API src

Found 4114 results.

Similar terms

s/antropogener faktor/Anthropogener Faktor/gi

Die atmosphärische Tagchemie von Schlüsselverbindungen beeinflußt von der atmosphärischen Nachtchemie (DARK KNIGHT).

Flüchtige organische Verbindungen (VOC) werden in großen Mengen (1300 TgC pro Jahr) von biogenen und anthropogenen Quellen in die Atmosphäre emittiert. Die Oxidation solcher Verbindungen führt zur Bildung von semivolatilen Produkten, welche in die Partikelphase übergehen können und somit zur Bildung von sekundärem organischem Aerosol (SOA) beitragen. Die globale SOA Produktion anthropogenen Ursprungs beläuft sich auf 0,05 bis 9,7 Tg pro Jahr. Hingegen wird die biogene SOA Produktion mit bis zu 910 Tg pro Jahr beziffert, was einem Umsatz von 70% der emittierten biogenen VOCs entspricht. Ein solcher Umsatz ist unvereinbar mit den vergleichsweise niedrigen SOA Ausbeuten aus Aerosolkammerexperimenten. Die Ursache für diese Diskrepanz liegt vermutlich an zusätzlichen SOA Bildungswegen wie der Weiterreaktion von VOC Oxidationsprodukten, welche von den Umgebungsbedingungen wie dem Oxidationsmittel, der relativen Feuchte und der Art der vorhandenen Partikel abhängt. Somit sind zwar Tag- und Nachtchemie grundverschieden, allerdings auch eng miteinander verbunden, denn die Produkte der Nachtchemie werden durch die darauffolgende Tagchemie weiterprozessiert und umgekehrt. Dadurch wird das Partitionierungsverhalten der Produkte und somit die SOA Bildung stark beeinflusst. Daher soll im Rahmen des Projektes Dark Knight der Einfluss der Tagchemie auf die Nachtchemie und umgekehrt untersucht werden. Das Wissen über die Verschaltung von Tag- und Nachtchemie kann erheblich zum Verständnis über die an der SOA Bildung beteiligte Prozesse beitragen.

Naturschutz im Wandel - Anpassung an Landnutzungsänderungen und Klimawandel in Süd-Madagaskar (Promotionsvorhaben)

Madagaskar ist ein Hotspot der Biodiversität, dessen weltweit einzigartige Vielfalt durch anthropogene Überformung stark bedroht ist. Die besonders arten- und endemitenreichen Dornenwälder des Südens sind durch ihre langsame Regeneration zusätzlich gefährdet. Der voranschreiten-de Klimawandel, der durch zunehmende Trockenheit und häufiger auftretende Extremwetterereignisse gekennzeichnet ist, wird zu veränderter Landnutzung wie der Erschließung neuer Anbauflächen führen. Diese fortschreitende Übernutzung der natürlichen Ressourcen bedingt den weiteren Verlust der biologischen Vielfalt und des Naturraumpotenzials der Ökosysteme. Die synergetisch wirkenden Folgen des Klimawandels können somit verheerende Auswirkungen auf die bereits eingeschränkte Funktionalität der Ökosysteme haben. Ein Verständnis der Landnut-zung ist damit unabdingbar zur Abschätzung der Gefährdung und des Erhaltungszustands der Ökosysteme. In drei Untersuchungsgebieten sollen vergangene und zukünftige Veränderungsprozesse von Ökosystemen und sozioökonomischen Faktoren untersucht werden. Durch die Verschneidung und Modellierung von Fernerkundungsdaten mit Daten der Sozioökonomie und der Einarbeitung bestehender Szenarien soll eine Abschätzung der potenziellen Landnutzungsänderungen unter sich verändernden Parametern ermöglicht werden. Das Anthroposystem, einschließlich des menschlichen Landnutzungssystems, wird dabei als Subsystem der Ökosysteme betrachtet. Aus der Entwicklung neuer Szenarien werden in Abstimmung mit Landnutzerinnen und Landnutzern proaktive Schutzkonzepte sowie Handlungsoptionen für Politik und Naturschutz abgeleitet. Bestehende Konzepte werden darüber hinaus hinsichtlich der Berücksichtigung dynamischer Prozesse evaluiert. Diese antizipierende und proaktive Managementforschung basiert nicht primär auf dem Monitoring von Klimawandel und der Untersuchung der unmittelbaren Folgen, sondern erprobt durch die Anpassung von Naturschutzstrategien einen weltweit noch jungen und für Ma-dagaskar neuartigen Ansatz. So soll ein Beitrag zum Schutz der weltweit einzigartigen Dornenwälder Süd-Madagaskars und der Verbesserung der Lebensbedingungen der Landbevölkerung geleistet werden.

Über Kohlenstoff-Entnahme aus der Atmosphäre bis hin zum Erreichen des Ziels des Pariser Klimakommens: Temperature Stabilisation

Die anthropogenen Kohlendioxidemissionen (CO2) sind für den größten Teil der jüngsten globalen Oberflächenerwärmung der Erde um etwa 1°C gegenüber dem vorindustriellen Niveau verantwortlich. Das Land und die Ozeane nehmen derzeit etwa die Hälfte unserer Emissionen durch komplexe Prozesse des Kohlenstoffkreislaufs auf. Der Klimaantrieb durch anthropogene CO2-Emissionen hört erst auf, wenn ein Gleichgewicht zwischen CO2-Quellen und -Senken erreicht ist. Da es nicht realisierbar ist, alle CO2-Emissionen bis Mitte des 21. Jahrhunderts zu eliminieren, bestehen alle plausiblen zukünftigen Emissionsszenarien, die auf eine mit dem Pariser Abkommen übereinstimmende Temperaturstabilisierung anstreben, aus einem Portfolio menschlicher Aktivitäten, die Emissionssenkungen mit Maßnahmen zur so genannten Kohlendioxidentnahme (CDR) kombinieren, die die verbleibenden positiven Emissionen kompensieren sollen.Allerdings werden CDR-Maßnahmen wie die meisten anderen menschlichen Aktivitäten durch Emissionen von andere Treibhausgase als CO2 (z.B. Methan oder Distickstoffoxid), Aerosolen oder durch Landnutzungsänderungen zusätzliche Klimaveränderungen verursachen. Gegenwärtig machen diese weiteren Treibhausgase mehr als 40% der globalen Oberflächenerwärmung aus, während Aerosole einen Teil der Erwärmung ausgleichen. Darüber hinaus beeinflussen diese zusätzlichen Klimaeinflüsse den Kohlenstoffkreislauf, der wiederum Einfluss auf die atmosphärische CO2-Konzentration und damit auf die Oberflächentemperatur nimmt (Abb. 1). Diese Wechselwirkung beeinflusst die Menge der CO2-Entnahme, die durch CDR-Maßnahmen erforderlich ist, um eine Temperaturstabilisierung zu erreichen.Es ist daher wichtig, die vollständige Reaktion des Klimas auf spezifische menschliche Aktivitäten, einschließlich CDR-Maßnahmen, zu erfassen, um gut informiert Maßnahmen zur Temperaturstabilisierung ein zu leiten. Insbesondere die Untersuchung der Reaktion des Erdsystems auf realistische Portfolios künftiger anthropogener Aktivitäten erfordert die Einbeziehung aller damit verbundenen Klimafaktoren - CO2, andere Treibhausgase als CO2, Aerosole und Landnutzungsänderungen - um bestmögliche Einschätzungen der möglichen Wege zur Temperaturstabilisierung zu erhalten.

KI: Steigerung des Nutzungsgrads von Kunststoffabfällen durch KI-basierte Kombination von manueller Sortierung und Mikro-Automatisierung

Vegetationskundliche Untersuchungen von Extensivierung auf salzbeeinflusstes Gruenland an der Wurster Kueste

Wie entwickelt sich die Vegetationszusammensetzung salzbeeinflussten Gruenlandes bei unterschiedlicher Nutzung? - Welche strukturellen Veraenderungen ergeben sich und welche Auswirkungen haben diese auf die Vegetationszusammensetzung? - Welche Schlussgesellschaft stellt sich bei Nutzungsaufgabe ein? - Welches sind die Vegetationsbestimmenden abiotischen Parameter und veraendern sich diese bei unterschiedlicher Nutzung?

DAM Schutz und Nutzen-2: Konzepte zur Reduzierung der Auswirkungen anthropogener Drücke und Nutzungen auf marine Ökosysteme und die Artenvielfalt, Vorhaben: Entwicklung von Indikatoren zur Gesundheit bei Meeressäugern und ihre Weiterentwicklung zur Bewertung anthropogener Einflüsse

DAM Schutz und Nutzen-2: Konzepte zur Reduzierung der Auswirkungen anthropogener Drücke und Nutzungen auf marine Ökosysteme und die Artenvielfalt, Leitantrag; Vorhaben: Nicht-invasive Monitoringstrategien zur Untersuchung der Biodiversität mariner Fauna und der Konnektivität von Schutzgebieten

Neue Schadstoffe und Mikroplastik im Oberflächenwasser des Indischen Ozeans, Vorhaben: Luft-Meer-Austausch und atmosphärische Deposition neuartiger organischer Schadstoffe im Indischen Ozean

ACTRIS-D National Facilities, Phase 1, Teilprojekt 9 (GUF-NF): Ausbau des Taunusobservatoriums (TO) am Kleinen Feldberg im Hinblick auf umfassende in-situ-Messungen von Aerosolen und kurzlebigen Spurengasen im Rahmen von ACTRIS

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Erforschung einer Quelle multiresistenter Bakterien -- Antibiotikaresistenz im Boden und seine Verknüpfung mit unterschiedlichen Landnutzungstypen und -intensitäten

Humanpathogene Bakterien, die Resistenzen gegen mehrere Antibiotikaklassen aufweisen, stellen ein Risiko für die öffentliche Gesundheit dar und werden als eine der größten globalen Herausforderungen des 21. Jahrhunderts betrachtet. Einige der Resistenzgene dieser Bakterien wurden im Boden, der ein großes Reservoir von Antibiotikaresistenzen darstellt, aufgespürt und könnten z.B. über das Grundwasser oder Wildtiere verbreitet werden. In diesem Projekt soll die Dynamik des Antibiotikaresistenzpools im Boden entlang eines breiten Spektrums von Landnutzungstypen und -intensitäten innerhalb der drei Biodiversitäts-Exploratorien untersucht werden. Um eine robuste Abschätzung von Landnutzungseffekten auf die Abundanz von Antibiotikaresistenzgenen zu erlangen, wird Boden-DNA von allen Grünland-EP Und Wald-VIP Plots mittels quantitativer Echtzeit-PCR analysiert. Landnutzungsinduzierte Veränderungen von Gemeinschaftsprofilen antibiotikaresistenter Bodenbakterien werden innerhalb eines Mikrokosmenexperimentes aufgedeckt. Dieses Experiment schließt die Quantifizierung und Erfassung der zeitlichen Dynamik bakterieller Gemeinschaften ein. Ein weiterer Schwerpunkt ist die Erfassung landnutzungsbedingter Variationen des Vorkommens von Plasmiden, da diese mobilen genetischen Elemente eine wesentliche Quelle für Antibiotikaresistenzgene sind und zu deren Verbreitung beitragen. Diesbezüglich wird die Abundanz von IncP-1 Plasmiden, die mehrere Antibiotikaresistenzen kodieren können und Gentransfer zwischen entfernt verwandten Bakterien erlauben, bestimmt. Die Gesamtdiversität Antibiotikaresistenz-vermittelnder zirkulärer Plasmide wird unter Verwendung einer long-read-Sequenzierungstechnologie abgeschätzt. Außerdem wird eine funktions-basierte Durchmusterung von zuvor konstruierten Bodenmetagenombanken vorgenommen. Dadurch werden Unterschiede der Vielfalt von Antibiotikaresistenzgenen und -mechanismen zwischen analysierten Landnutzungsintensitäten enthüllt. Kenntnisse über Antibiotikaresistenz in Böden, die unterschiedlichen Landnutzungstypen und -intensitäten ausgesetzt sind, werden dringend benötigt, um Konsequenzen anthropogener Aktivitäten bzgl. der Ausbreitung von multiresistenten Bakterien vorhersagen zu können. In diesem Projekt werden Auswirkungen von Landnutzung auf das Antibiotikaresistenz-Reservoir und -Transferpotential des Bodens untersucht. Zudem werden Korrelationen zwischen der Antibiotikaresistenz im Boden und abiotischen (z.B. Konzentrationen von Schwermetallen) sowie biotischen Faktoren (z.B. Abundanz pilzlicher Taxa) aufgedeckt.

1 2 3 4 5410 411 412