API src

Found 148 results.

SMART E-USER

Das Projekt "SMART E-USER" wird vom Umweltbundesamt gefördert und von Deutsche Post AG, 18G2 GoGreen durchgeführt. Ziel des Projektes ist die Erprobung von Elektrofahrzeugen und der zugehörigen Ladeinfrastruktur im urbanen Wirtschaftsverkehr. Das Projekt dient der Verifizierung vorangegangener Einzelerprobungen, ob sich eine elektrifizierte Fahrzeugflotte im ganzjährigen Alltagseinsatz in der Brief- und Paketzustellung eignet. In einer Flotte mit unterschiedlichen Fahrzeugklassen werden die systemische Vernetzung von Fahrzeug, Energie und Verkehr/Logistik untersucht, um technische Anforderungen an eine großflottentaugliche Ladeinfrastrukturlösung zu formulieren. Dazu gehören die Sicherstellung der lokalen Netzversorgung, Auswirkungen auf Betriebsgebäude und ein Anwendungskonzept für die Fahrzeugnutzer. Das Projektgebiet schafft die notwendigen Grundlagen für die Pilotierung einer CO2-freien Zustellung im Stadtgebiet Bonn. Die Arbeitsplanung des Gesamtvorhabens 'SMART E-USER' setzt sich aus 9 Arbeitspaketen (AP) zusammen. Deutsche Post DHL ist in 4 AP beteiligt. In AP 2 wird eine IT-basierte Verbindung der Ladesteuerung mit dem Tourenplanungssystem geschaffen. AP 3 widmet sich der Bereitstellung der Fahrzeuge und dem Aufbau der Ladeinfrastruktur, bevor in AP4 die Durchführung der Erprobung im Güterwirtschaftsverkehr in Berlin erfolgt.

AIR4EU: Air Quality Assessment for Europe - from Local to Continental Scale

Das Projekt "AIR4EU: Air Quality Assessment for Europe - from Local to Continental Scale" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung durchgeführt. AIR4EU addresses the needs for policy-orientated research on integrated air quality (AQ) assessment by monitoring methods and modelling at different temporal and spatial scales for regulated components in Europe: PM10 (and PM2.5), NO2, CO, SO2, O3 and benzene. Policy support on AQ assessment has been recognised a priority issue within the 'Clean Air for Europe-CAFE' programme. There are a wide variety of AQ assessment methods based upon monitoring and modelling, but these methods depend on the spatial and temporal scales, and are often not or only partially compatible. Consequently, there is a need for scientific sound and practical recommendations on how to integrate monitoring and modelling methods into internally consistent, comprehensive and cost-effective assessment methods. The aim of AIR4EU is to provide recommendations on AQ assessment for different temporal and spatial scales: ranging from hourly to annual and from 'hotspot'/street to continental scale. Case studies are implemented with partners in Paris, Berlin, Prague, London, Athens, Rotterdam and Oslo, to test and further develop the recommendations. AIR4EU will also prepare AQ maps at different scales in Europe based upon available data sets (monitoring, meteorology and emissions) and the recommended methods. The cooperation of European top-scientists from six member states representing four universities, two research institutes and eight user-partners will support the establishment of the European Research Area. AIR4EU will co-operate with on-going relevant projects (e.g. ENV-e-CITY; OSCAR; CLEAR; MERLIN) and networks (e.g. INTEGAIRE, CITY-Delta; POLIS), and specific liaison will be established with the CAFE programme. AIR4EU will disseminate its results by a Website and through Newsletters and Workshops to the scientific community, environmental authorities, policy makers and other stakeholders in AQ in Europe. Prime Contractor: Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek - TNO; Delft; Netherlands.

Improved Methods for the Assessment of the Generic Impact of Noise in the Environment (IMAGINE)

Das Projekt "Improved Methods for the Assessment of the Generic Impact of Noise in the Environment (IMAGINE)" wird vom Umweltbundesamt gefördert und von Müller-BBM Gesellschaft mit beschränkter Haftung durchgeführt. For the production of strategic noise maps as required under the EU Directive 2002/49/EC, improved assessment methods for environmental noise will be required. Noise from any major source, be it major roads, railways, airports or industrial activities in agglomerations, needs to be included in the noise mapping. For road and rail, improved methods will be developed in the 5th frame work Harmonoise project. These methods will be adopted to develop methods for aircraft and industrial noise in the IMAGINE project proposed here. Noise source databases to be developed in IMAGINE for road and rail sources will allow a quick and easy implementation of the methods in all member states. Measured noise levels can add to the quality of noise maps because they tend to have better credibility than computed levels. In the project proposed here, guidelines for monitoring and measuring noise levels will be developed, that can contribute to a combined product (measurement and computation) that has high quality and high credibility. Noise action plans shall be based on strategic noise maps. The IMAGINE project will develop guidelines for noise mapping that will make it easy and straightforward to assess the efficiency of such action plans. Traffic flow management will be a key element of such action plans, both on a national and a regional level. Noise mapping will be developed into a dynamic process rather than a static presentation of the situation. IMAGINE will provide the link between Harmonoise and the practical process of producing noise maps and action plans. It will establish a platform where experts and end users can exchange their experience and views. This platform should continue after the project and provide a basis for exploitation to the IMAGINE results. me Contractor: Detalrail B.V.; Utrecht; Netherlands.

B 3.1: Efficient water use of mixed cropping systems in watersheds of Northern Thailand highlands

Das Projekt "B 3.1: Efficient water use of mixed cropping systems in watersheds of Northern Thailand highlands" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Düngung und Bodenstoffhaushalt (340i) durchgeführt. Worldwide an important part of agricultural added value is produced under irrigation. By irrigation unproductive areas can be cultivated, additional harvests can be obtained or different crops can be planted. Since its introduction into Northern Thailand lychee has developed as one of the dominating cash crops. Lychee is produced in the hillside areas and has to be irrigated during the dry season, which is the main yield-forming period. Water therefore is mainly taken from sources or streams in the mountain forests. As nowadays all the available resources are being used do to increased production, a further increase in production can only be achieved by increasing the water use efficiency. In recent years, partial root-zone drying has become a well-established irrigation technique in wine growing areas. In a ten to fifteen days rhythm one part of the root system is irrigated while the other dries out and produces abscisic acid (ABA) a drought stress hormone. While the vegetative growth and thus labor for pruning is reduced, the generative growth remains widely unaffected. Thereby water-use efficiency can be increased by more than 40Prozent. In this sub-project the PRD-technique as well as other deficit irrigation strategies shall be applied in lychee and mango orchards and its effects on plant growth and yield shall be analyzed. Especially effects of this water-saving technology on the nutrient balance shall be considered, in order to develop an optimized fertigation strategy with respect to yield and fruit quality. As shown in preliminary studies, the nutrient supply is low in soils and fruit trees in Northern Thailand (e.g. phosphate) and even deficient for both micronutrients boron (B) and zinc (Zn). Additionally, non-adapted supply of nitrogen (mineralization, fertilization) can induce uneven flowering and fruit set. Therefore, improvement is necessary. For a better understanding of possible influence of low B and Zn supply on flowering and fruit set, mobility and retranslocation of both micronutrients shall be investigated for mango and lychee. Finally, the intended system of partial root-zone fertigation (PRF) shall guarantee an even flowering and a better yield formation under improved use of the limited resource water. As this modern technique, which requires a higher level of irrigation-technology, cannot be immediately spread among the farmers in the region, in a parallel approach potential users shall be integrated in a participative process for adaptation and development. Water transport and irrigation shall be considered, as both factors offer a tremendous potential for water saving. Local knowledge shall be integrated in the participatory process (supported by subproject A1.2, Participatory Research) in order to finally offer adapted technologies for application within PRF systems for the different conditions of farmers in the hillsides of Northern Thailand.

Climate Impact Expert System (CIES)

Das Projekt "Climate Impact Expert System (CIES)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. Today, plenty of data is available on the climate, agriculture or forestry which is neither integrated nor easily consumable by individuals or companies. However, climate data alone and integrated with other data sources is valuable information for economically relevant sectors such as agriculture, forestry, hydrology and (bio)energy production. The Potsdam Institute for Climate Impact Research (PIK), IT partner (wetteronline GmbH) and Bayer AG (specifically Bayer CropScience) are among the leading entities in their areas of expertise worldwide. The proposed work combines their expertise in the following fields: PIK: Climate research IT partner: Information systems Bayer: Plant protection The goal is in a first step to develop a consultant software product for agricultural problems (including hydrology and forestry) influenced by weather and climate. This product will achieve new levels of sophistication, with potential applications to various regions and areas of the economy (energy, water availability, forestry, health, stakeholder consultations etc.). Key innovations are as follows: - PIK is well stocked with different models for the computation of climate scenarios, hydrology and water resources, vegetation dynamics (including forestry and agriculture) which are to be coupled into a tool. There is no such model chain in the shape of an integrative tool so far. - The project aims at developing a client-server based system, which integrates climate and climate scenario from PIK, open data available in the internet, as well as knowledge about crops from our partner Bayer AG CropSciences. Access will be provided via a variety of web-enabled devices. - Although some institutions supply climate data and climate scenario data, the resulting effects on economically relevant sectors such as hydrology, agriculture or energy production are lacking. Within this pilot study, such scenarios integrating both climate and sectors will be provided for Germany to start with. - In turn, the scenario data compiled by the model system will be the foundation and data basis for a user tool that will enable future users to apply the data according to their specific demands in a very user-friendly format. - The aim is to deploy this information for as many regions and users as possible worldwide. Germany and selected regions from other climatic zones such as China and Africa will serve as pilot regions.

Tsunami Risk ANd Strategies For the European Region (TRANSFER)

Das Projekt "Tsunami Risk ANd Strategies For the European Region (TRANSFER)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. The project main goal is to contribute to our understanding of tsunami processes in the Euro-Mediterranean region, to the tsunami hazard and risk assessment and to identifying the best strategies for reduction of tsunami risk. Focus will be posed on the gaps and needs for the implementation of an efficient tsunami early warning system (TEWS) in the Euro- Mediterranean area, which is a high-priority task in consideration that no tsunami early warning system is today in place in the Euro-Mediterranean countries. The main items addressed by the project may be summarised as follows. The present Europe tsunami catalogue will be improved and updated, and integrated into a world-wide catalogue (WP1). A systematic attempt will be made to identify and to characterise the tsunamigenic seismic (WP2) and non-seismic (WP3) sources throughout the Euro-Mediterranean region. An analysis of the present-day earth observing and monitoring (seismic, geodetic and marine) systems and data processing methods will be carried out in order to identify possible adjustments required for the development of a TEWS, with focus on new algorithms suited for real-time detection of tsunami sources and tsunamis (WP4). The numerical models currently used for tsunami simulations will be improved mainly to better handle the generation process and the tsunami impact at the coast (WP5). The project Consortium has selected ten test areas in different countries. Here innovative probabilistic and statistical approaches for tsunami hazard assessment (WP6), up-to-date and new methods to compute inundation maps (WP7) will be applied. Here tsunami scenario approaches will be envisaged; vulnerability and risk will be assessed; prevention and mitigation measures will be defined also by the advise of end users that are organised in an End User Group (WP8). Dissemination of data, techniques and products will be a priority of the project (WP9). Prime Contractor: Alma Mater Studiorum-Universita di Bologna; Bologna, Italy.

Development of a modelling system for prediction and regulation of livestock waste pollution in the humid tropics

Das Projekt "Development of a modelling system for prediction and regulation of livestock waste pollution in the humid tropics" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Tropische Agrarwissenschaften (Hans-Ruthenberg-Institut), Fachgebiet Pflanzenbau in den Tropen und Subtropen (490e) durchgeführt. Introduction: In Malaysia, excessive nutrients from livestock waste management systems are currently released to the environment. Particularly, large amounts of manure from intensive pig production areas are being excreted daily and are not being fully utilised. Alternatively, the excess manure can be applied as an organic fertiliser source in neighbouring cropping systems on the small landholdings of the pig farms to improve soil fertility so that its nutrients will be available for crop uptake instead of being discharged into water streams. Thus, there is a need for better tools to analyse the present situation, to evaluate and monitor alternative livestock production systems and manure management scenarios, and to support farmers in the proper management of manure and fertiliser application. Such tools are essential to quantify, and assess nutrient fluxes, manure quality and content, manure storage and application rate to the land as well as its environmental effects. Several computer models of animal waste management systems to assist producers and authorities are now available. However, it is felt that more development is needed to adopt such models to the humid tropics and conditions of Malaysia and other developing countries in the region. Objectives: The aim is to develop a novel model to evaluate nutrient emission scenarios and the impact of livestock waste at the landscape or regional level in humid tropics. The study will link and improve existing models to evaluate emission of N to the atmosphere, and leaching of nutrients to groundwater and surface water. The simulation outputs of the models will be integrated with a GIS spatial analysis to model the distribution of nutrient emission, leaching and appropriate manure application on neighbouring crop lands and as an information and decision support tool for the relevant users.

Assessment of satellite constellations for monitoring the variations in earth s gravity field

Das Projekt "Assessment of satellite constellations for monitoring the variations in earth s gravity field" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Geodätisches Institut durchgeführt. More than a decade has passed since the launch of the GRACE satellite mission. Although designed for a nominal mission lifetime of 5 years, it still provides valuable science data. An eventual systems failure and, thus, mission termination is expected any time soon, though. Despite a relative low spatial and temporal resolution, the monthly gravity fields have proved an invaluable and novel parameter set in several geoscience disciplines, allowing new research venues in the study of Global Change phenomena. The hydrological cycle is now subject to quantification at continental scales; the state of the cryosphere, particularly ice sheet melting over Greenland and Antarctica, can be monitored; and steric effects of sea-level change have become separable from non-steric ones. The enormous success of the mission has driven the need for continuation of monitoring mass changes in the Earth system. Indeed, a GRACE Follow-On (GFO) mission has been approved for launch in August 2017. Like its predecessor it will consist of two satellites flying en echelon with intersatellite K-Band ranging as the main gravitational sensor. Despite a number of planned technological improvements, including a laser link as demonstrator, GFO will mostly be based on GRACE heritage. Given a similar orbit configuration and a similar systems setup, the quality of eventual gravity field products can be expected to be in the same range as the current GRACE products. To guarantee the continuation of such successful gravity field time series ESA has embarked several years ago on a long term strategy for future gravity field satellite missions, both in terms of technology development and in terms of consolidating the user community. Scientists from academia and industry held a workshop on The Future of Satellite Gravimetry at ESTEC premises, 12-13 April 2007, (RD-9). Similar workshops have been organized by other organizations, e.g. the joint GGOS/IGCP565 workshop Towards a Roadmap for Future Satellite Gravity Missions in Graz, September 30 - October 2, 2009. ESA furthermore played a key role in consolidating the international user community by funding a series of study projects, cf. (RD-1) to (RD-5). Similar projects have been funded and conducted at national level, e.g. the German BMBF-funded Geotechnologies III project Concepts for future gravity field satellite missions (PI: N. Sneeuw). These studies, together with GRACE experience, have provided a clear understanding of the current limitations of a GRACE-type mission. In particular the limitations in sampling and sensitivity of a single pair of satellites with in-orbit in-line sensitivity are well documented. At the same time, these studies have shown the design options and a roadmap towards a next generation gravity field mission.

Generic Fuel Cell Modelling Environment (GENFC)

Das Projekt "Generic Fuel Cell Modelling Environment (GENFC)" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Werkstoffe und Verfahren der Energietechnik durchgeführt. Objective: The GenFC proposal addresses the topic 'Generic tools for FC systems modelling, testing, safety and quality assurance' under the activity code SUSTDEV-1.2.1: Fuel cells including their applications. It falls into research activities having an impact in the medium to long term. The overall goal of GenFC is to provide a generic modelling tool to fuel cell and fuel cell systems developers making fuel cell modelling expert knowledge available to all of them. The fuel cell and fuel cell systems developers can us e this tool to improve and accelerate fuel cell development and to contribute to a future success of the fuel cell technology. It is believed that from the fuel cell (hardware) developer's point of view, a fuel cell modelling environment is desirable which can be used for simulation tasks exactly catering to the demand of the application engineer. The integrated modelling tool will assist fuel cell developers to improve their design- and optimisation processes in terms of accelerating development cycles, l owering costs, improving quality and hence also safety. The user of such a modelling environment will be able to choose through a user friendly interface a model out of a set of different types of fuel cells. Each type of fuel cell will be available in dif ferent implementations and each implementation is suitable for a particular application. The consortium consists of fuel cell technology developers, specific software providers, software engineers and fuel cell model users. Existing and in the course of t he project to be developed models and hardware in the loop systems for different types of fuel cells on all levels from system integration, via stack and cell down to electrode processes, are integrated in the tool and interfaced with a common data-base fo r process and design parameters. GenFC can help establish a competitive fuel cell industry in Europe contributing to the great challenge of migrating from a fossil fuel based economy to a sustainable one.

FuncTional tOOls for Pesticide RIsk assessmeNt and managemenT (FOOTPRINT)

Das Projekt "FuncTional tOOls for Pesticide RIsk assessmeNt and managemenT (FOOTPRINT)" wird vom Umweltbundesamt gefördert und von Justus-Liebig-Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement durchgeführt. FOOTPRINT aims at developing a suite of three pesticide risk prediction and management tools, for use by three different end-user communities: farmers and extension advisors at the farm scale, water managers at the catchment scale and policy makers/registration authorities at the national/EU scale. The tools will be based on state-of-the-art knowledge of processes, factors and landscape attributes influencing pesticide fate in the environment and will integrate innovative components which will allow users to: i) identify the dominant contamination pathways and sources of pesticide contamination in the landscape; ii) estimate pesticide concentrations in local groundwater resources and surface water abstraction sources; iii) make scientifically-based assessments of how the implementation of mitigation strategies will reduce pesticide contamination of adjacent water resources. The three tools will share the same overall philosophy and underlying science and will therefore provide a coherent and integrated solution to pesticide risk assessment and risk reduction from the scale of the farm to the EU scale. The predictive reliability and usability of the tools will be assessed through a substantial programme of piloting and evaluation tests at the field, farm, catchment and national scales. The tools developed within FOOTPRINT will allow stakeholders to make consistent and robust assessments of the risk of contamination to water bodies at a range of scales relevant to management, mitigation and regulation (farm, catchment and national/EU). They will in particular i) allow pesticide users to assess whether their pesticide practices ensure the protection of local water bodies and, ii) provide site-specific mitigation recommendations. The FOOTPRINT tools are expected to make a direct contribution to the revision of the Directive 91/414/EC, the implementation of the Water Framework Directive and the future Thematic Strategy on the Sustainable Use of Pesticides. Prime Contractor: Bureau de Recherches Géologiques et Minières; Paris; France.

1 2 3 4 513 14 15