Das internationale ICDP (International Continental Scientific Drilling Program) ist das Programm zur Realisierung von wissenschaftlichen Bohrprojekten auf den Kontinenten. Der ICDP Science Plan 2020-2030 sieht 4 Hauptthemen vor: i) Geodynamische Prozesse; ii) Geogefahren; iii) Georessourcen; und iv) Umweltveränderungen. Deutsche Wissenschaftler*innen sind an ca. 65% aller ICDP Projekte als PIs oder Co-PIs beteiligt. Die Finanzierung im Rahmen des DFG Infrastrukturschwerpunktprogramms ‘SPP 1006 – ICDP‘ stellt die Grundlage für die zentrale Rolle von deutschen Wissenschaftler*innen in diesen Bohrprojekten dar. Die Zielsetzung dieses Antrages ist die Fortsetzung der Arbeiten des nationalen ICDP Koordinationsbüros. Es sollen auf nationaler Ebene Initiativen und Projekte koordiniert, die Kommunikation auf nationaler und internationaler Ebene intensiviert (z.B. Bekanntmachung und Unterstützung von Workshops und wissenschaftlichen Treffen), sowie deutsche Wissenschaftler*innen bei der Erarbeitung neuer internationaler Initiativen unterstützt werden. Das Koordinationsbüro dokumentiert ebenfalls den Verlauf von laufenden nationalen und internationalen ICDP Aktivitäten mit deutscher Beteiligung. Die weitere Vertiefung der Zusammenarbeit mit dem IODP Koordinationsbüro sowie die Förderung von Nachwuchswissenschaftler*innen bleiben zentrale Anliegen in der kommenden Förderphase.
WaterGAP ist eine globale hydrologische Simulationssoftware zur Berechnung von Wasserflüssen und -speicherung auf allen Kontinenten der Erde. Sie wird verwendet, um Wasserverfügbarkeit und Wasserstress für Menschen und andere Biota weltweit zu bestimmen. In zahlreichen Studien wurde WaterGAP genutzt, um z.B. den Einfluss des Klimawandels auf Bewässerungsbedarf, ökologisch relevante Durchflusscharakteristika, Grundwasserneubildung und auf Wasserressourcen im Allgemeinen zu erforschen. Resultate aus diesen Studien sind in IPCC-Berichte eingegangen. WaterGAP nimmt unter den hydrologischen Modellen weltweit eine Führungsrolle ein. Allerdings wurde die Software über mehr als 20 Jahre von mehreren Doktoranden und Postdocs verändert und befindet noch sich immer in einem Prototypstadium. Die Software wurde nie grundlegend überarbeitet oder auf Grundlage einer sorgfältig geplanten Software-Architektur entwickelt. Es handelt sich eher um eine Ansammlung von Dateien mit jeweils fast 10.000 Code-Zeilen, ohne eine konsequente Modularisierung. Es ist es uns daher aktuell nicht möglich, die Software anderen Forschern zur Verfügung zu stellen, damit sie Ergebnisse replizieren und verstehen können oder die Software für eigene Forschung zu erweitern. Auch Modellveränderungen und Erweiterungen durch unsere beiden Gruppen sind herausfordernd und kosten Zeit. Gerade wegen der wichtigen Forschungsergebnisse bezüglich der Beurteilung und Projektion von globalen Wasserressourcen wäre eine Replikation der Ergebnisse durch Dritte unbedingt notwendig, was eine deutliche Verbesserung der Softwarequalität voraussetzt. Projektziel ist es. die Forschungssoftware in einer modernen Programmiersprache neu zuschreiben und ausführlich zu dokumentieren. Zudem soll die räumliche Auflösung flexibel anpassbar sein. Die resultierende Software soll testbar, wartbar, erweiterbar und durch Dritte nutzbar und erweiterbar sowie gründlich getestet sein. Die Neuentwicklung wird mit einem angepassten Scrum-Prozess durchgeführt und die Planung der Software Architektur wird auf Grundlage des IEEE 1016-2009 Dokuments erstellt. Mehrere Methoden werden genutzt um nachhaltig die Qualität der Software intern und externe zu steuern. Dieses Projekt wird anderen Forschern erlauben unser globales hydrologisches Modell selbst auszuführen, Ergebnisse zu replizieren oder die Einflüsse von Modifikationen in den Eingabedaten und Algorithmen zu untersuchen. Die Forschergemeinschaft kann so algorithmische Ansätze vergleichen, unserer Ergebnisse überprüfen und auch Fehler in unserer Software identifizieren. Um die Berichterstattung und Zusammenarbeit so einfach wie möglich zu gestalten setzen wir auf die etablierte Plattform github. Auch werden wir von automatisierten Tests und Benchmarkszenarien Gebrauch machen. Dies wird nicht nur dazu beitragen die Forschungssoftware WaterGAP effizienter zu nutzen und wissenschaftliche Ergebnisse robuster machen, sondern auch den wissenschaftlichen Fortschritt beschleunigen.
Als Voraussetzung für IODP-Bohrungen am Belize Barrier Reef ist eine detaillierte bathymetrische Studie geplant. Diese soll mit Hilfe von Multibeam und flachseismischer Technik entlang ausgewählter Abschnitte im Außenriff (Wassertiefen 20-150 m) durchgeführt werden. Es existieren bislang keine detaillierten und GPS-gestützten Bathymetrie- und Seismik-Daten des Außenriffbereichs. Basierend auf den zu gewinnenden Daten sollen potentielle Bohrlokationen für das IODP gefunden werden. Unsere Arbeitshypothese geht davon aus, daß postglaziale Riffe deutliche topographische Lineamente bzw. Terrassen entang des Plattformrandes bilden. Wir beabsichtigen, Lokationen zu identifizieren, die geeignet sind, postglaziale (20-10 kyr BP) und darunterliegende, ältere pleistozäne Ablagerungen entlang einer Reihe von Bohrtraversen zu gewinnen. Außerdem ist ein internationaler Workshop mit interessierten Kollegen geplant, um die Möglichkeiten zu diskutieren, einen IODP-Antrag zu entwickeln. Der darauf aufbauende IODP-Antrag könnte vier potentielle Ziele haben: (1) Rekonstruktion des postglazialen Meeresspiegel-Anstiegs, (2) Analyse und Quantifizierung der postglazialen Riff-Zusammensetzung und -Architektur, (3) Gewinnung von Temperatur- und Karbonat-Sättigungs-Daten während dieses Zeitfensters. (4) Außerdem können Aspekte der pleistozänen Riff-Initiation und Paläökologie untersucht werden, abhängig vom Kerngewinn in älteren pleistozänen Abfolgen. Vor dem Hintergrund der modellierten Zunahme der Meeresspiegeanstiegsrate im 21. Jahrhundert, können postglaziale, ertrunkene Riff-Abfolgen für zukünftige Meeresspiegel-Projektionen genutzt werden. Im Unterschied zu hochauflösenden und robusten, Riff-basierten postglazialen Meeresspiegelkurven im Indo-Pazifik (Huon, Tahiti, Great Barrier Reef), existiert nur ein vergleichbares Archiv im westlichen Atlantik (Barbados). Das Barbados-Archiv ist insoweit merkwürdig als von den Schmelzwasser-Ereignissen (MWP) 1A und 1B in Tahiti (IODP 310) und NE-Australien (IODP 325) nur MWP 1A nachgewiesen wurde. Außerdem wurden, wie auch in anderen früh-holozänen Riffabfolgen, Mikrobialithe in großer Häufigkeit gefunden. Diese fehlen aber offensichtlich in Barbados aus bislang ungeklärten Gründen. Besonders die Häufigkeit (Dicke, Volumen) der Mikrobialith-Fazies in postglazialen Riffen ist von Bedeutung als Umwelt-Proxy, da die vergleichsweise einfachen Organismen (Bakterien) in großem Maße von Umwelt-Veränderungen abhängig sind, und daher einfacher zu interpretieren sind als Proxy-Daten (Sklerochronologie, d18O, Sr/Ca) von enzymatisch kontrollierten Skelettbildnern wie Korallen. Es wird diskutiert, ob die Mikrobialith-Häufigkeit von der Art des Hinterlandes, der Karbonatsättigung oder der Rate des Meeresspiegel-Anstiegs gesteuert wird. Ein neues, postglaziales Korallenriff-Archiv aus dem tropischen Atlantik würde helfen, diese offenen Fragen zu beantworten und den Verlauf des Meeresspiegel-Anstiegs im westlichen Atlantik zu konkretisieren.
Im Rahmen des Forschungsvorhabens Timber Earth Slab (T.E.S.) schließen sich Branchenexperten aus der Industrie aus den Bereichen Holzbau und Lehmbau mit Professuren der TU München aus den Disziplinen Digitaler Fertigung, Holzbau und Baukonstruktion, Klimadesign und Architektur zusammen, um im mehrgeschossigen Holzbau einen grundlegenden Beitrag hin zum CO2-neutralen Bauen anzustoßen: T.E.S., eine industriell gefertigte Net-Zero Holz-Lehm-Decke. Geschossdecken sind eine zentrale Komponente für das Erreichen der CO2-Neutralität im mehrgeschossigen Holzbau mit sehr hohen Anforderungen an den Brandschutz, thermischer Masse und Schallschutz. T.E.S. kombiniert computergestütztes Design, robotisch gestützte Fertigung und Materialtechnologie, um eine neue innovative Lösung für die industrielle Fertigung eines ressourceneffizienten und funktionsintegrierten Deckensystems aus Holz und Lehm zu erforschen, das alle strukturellen und bautechnischen Anforderungen für den mehrgeschossigen Holzbau erfüllt, außerdem CO2-neutral hergestellt werden kann und vollständig rezyklierbar ist. Mithilfe der Materialtechnologie des ETH-Spinoffs Oxara, mit der Lehm mit geringem Wasseranteil fließfähig gemacht und vergossen werden kann, und robotischer Fertigungstechnologie, die die maßgeschneiderte Herstellung einer auf den Fließlehm abgestimmten feingliedrigen Holzkonstruktion ermöglicht, verspricht T.E.S. ein hybrides Deckensystem, welches die Stärken beider Materialien ideal kombinieren lässt: Durch die guten statischen Eigenschaften von Holz in Kombination mit den positiven Eigenschaften des Lehms hinsichtlich thermischer Masse, der Möglichkeiten zur thermischen Aktivierung, Brandschutz und Schallschutz können mit T.E.S. Nachhaltigkeit, Performativität und Kosteneffizienz in einer Deckenkonstruktion zusammengebracht werden.
Ziel des Verbundvorhabens EffF3D ist die Entwicklung einer effizienten Prozesskette zur Massenfertigung von komplex geformten und funktionalisierten Dünngläsern (Glasdicke kleiner als 3 mm) basierend auf nicht-isothermen Umformprozessen. Im Vergleich mit den etablierten Prozessketten ist die vorgeschlagene in der Lage, den Energieeinsatz um 67% und dadurch anteilig den CO2-Ausstoß um 63% zu reduzieren. Durch die hohe Marktdurchdringung des Dünnglases wurde allein in der Unterhaltungsbranche 2019 ein Marktvolumen von 1,37 Milliarden Dünngläsern (Absatz Smartphones weltweit) adressiert. Dazu kommen weitere 75 Millionen Dünngläser im Jahr 2019 aus dem Automobilbau, Sensorik und Architektur. Von diesen Dünngläsern sind etwa 70% mit Funktionsschichten oder -strukturen (Haptik, Hydrophobie, Antireflexion, etc.) versehen. Die Funktionalisierung wird heutzutage entweder über Ätzverfahren mit umweltgefährdenden Stoffen oder durch strukturierte Formeinsätzen mit geringer Werkzeugstandzeit eingebracht. Das Verbundvorhaben ‘EffF3D’ erforscht die vorgelagerte Funktionalisierung der Glasrohlinge durch Laserstrukturierung mit anschließendem nicht-isothermen Glasumformprozess. Die nicht-isotherme Glasumformung steigert, aufgrund hoher Werkzeugstand- und Taktzeiten die Material- und Ressourceneffizienz gegenüber konkurrierenden Formgebungsverfahren. In einer ersten Abschätzung der neuartigen Prozesskette wird der Massenmarkt mit einem prognostizierten Stückpreis zwischen 3 € und 4 € erreicht, bei der oben genannten Erhöhung der ökologischen Verträglichkeit.
1
2
3
4
5
…
110
111
112