API src

Found 755 results.

Vorbereitung technischer Fragen in Zusammenhang mit der Beförderung radioaktiver Stoffe

Margaritifera Restoration Alliance, Teilvorhaben: Muschelzucht und Habitatverbesserung im sächsischen Vogtland

Arbeitsstelle des Wissenschaftlichen Beraters des UNESCO BNE-Programms 'Education for Sustainable Development: Towards achieving the SDGs (ESD for 2030)' - Wissenschaftliche Beratung und Monitoring

Entwicklung und erster industrieller Einsatz neuer Generationen innovativer Zellen und Module für Hochspannungsbatterien von Elektrofahrzeugen

Reallabor: Entwicklung und Aufbau eines Testraums für die regenerative, strombasierte Wasserstofferzeugung unter Einbeziehung der Sektoren Gebäude, Verkehr und Industrie, Teilvorhaben: Galvanische Elektrodenbeschichtung

Entwicklung eines langzeitrobusten Brennstoffzellen-BHKW, Teilvorhaben: Reformer Version 2025+

BAW seit sechs Jahren auch 'offshore' aktiv - Die Sicherheit der Windenergieanlagen auf dem Meer muss gewährleistet sein

Da beim Bau von Offshore-Windenergieanlagen großenteils technisches Neuland betreten wird, gilt es, dafür den 'Stand der Technik' zu entwickeln und in Standards und Normen festzuhalten. Den Anteil der erneuerbaren Energien zu steigern, ist ein wichtiges energiepolitisches Ziel der Bundesregierung. Dabei soll die Windenergie auf dem Meer einen wesentlichen Teil der zukünftigen Energieversorgung sicherstellen. Im Vergleich zu den Bedingungen an Land (onshore) treten auf dem Meer (offshore) hohe stetige Windgeschwindigkeiten auf, sodass hohe Erträge zu erwarten sind. Offshore-Windparks sollen von der Küste und den Inseln aus nicht sichtbar sein, und sie sollen außerhalb der Küsten-Nationalparks Wattenmeer und Boddengewässer liegen. Deshalb werden Windpark-Projekte vorwiegend in großer Entfernung zur Küste und in großen Wassertiefen geplant. Sie liegen damit in der sogenannten 'ausschließlichen Wirtschaftszone' (AWZ) der Bundesrepublik Deutschland. Dies ist das Gebiet außerhalb der 12-Seemeilen-Zone bis zu einer Entfernung von 200 Seemeilen. Die Windenergieanlagen müssen dort in Wassertiefen bis zu 50 m errichtet werden. Aufgrund der anspruchsvollen Bedingungen - große Wassertiefen, starke Wind- und Wellenbelastungen, weite Entfernungen von der Küste - ist die in Deutschland geplante und begonnene Errichtung von Offshore-Windenergieanlagen (OWEA) weltweit einmalig. Diese schwierigen Randbedingungen machen eine sorgfältige Planung notwendig. Das zuständige Bundesamt für Seeschifffahrt und Hydrographie (BSH) hat bisher 28 Windparks unter der Auflage genehmigt, dass die Antragsteller planungsbegleitend bis zur Baufreigabe die Einhaltung des Standes der Technik nachweisen müssen. Da hier aber großenteils technisches Neuland betreten wird, musste und muss ein solcher Stand der Technik überhaupt erst geschaffen werden. Das BSH gibt Standards als technische Regelwerke für Offshore-Windenergieanlagen heraus, die unter Mitwirkung von Expertengruppen erarbeitet und weiterentwickelt werden. In diesen Standardisierungsprozess bringt die BAW ihr vorhandenes wasserbauliches und geotechnisches Expertenwissen ein und berät das BSH bei den technischen Fragen während des Genehmigungsprozesses. So sind im Rahmen der Freigabeprozesse umfangreiche technische Unterlagen der Antragsteller zu bearbeiten. Dabei werden immer wieder wesentliche fachliche Risiken für die Errichtung und den sicheren Betrieb deutlich, die in aufwändigen Fachgesprächen und Fachbeiträgen behoben werden müssen. Sie resultieren aus der Komplexität der Aufgabenstellung und der Randbedingungen, die nachfolgend beispielhaft betrachtet werden.

Wechselwirkungen von Trend- und Natursportarten mit der Gesellschaft und ihre Auswirkungenn auf Natur und Umwelt

Das Forschungsprojekt will Trend- und Natursportarten in ihren Wechselbeziehungen zu Umwelt Gesellschaft aufzeigen. Die Sportarten werden überwiegend an ausgewählten Naturstandorten ausgeübt und sind mittlerweile ein bedeutender Faktor in der Freizeit- und Tourismusindustrie. Die Auswirkungen dieser Sportarten auf den Naturraum und die Raumstruktur sind erheblich. Der Antragsteller will die empirische Kenntnis über den Umfang, die Ausübung sowie die Auswirkungen der Trend- und Natursportarten erweitern und systematisieren. Die Untersuchung ist nach dem Prinzip von Fallstudien angelegt. Neben der Analyse der regionalen Raumstruktur der Untersuchungsräume sowie der Auswirkungen der Sportarten auf den Raum, die Natur und Umwelt, stehen auch Sportausübenden selbst und weitere an der jeweiligen Sportart beteiligten Personen (z.B. kommerzielle Veranstalter und deren Angetellte) im Mittelpunkt. Aus den Ergebnissen der sozialempirischen Analyse sowie den Untersuchungen über die Umweltauswirkungen soll ein Modell für die umweltverträgliche Nutzung des Naturraums bei der Ausübung von Natursportarten entstehen. Dieses Modell soll schließlich zu einem Entwurf für nachhaltige Entwicklungsmöglichkeiten in peripheren Räumen durch gezielte Förderung und Lenkung von Trend- und Natursportarten führen.

Vegetationskundliche Untersuchungen im Bergwald am Kilimanjaro

Der Kilimanjaro weist zur Zeit noch einen weitgehend geschlossenen Waldgürtel auf. Durch eine stark unterschiedliche Niederschlagsverteilung einerseits und eine ausgeprägte Höhenzonierung andererseits ergibt sich eine hohe Diversität der Waldbestände im Hinblick auf Artenzusammensetzung, Schichtung und Lebensformen. Insbesondere der Bergwald des Südhanges ist in seiner Vielfalt nicht nur wegen seines Epiphyten- und Farnreichtums einzigartig in Ostafrika. Hier finden sich große Gebiete, die aufgrund ihrer Unzugänglichkeit noch unberührt sind. Somit bietet sich die einmalige Gelegenheit, diesen interessanten Lebensraum in natürlicher Ausprägung zu studieren. Dies wurde vom Antragsteller in einem vorangegangenen DFG-Projekt begonnen. Im Rahmen des hier beantragten Habilstipendiums soll dieses umfangreiche Projekt abgeschlossen werden. Erstes Ziel ist die Vervollständigung der vegetationskundlich ökologischen Bestandserfassung aller Waldtypen und ihrer Regeneration. Im Anschluss daran eine Vegetationskarte erstellt werden. Mit diesen Arbeiten wird eine wissenschaftliche Grundlage für die immer dringlicher werdenden gezielten Schutzmaßnahmen geschaffen.

Verbesserte geodätische Gletschermassenbilanzen durch Integration von Fernerkundung, Oberflächenmassenbilanz und Firnverdichtungsmodellierung - eine Beispielstudie von James Ross Island, Antarktis

Das Vorhaben zielt auf die Verbesserung von geodätischen Gletschermassenbilanzen ab. Neben einer Verbesserung der absoluten Genauigkeit wird vor allem auch eine verbesserte Fehlerquantifizierung/-abschätzung angestrebt. Zunächst werden Höhen- und Volumenänderungen aus der Differenzierung von digitalen Geländemodellen unterschiedlicher Zeitpunkte und Quellen bestimmt. Diese werden durch verschieden Verfahren wie Photogrammetrie und SAR Interferometrie (insbesondere der deutschen TanDEM-X Mission) gewonnen. Die derzeitigen Schwierigkeiten der geodätischen Methode resultieren vor allem aus Unsicherheiten der Eindringtiefe des Radarsignals bei trockenem Schnee bzw. gefrorener Schneedecke sowie bei der anschließenden Konvertierung von Volumen- in Massenänderungen, durch die Annahme eines Dichtewertes oder Dichteprofils. Hier soll durch den Einsatz eines gekoppelten Gletschermassenhaushalt- und Firnkompaktionsmodell zusammen mit den Fernerkundungsergebnisse eine entscheidende Verbesserung erzielt werden. Um das Modell und die Untersuchungen zu initialisieren und zu validieren, sollen Felderhebungen durchgeführt werden sowie auf einen sehr umfangreichen Datenbestand des Antragstellers und der tschechischen und argentinischen Kooperationspartner zurückgegriffen werden. Um Effekte und mögliche Fehler durch das Eindringen des x-Band Radarsignals besser quantifizieren zu können, werden Aufnahmen mit Sommer und Wintersituationen untersucht und mit GNSS Referenzdaten aus Geländeerhebungen verifiziert. Ferner werden die Ergebnisse der geodätischen Methode mit dem sogenannten Input-Output Verfahren ('flux gate approach') verglichen, um eine zusätzliche Absicherung der Ergebnisse zu erzielen. Das Projekt wird in enger Kooperation mit tschechischen Wissenschaftlern der Universitäten in Brno und Prag sowie mit Kollegen des Argentinischen Antarktisinstituts durchgeführt. Als Testgebiet wurde James Ross Island, an der nordöstlichen Spitze der Antarktischen Halbinsel, ausgewählt. Auch wenn die Untersuchungsregion in der Antarktis liegt, so sollen primär methodische Entwicklungen durchgeführt werden, die auf andere Standorte übertragbar sind. Der vorgeschlagene Standort bietet aufgrund der vorhanden Datenlage und Vorarbeiten sowie der internationalen Kooperation und logistischen Möglichkeiten ideale Voraussetzungen, die zu keinen nennenswerten Mehrkosten gegenüber anderen Standorten mit vergleichbaren Gletschergrößen führen. Zudem zeigen Vorarbeiten, dass die beobachteten Höhenänderungen der Gletscher auf einem kleinen Gebiet sehr unterschiedlich sind und daher in einem Gebiet unterschiedliche Magnituden, Richtungen und Mechanismen der Änderungen sowie unterschiedliche meteorologische Bedingungen untersucht werden können. Eine Situation und Konstellation, die an kaum einem anderen Standort derart gut vorliegt.

1 2 3 4 574 75 76