentliche Gesundheit dar und werden als eine der größten globalen Herausforderungen des 21. Jahrhunderts betrachtet. Einige der Resistenzgene dieser Bakterien wurden im Boden, der ein großes Reservoir von Antibiotikaresistenzen darstellt, aufgespürt und könnten z.B. über das Grundwasser oder Wildtiere verbreitet werden. In diesem Projekt soll die Dynamik des Antibiotikaresistenzpools im Boden entlang eines breiten Spektrums von Landnutzungstypen und -intensitäten innerhalb der drei Biodiversitäts-Exploratorien untersucht werden. Um eine robuste Abschätzung von Landnutzungseffekten auf die Abundanz von Antibiotikaresistenzgenen zu erlangen, wird Boden-DNA von allen Grünland-EP Und Wald-VIP Plots mittels quantitativer Echtzeit-PCR analysiert. Landnutzungsinduzierte Veränderungen von Gemeinschaftsprofilen antibiotikaresistenter Bodenbakterien werden innerhalb eines Mikrokosmenexperimentes aufgedeckt. Dieses Experiment schließt die Quantifizierung und Erfassung der zeitlichen Dynamik bakterieller Gemeinschaften ein. Ein weiterer Schwerpunkt ist die Erfassung landnutzungsbedingter Variationen des Vorkommens von Plasmiden, da diese mobilen genetischen Elemente eine wesentliche Quelle für Antibiotikaresistenzgene sind und zu deren Verbreitung beitragen. Diesbezüglich wird die Abundanz von IncP-1 Plasmiden, die mehrere Antibiotikaresistenzen kodieren können und Gentransfer zwischen entfernt verwandten Bakterien erlauben, bestimmt. Die Gesamtdiversität Antibiotikaresistenz-vermittelnder zirkulärer Plasmide wird unter Verwendung einer long-read-Sequenzierungstechnologie abgeschätzt. Außerdem wird eine funktions-basierte Durchmusterung von zuvor konstruierten Bodenmetagenombanken vorgenommen. Dadurch werden Unterschiede der Vielfalt von Antibiotikaresistenzgenen und -mechanismen zwischen analysierten Landnutzungsintensitäten enthüllt. Kenntnisse über Antibiotikaresistenz in Böden, die unterschiedlichen Landnutzungstypen und -intensitäten ausgesetzt sind, werden dringend benötigt, um Konsequenzen anthropogener Aktivitäten bzgl. der Ausbreitung von multiresistenten Bakterien vorhersagen zu können. In diesem Projekt werden Auswirkungen von Landnutzung auf das Antibiotikaresistenz-Reservoir und -Transferpotential des Bodens untersucht. Zudem werden Korrelationen zwischen der Antibiotikaresistenz im Boden und abiotischen (z.B. Konzentrationen von Schwermetallen) sowie biotischen Faktoren (z.B. Abundanz pilzlicher Taxa) aufgedeckt.
Zielsetzung:
Die Verwendung von chemischen antimikrobiellen Stoffen wie Antibiotika, Pestiziden und Kupfer in der Landwirtschaft führt zu erheblichen Umwelt- und Gesundheitsproblemen. Die Rückstände dieser Stoffe verbleiben im Boden und im Wasser und beeinträchtigen die Lebensfähigkeit von Mikroorganismen. Sie stören das natürliche mikrobielle Gleichgewicht in der Umwelt, verringern die biologische Vielfalt und ökologische Funktion, schädigen nützliche Organismen, verunreinigen Trinkwasservorräte und führen zu Bodendegradation und Nährstoffverarmung. Besonders besorgniserregend ist jedoch, dass der nicht-zielgerichtete Einsatz von chemischen antibakteriellen Stoffen zur Resistenzentwicklung von Bakterien und deren Ausbreitung geführt hat. Tatsächlich haben sich die Antibiotikaresistenzen laut WHO zu einer der größten Bedrohung für die öffentliche Gesundheit entwickelt. Resistente Bakterien fordern pro Jahr ca. 1,4 Mio. Opfer (10 Mio. Menschen p.a. im 2050). Besonders der großflächige, ungezielte Einsatz von Antibiotika und Pestiziden in der Landwirtschaft, wird für die Entstehung solcher Resistenzen bei Bakterien verantwortlich gemacht.
Medea Biopharma GmbH ist ein Biotechnologieunternehmen, das eine neue Generation nachhaltiger und umweltfreundlicher antibakterieller Lösungen auf Basis von Bakteriophagen (kurz: Phagen) entwickelt, um die globale Krise der antimikrobiellen Resistenz zu bekämpfen. Phagen sind sichere, hochspezifische und natürliche Mikroorganismen, die gezielt Bakterien abtöten. Sie sind biologisch abbaubar, umweltfreundlich, hinterlassen keine schädlichen Rückstände und können sich an bakterielle Resistenzen anpassen. Das Ziel des Unternehmens ist es, eine umweltfreundliche Alternative zu herkömmlichen chemischen antibakteriellen Mitteln anzubieten.
Fazit:
MEDEA hat im vergangenen Jahr zentrale Meilensteine beim Aufbau des Labors, der Forschung & Entwicklung erreicht. Gleichzeitig wurde eine klare strategische Positionierung im Veterinärbereich vorgenommen. Daraus resultierte die Auswahl zweier priorisierter Arzneimittelprojekte für Haustiere. Die Entwicklung erster Produktkandidaten wurde gestartet, Regulatorische Analysen und Planungen durchgeführt, erste Fördermittel gesichert und strategische Partnerschaften vorbereitet. Auch auf unternehmerischer Ebene konnte MEDEA internationale Sichtbarkeit erlangen - durch Auszeichnungen bei renommierten Start-up- und Branchenwettbewerben, Teilnahme an internationalen Förderprogrammen.
In den kommenden Monaten liegt der Fokus auf den regulatorischen Angelegenheiten, auf dem Aufbau eigener Produktionskapazitäten sowie auf der Weiterentwicklung anvisierter Produkte.
Zielsetzung:
Bei der Furunkulose handelt es sich um eine weltweit vorkommende und in Deutschland zunehmende Relevanz bekommende Infektionskrankheit zahlreicher Fischarten, verursacht durch das Bakterium Aeromonas salmonicida subsp. salmonicida. Eine Infektion kann zu hohen Verlusten in Teichwirtschaften und ökologischen sowie kommerziellen Fischhaltungen führen. Unbehandelt führt die akute Erkrankungsform häufig zum Tod der Fische, aber auch die chronische Form schließt eine weitere Nutzung der Tiere als Lebensmittel bedingt durch krankheitsverursachte Veränderungen in der Haut und Muskulatur in der Regel aus. Zur Therapie der Erkrankung werden Antibiotika eingesetzt, deren Einsatz aber vor dem Hintergrund einer Resistenzselektion, des Umweltaustrags aus Teichwirtschaften sowie einer beschriebenen Multiresistenz des Erregers kritisch bewertet werden muss.
Um dieses Problem zu lösen, soll im vorliegenden Projekt die Applikation von natürlich in der Umwelt vorkommenden Bakteriophagen zur Bekämpfung des Erregers der Furunkulose angewendet werden. Dazu werden Phagen isoliert und aufkonzentriert, ihre Effektivität gegen den Erreger unter unterschiedlichen Bedingungen getestet, sowie eine Sicherheitsbewertung durchgeführt. Durch eine Überprüfung von Kombinationen werden synergistische Effekte der Phagen ermittelt. Die Applikation findet anschließend sowohl bei erkrankten Fischen, die aus Teichwirtschaften zur Verfügung gestellt werden, sowie an Fischen in Haltungen mit bakterienversetztem Wasser statt, um das therapeutische und prophylaktische Potential zu ermitteln. Auch Praxistest in Teichwirtschaften sollen nach erfolgreicher Erprobung erfolgen.
Für das Projekt haben sich Vertreter/innen aus den Bereichen Lebensmittel, Fischkrankheiten, Fischbestandsbetreuung und -diagnostik sowie von Teichwirtschaften zusammengeschlossen, um diese alternative Maßnahme zur Antibiotikaanwendung zu erproben, um einem Verwurf von Fischen aus der Lebensmittelnutzung vorzubeugen und den Antibiotikaeinsatz zu reduzieren.
Fazit:
Insgesamt konnten in der Projektphase erste vielversprechende Phagen isoliert und charakterisiert werden, die zur Lyse von A. salmonicida, dem Erreger der Furunkulose und weiterer Aeromonas spp. geeignet erscheinen. Somit hat die Entwicklung der Alternativmaßnahme einen der Projektphase entsprechenden Fortschritt im Berichtszeitraum erzielen können.
1
2
3
4
5
…
111
112
113