Durum wheat is mainly grown as a summer crop. An introduction of a winter form failed until now due to the difficulty to combine winter hardiness with required process quality. Winter hardiness is a complex trait, but in most regions the frost tolerance is decisive. Thereby a major QTL, which was found in T. monococcum, T.aestivum, H. vulgare and S.cereale on chromosome 5, seems especially important. With genotyping by sequencing it is now possible to make association mapping based on very high dense marker maps, which delivers new possibilities to detect main and epistatic effects. Furthermore, new sequencing techniques allow candidate gene based association mapping. The main aim of the project is to unravel the genetic architecture of frost tolerance and quality traits in durum. Thereby, the objectives are to (1) determine the genetic variance, heritability and correlations among frost tolerance and quality traits, (2) examine linkage disequilibrium and population structure, (3) investigate sequence polymorphism at candidate genes for frost tolerance, and (4) perform candidate gene based and genome wide association mapping.
Die kombinatorische Vielfalt der Einflussgrößen auf den Energieverbrauch von Gebäuden verursacht meistens Unsicherheit in der Planung. Ziel dieses Projektes ist es, für Architekten und Fachplaner eine umfassende Matrix zu erstellen, die es erlaubt, die Auswirkungen von Planungsschritten auf den Energiehaushalt und die Behaglichkeit von Gebäuden hinreichend genau zu bewerten und Alternativen gegeneinander abzuwägen. Anhand eines standardisierten Bürogebäudes werden unter Berücksichtigung der äußeren und inneren Lasten und für definierte zu erreichende Raumzustände alle wichtigen Faktoren wie z.B. der Anteil an thermisch aktiver Masse oder der Grad an Verglasung variiert. Die zur Anwendung kommende Methode der thermischen Gebäudesimulation und Strömungssimulation erlaubt eine sehr differenzierte Betrachtungsweise.
Bereits der grundlegende Ansatz des Verbundvorhabens ProMoBiS bricht mit bislang üblichen Batteriekonzepten, die eine starre Hierarchie von Zelle, Modul und Speicher festlegen. Stattdessen wird ein skalierbarer Multizell-Verbund als Schlüsselelement der Architektur eingeführt. In diesen Verbund sind eine innovative zellexterne Sensorik und Kühlung vollständig und nahtlos integriert. Flexible Signalverarbeitung, Elektronik und Datenauswertung vervollständigen das Gesamtsystem. Als Basis für die optimierbare Betriebsführung durch die kombinierte Nutzung von Sensordaten und echtzeitfähigen Algorithmen werden detaillierte thermoelektrische und elektrochemische Modelle entwickelt und validiert. Der Mehrwert des Ansatzes bezüglich der Erhöhung von Leistungsfähigkeit und Anzahl der Schnellladezyklen sowie der Reduzierung von Ladezeit und Energieverlusten wird mittels eines auf neuartigen Algorithmen basierenden intelligenten Batterie- und Temperaturmanagements demonstriert. Abgerundet wird das Vorhaben durch eine kritische Bewertung des Gesamtansatzes aus Sicht der Industrialisierbarkeit. Der Fokus von der HAW Hamburg liegt in dem genannten Teilvorhaben, insbesondere werden Kommunikationsstrukturen und Lösungen für die Sensorik, die Elektronikkomponenten und Controller-Software für das Batteriemanagement erarbeitet. Innovative Konzepte ermöglichen die dezentrale Arbeitsweise der Sensorik. Dabei ist die angestrebte Flexibilisierung infolge des Wegfalls der bisher starren Modulgrenzen zu unterstützen.
Im Rahmen des Forschungsvorhabens Timber Earth Slab (T.E.S.) schließen sich Branchenexperten aus der Industrie aus den Bereichen Holzbau und Lehmbau mit Professuren der TU München aus den Disziplinen Digitaler Fertigung, Holzbau und Baukonstruktion, Klimadesign und Architektur zusammen, um im mehrgeschossigen Holzbau einen grundlegenden Beitrag hin zum CO2-neutralen Bauen anzustoßen: T.E.S., eine industriell gefertigte Net-Zero Holz-Lehm-Decke. Geschossdecken sind eine zentrale Komponente für das Erreichen der CO2-Neutralität im mehrgeschossigen Holzbau mit sehr hohen Anforderungen an den Brandschutz, thermischer Masse und Schallschutz. T.E.S. kombiniert computergestütztes Design, robotisch gestützte Fertigung und Materialtechnologie, um eine neue innovative Lösung für die industrielle Fertigung eines ressourceneffizienten und funktionsintegrierten Deckensystems aus Holz und Lehm zu erforschen, das alle strukturellen und bautechnischen Anforderungen für den mehrgeschossigen Holzbau erfüllt, außerdem CO2-neutral hergestellt werden kann und vollständig rezyklierbar ist. Mithilfe der Materialtechnologie des ETH-Spinoffs Oxara, mit der Lehm mit geringem Wasseranteil fließfähig gemacht und vergossen werden kann, und robotischer Fertigungstechnologie, die die maßgeschneiderte Herstellung einer auf den Fließlehm abgestimmten feingliedrigen Holzkonstruktion ermöglicht, verspricht T.E.S. ein hybrides Deckensystem, welches die Stärken beider Materialien ideal kombinieren lässt: Durch die guten statischen Eigenschaften von Holz in Kombination mit den positiven Eigenschaften des Lehms hinsichtlich thermischer Masse, der Möglichkeiten zur thermischen Aktivierung, Brandschutz und Schallschutz können mit T.E.S. Nachhaltigkeit, Performativität und Kosteneffizienz in einer Deckenkonstruktion zusammengebracht werden.
1
2
3
4
5
…
110
111
112