Schmidtkunz, Christoph; Küpper, Katja; Weber, Till; Leng, Gabriele; Kolossa-Gehring, Marike International Journal of Hygiene and Environmental Health 228 (2020), Juli 2020, 113541; online 5. Mai 2020 The antioxidant 2,6-di-tert-butyl-4-methylphenol (butylated hydroxytoluene, BHT) is used ubiquitously in food, cosmetics, pharmaceuticals, fuels, plastics, rubbers and many other products. Therefore, exposure of the general population to this substance is likely. We analyzed the BHT metabolite 3,5-di-tert-butyl-4-hydroxybenzoic acid (“BHT acid”) in 24-h urine samples from the German Environmental Specimen Bank with the aim of gaining a better understanding of the internal burden of BHT in young nonspecifically exposed adults. The study population consisted of students between 20 and 29 years of age at the time of sampling, all from Halle/Saale in Central Germany. In total, 329 samples collected in the years 2000, 2004, 2008, 2012, 2015, and 2018 were measured by ultra high performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). BHT acid was detected above the limit of quantification (0.2 μg/L) in 98% of the samples. The median of the measured concentrations was 1.06 μg/L and 1.24 μg/g creatinine respectively, the median of the daily excretion was 1.76 μg/24 h and – additionally normalized for body weight – 26.8 ng/24 h × kg bw respectively. The corresponding 90th percentiles were 3.28 μg/L, 3.91 μg/g creatinine, 5.05 μg/24 h, and 81.9 ng/24 h × kg bw. Medians of creatinine-corrected values were slightly higher in women than in men, while the opposite situation was observed for the volume concentrations and the 24-h excretion values (not corrected for body weight). Values simultaneously normalized both for 24-h excretion and body weight did not exhibit any significant differences between males and females, probably indicating a virtually identical magnitude of exposure for both genders. The background exposure of the investigated population was found to be largely constant since the year 2000, with only weak temporal trends at most. Daily intakes were estimated from excretion values and found to be largely below the acceptable daily intake (ADI) of BHT at 0.25 mg/kg bw: our worst-case estimate is a daily BHT intake of approximately 0.1 mg/kg bw at the 95th percentile level. However, these intake assessments rely on very limited quantitative data regarding human metabolism of BHT. doi: 10.1016/j.ijheh.2020.113541
UV-Filterstoffe und Antioxidantien Erläuterung: Schutz für Mensch und Produkte
Butylhydroxytoluol BHT 2 6-Di-tert-butyl-p-Kresol 2 6-di-tert-butyl-4-methylphenol Formel: C15H24O CAS-Nummer: 128-37-0 Erläuterung: Das Antioxidans wird unter anderem in Lebensmitteln, Kosmetika und Verpackungsmaterial verwendet
Analysis of microplastic particles in environmental samples needs sophisticated techniques and is time intensive due to sample preparation and detection. Alternatives to the most common (micro-) spectroscopic techniques, Fourier transform infrared and Raman spectroscopy, are thermoanalytical methods, in which specific decomposition products can be analyzed as marker compounds for different kinds of plastic types and mass contents. Thermal extraction desorption gas chromatography-mass spectrometry allows the fast identification and quantification of MP in environmental samples without sample preparation. Whereas to date only the analysis of thermoplastic polymers has been realized, this is the first time that even the analysis of tire wear (TW) content in environmental samples has been possible. Various marker compounds for TW were identified. They include characteristic decomposition products of elastomers, antioxidants, and vulcanization agents. Advantages and drawbacks of these marker substances were evaluated. Environmental samples from street runoff were exemplarily investigated, and the results are presented. © 2018 American Chemical Society.
The antioxidant 2,6-di-tert-butyl-4-methylphenol (butylated hydroxytoluene, BHT) is used ubiquitously in food, cosmetics, pharmaceuticals, fuels, plastics, rubbers and many other products. Therefore, exposure of the general population to this substance is likely. We analyzed the BHT metabolite 3,5-di-tert-butyl-4-hydroxybenzoic acid ("BHT acid") in 24-h urine samples from the German Environmental Specimen Bank with the aim of gaining a better understanding of the internal burden of BHT in young nonspecifically exposed adults. The study population consisted of students between 20 and 29 years of age at the time of sampling, all from Halle/Saale in Central Germany. In total, 329 samples collected in the years 2000, 2004, 2008, 2012, 2015, and 2018 were measured by ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). BHT acid was detected above the limit of quantification (0.2 My g/L) in 98% of the samples. The median of the measured concentrations was 1.06 My g/L and 1.24 My g/g creatinine respectively, the median of the daily excretion was 1.76 My g/24 h and - additionally normalized for body weight - 26.8 ng/24 h * kg bw respectively. The corresponding 90th percentiles were 3.28 My g/L, 3.91 My g/g creatinine, 5.05 My g/24 h, and 81.9 ng/24 h * kg bw. Medians of creatinine-corrected values were slightly higher in women than in men, while the opposite situation was observed for the volume concentrations and the 24-h excretion values (not corrected for body weight). Values simultaneously normalized both for 24-h excretion and body weight did not exhibit any significant differences between males and females, probably indicating a virtually identical magnitude of exposure for both genders. The background exposure of the investigated population was found to be largely constant since the year 2000, with only weak temporal trends at most. Daily intakes were estimated from excretion values and found to be largely below the acceptable daily intake (ADI) of BHT at 0.25 mg/kg bw: our worst-case estimate is a daily BHT intake of approximately 0.1 mg/kg bw at the 95th percentile level. However, these intake assessments rely on very limited quantitative data regarding human metabolism of BHT. © 2020 Elsevier GmbH. All rights reserved.
The UV filter 4-methylbenzylidene camphor (4-MBC), used in cosmetics, the antioxidant butylated hydroxytoluene (BHT), used inter alia as a food additive and in cosmetics, and the plasticizer tris(2-ethylhexyl) trimellitate (TOTM), used mainly in medical devices as substitute for di-(2-ethylhexyl) phthalate (DEHP), are suspected to have endocrine disrupting effects. Human biomonitoring methods that allow for assessing the internal exposure of the general population to these substances were recently developed in a German cooperation to enhance the use of human biomonitoring. First-morning void urine samples from 3- to 17-year-old children and adolescents living in Germany were analysed for metabolites of 4-MBC (N = 447), BHT (N = 2091), and TOTM (N = 431) in the population-representative German Environmental Survey on Children and Adolescents 2014-2017 (GerES V). 4-MBC metabolites were found in quantifiable amounts only in single cases and exposure levels remained well below health-based guidance values. In contrast, ubiquitous exposure to BHT became evident with a geometric mean (GM) urinary concentration of the metabolite BHT acid of 2.346 (my)g/L (1.989 (my)g/gcreatinine) and a maximum concentration of 248 (my)g/L (269 (my)g/gcrea). The highest GM concentration was found in young children aged 3-5 years, yet no specific sources of exposure could be identified. Also, TOTM metabolites were found in quantifiable amounts only in very few samples. None of these findings could be related to previous hospital treatment or exposure via house dust. The presented results will be the basis to derive reference values for exposure of children and adolescents in Germany to BHT and will facilitate to identify changing exposure levels in the general population. © 2020 The Author(s).
The potential release of hazardous substances from polymer-based products is currently in the focus of environmental policy. Environmental simulations are applied to expose such products to selected aging conditions and to investigate release processes. Commonly applied aging exposure types such as solar and UV radiation in combination with water contact, corrosive gases, and soil contact as well as expected general effects on polymers and additional ingredients of polymer-based products are described. The release of substances is based on mass-transfer processes to the material surfaces. Experimental approaches to investigate transport processes that are caused by water contact are presented. For tailoring the tests, relevant aging exposure types and release quantification methods must be combined appropriately. Several studies on the release of hazardous substances such as metals, polyaromatic hydrocarbons, flame retardants, antioxidants, and carbon nanotubes from polymers are summarized exemplarily. Differences between natural and artificial exposure tests are discussed and demonstrated for the release of flame retardants from several polymers and for biocides from paints. Requirements and limitations to apply results from short-term artificial environmental exposure tests to predict long-term environmental behavior of polymers are presented. Source: https://www.mdpi.com
The European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation has been in force since 2007 and is intended to ensure a high level of protection for human health and the environment. The REACH regulation is based on the principle that manufacturers, importers, and downstream users take responsibility for their chemicals. Currently about 23 000 single chemicals are registered within the REACH legislation. A large proportion of substances registered under REACH end up in technical mixtures, intentionally manufactured as such, or generated mixtures containing byproducts of processes. Such mixtures that contain a number of different components are, for example, ink, paint, lacquer, mortar, or cleaning agents. However, REACH focuses on single substances and addresses the safe use of substances as such (e.g., bisphenol A) or substances in mixtures (e.g., bisphenol A used as an antioxidant in mixtures) and in articles (e.g., bisphenol A used as a monomer for polycarbonate production from which greenhouse sheets may be made). In contrast to other substance regulations, under REACH the registrants and downstream users of chemicals are responsible for the risk assessment. According to the REACH regulation, they also have the obligation to derive and communicate safe use conditions for their technical mixtures. Currently, no guidance document and no distinct obligations for an assessment of technical mixtures exist. In light of the available evidence for the joint exposures and effects of chemicals due to co-exposures, the need for approaches for a mixture assessment and improved data communications were highlighted by various stakeholders from industry, European member states, and the European Chemicals Agency (ECHA). The lead component identification (LCID) methodology and the safe use of mixtures information (SUMI) tool were proposed by the European Chemical Industry Council (Cefic) as working tools for the evaluation of the hazard potential, derivation of safe use conditions, and data communication for mixtures along the supply chain. The present paper analyzes the workability and pitfalls of these proposed methodologies from a regulatory perspective, aiming at a safe use of technical mixtures which considers the joint effects and exposures of its components. Integr Environ Assess Manag 2021;17:498-506. © 2021 Umweltbundesamt
Introduction: Human biomonitoring (HBM) yields sound data on the human exposure to chemicals. Thus, HBM provides information on the need for further action in policy-making or the sufficiency of already applied regulation. HBM also supports the identification of population subgroups that are higher exposed than others and therefore need increased attention in environmental health and consumer protection. Methods: A joint project for increasing the knowledge on chemicals taken up by people from manifold sources and for further improving HBM by developing new analytical methods was started by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) and the German Chemical Industry Association (VCI) in 2010. The German Environment Agency (UBA) supports this cooperation by scientific counseling and leading the head office. The cooperation focuses on substances either with potential health-relevance and/or for which an exposure of the general population can be assumed. For many chemicals falling into this category, currently no analytical method for human samples (e. g. urine or blood) exists that allows a specific and sensitive detection of environmental exposure. Hence, a main goal of the cooperation is to develop reliable biomonitoring methods for up to 50 substances by 2020. All these methods will be cross-validated by the independent expert-working group "Analyses in biological Materials" of the German Research Foundation (DFG). VCI is responsible for the development of the methods. This often includes metabolism studies to identify the relevant biomarkers. UBA supports BMUB in the application of the methods, usually within the framework of the German Environmental Specimen Bank (ESB) and the German Environmental Surveys (GerES). Additionally, the German Human Biomonitoring Commission derives human biomonitoring assessment values for the selected chemicals. Results: Since 2010, methods for 14 chemicals have been developed, including i. a. plasticizers, flame retardants, and technical solvents. The most current methods developed are for the preserving additive CIT/MIT, the plasticizer DEHTP, the antioxidant BHT, and the fragrance Lysmeral. In 2016 method development started for the flame retardant TDCP, the UV filters Uvinul A Plus and Avobenzon, the plasticizer DBA, and the fuel additive Keromet MD. All in all 34 methods have been selected for method development so far. The current status of method development, an overview on scientific articles on methods already available, and envisaged future methods are available on the UBA website. Conclusions: To reach the envisaged number of selected substances for method development of 50 within 10 years, up to 16 more substances will be selected. The cooperation demonstrates that the ongoing development of new analytical methods is vital for fully utilizing HBM̷s potential for environmental health and consumer protection. In view of the large variety of chemicals available on the market, human exposure assessment by HBM strongly depends on the number of sound analytical methods available and their ongoing application in population studies. References: UBA 2016, Cooperation for the promotion of human biomonitoring. https://www.umweltbundesamt.de/en/topics/health/assessing-environmentally-related-health-risks/human-biomonitoring/cooperation-for-the-promotion-of-human In: In: Abstract Book / International Society of Exposure Science - Annual Meeting : interdisciplinary approaches for health and the environment ; Utrecht, the Netherlands, october 9-13. Utrecht: 2016, Seite 708-709
Neue Grenzwerte für Massenchemikalie Bisphenol A Die hormonell wirksame Chemikalie Bisphenol A findet sich in vielen Alltagsprodukten: in Kunststoffen, Lebensmittelverpackungen und Spielzeug. Bisphenol A ist eine Chemikalie, die hauptsächlich als Grundbaustein des Kunststoffes „Polycarbonat“ Verwendung findet. Daraus bestehen u.a. unsere CDs, Plastikbesteck und -geschirr, Babytassen, Spielzeug und Schnullerschilde. Für die Herstellung von Babyflaschen ist Bisphenol A haltiger Kunststoff seit März 2011 EU weit verboten. Die Chemikalie ist auch ein Bestandteil von Epoxid-Harzen, aus denen Doseninnenbeschichtungen und Deckeldichtungen für die Lebensmittelindustrie hergestellt werden. In einigen Erzeugnissen ist Bisphenol A nicht chemisch gebunden. Dazu zählen Thermopapiere, z.B. Kassenzettel, in denen der Stoff als Farbentwickler dient sowie PVC Kunststoffe, denen Bisphenol A als Antioxidationsmittel und Stabilisator beigefügt ist. Was passiert aktuell? Die EU Behörde für Lebensmittelsicherheit (EFSA) hat nach Auswertung neuer Studien im Januar 2015 den Grenzwert für die als unbedenklich geltende tägliche Aufnahme von Bisphenol A durch den Menschen von bisher 50 Mikrogramm auf 4 Mikrogramm pro Kilogramm Körpergewicht und Tag gesenkt. Diesen Wert sieht die EFSA jedoch als vorläufigen Wert an, da noch Ergebnisse von Tierstudien ausstehen. Nach der Senkung des Grenzwertes sieht die EFSA keine Gefährdung der menschlichen Gesundheit durch die Aufnahme von Bisphenol A durch die Nahrung. Die französische Lebensmittelbehörde kommt zu einer abweichenden Bewertung. In Frankreich ist seit Januar 2015 die Verwendung in Lebensmittelverpackungen verboten. Eine Kennzeichnungspflicht für Bisphenol A haltige Lebensmittelverpackungen gibt es bisher nicht. Bisphenol A , genauer „4,4'-(1-methylethylidene)bis(phenol)“, ist als weißes Pulver mit einem Schmelzpunkt von 158°C bis 159°C im Handel. Die Substanz ist brennbar und schlecht wasserlöslich (0,12g/L). Sie reizt die Atmungsorgane und führt bei Kontakt zu ernsten Augenschäden. Bisphenol A beeinträchtigt die Fruchtbarkeit und ist schädlich für Wasserorganismen (Wassergefährdungsklasse 2). Ein beabsichtigter Kontakt mit Menschen ist verboten, so darf Bisphenol A zum Beispiel gemäß Tätowiermittelverordnung nicht verwendet werden. Noch mehr Informationen über Bisphenol A und andere Chemikalien erhält man über die Gefahrstoffschnellauskunft als Teil der Chemiedatenbank GSBL (Gemeinsamen zentraler Stoffdatenpool Bund / Länder). Sie kann von allen genutzt werden, die öffentlich-rechtliche Aufgaben wahrnehmen, z.B. Feuerwehr, Polizei oder andere Einsatzkräfte. Auch für die Öffentlichkeit stehen frei recherchierbare Daten zu gefährlichen Eigenschaften und wichtige Regelungen unter www.gsbl.de bereit. Wie kommt Bisphenol A in die Umwelt? Ein großer Teil des Bisphenol A in Gewässern stammt wahrscheinlich aus der Herstellung von Thermopapier, Epoxidharzen, anderen Polymeren und aus PVC. Das Papierrecycling mit Thermopapier-Anteilen und das Recycling von PVC-Erzeugnissen spielen ebenfalls eine wichtige Rolle. Sogar der deponierte Abfall Bisphenol A haltiger Produkte trägt wahrscheinlich zu den Einträgen in die Umwelt bei. In aktuellen Untersuchungen wurde Bisphenol A in Konzentrationen von 0,01 bis 2,4 µg/L in Oberflächengewässern und von 6 bis 30 µg/kg in Sedimenten gemessen. Wie wirkt Bisphenol A? Studien mit Versuchstieren weisen auf einen Zusammenhang zwischen hohen Bisphenol A Konzentrationen im Blut und schädlichen Einflüssen auf die Fruchtbarkeit, die Entwicklung der Geschlechtsorgane und möglicherweise eine Anfälligkeit für bestimmte Krebsarten hin. Überträgt man diese Ergebnisse auf den Menschen, so könnten vor allem Schwangere und deren ungeborene Kinder besonders sensibel auf Bisphenol A reagieren. Einige epidemiologische Studien deuten ebenfalls auf einen Zusammenhang zwischen Diabetes, Herz-Kreislaufproblemen und Fettleibigkeit und einem erhöhten BPA-Spiegel im Blut und Urin hin. In einer Studie des Umweltbundesamtes (Kinder Umwelt Survey 2003/06) konnte kein Zusammenhang zwischen Übergewicht und BPA-Belastung bei Kindern und Jugendlichen in Deutschland gefunden werden. Neuere Studien weisen auf einen Zusammenhang zwischen niedrigen Dosen von Bisphenol A und neurotoxischen Effekten in Ratten hin. Auf Tiere hat Bisphenol A hormonartige Wirkungen. So zeigen Studien, dass der Stoff auf Säugetiere und Fische ähnlich wie das Sexualhormon Östrogen wirkt und z.B. zur „Verweiblichung“ von Männchen führen kann. In Amphibien konnte eine Beeinträchtigung der Schilddrüsenhormone durch einen erhöhten Bisphenol A Spiegel in den Tieren gezeigt werden. Der Mensch nimmt Bisphenol A vor allem durch die Nahrung auf. Eine Studie aus den USA zeigt z.B., dass freiwillige Teilnehmerinnen und Teilnehmer nach Konsum von Dosensuppen fast 20-fach höhere Bisphenol A-Konzentrationen im Urin als eine Vergleichsgruppe aufwiesen (20,8 Mikrogramm pro Liter gegenüber 1,1 Mikrogramm pro Liter). Bisphenol A ersetzen. Als Ersatzstoffe für Bisphenol A werden zunehmend andere Substanzen aus der Familie der Bisphenole (in Thermopapier z.B. Bisphenol S) eingesetzt. Für sie und andere Alternativen liegen zum Teil noch nicht ausreichend Daten vor, um ihr Gefahrenpotenzial endgültig einschätzen zu können. Produkte, die mit dem Label „Bisphenol A-frei“ gekennzeichnet sind, müssen daher nicht immer eine optimale Lösung sein. Wegen der möglichen Anreicherung im Recyclingprozess empfehlen wir, Thermopapier grundsätzlich nicht mit Altpapier, sondern mit dem Restmüll zu entsorgen. Wenn Sie auf Bisphenol-A freie Produkte umsteigen möchten, achten Sie auf gekennzeichnete Plastikgegenstände. Produkte aus Polycarbonat sind normalerweise mit einem Dreieck mit eingeprägtem Zeichen „7 PC“ gekennzeichnet. Leider besteht auch hier keine Kennzeichnungspflicht, so dass man sich nicht ganz sicher sein kann. Weichen Sie am besten auf Glas und Porzellan aus und bereiten Sie möglichst frische, unverpackte Lebensmittel zu.
Origin | Count |
---|---|
Bund | 139 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 127 |
Messwerte | 2 |
Text | 5 |
unbekannt | 6 |
License | Count |
---|---|
geschlossen | 13 |
offen | 127 |
Language | Count |
---|---|
Deutsch | 134 |
Englisch | 19 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 100 |
Webseite | 40 |
Topic | Count |
---|---|
Boden | 102 |
Lebewesen & Lebensräume | 131 |
Luft | 75 |
Mensch & Umwelt | 140 |
Wasser | 69 |
Weitere | 134 |