Es wurde ein hochaufloesendes mikroskaliges numerisches Rechenmodell zur Simulation der Wechselwirkungen zwischen verschiedenen natuerlichen und kuenstlichen Oberflaechen, der Vegetation und der Atmosphaere entwickelt. Das Modell ermoeglicht die Simulation der Auswirkungen lokaler Umweltgestaltung (Strassengruen, Entsiegelung, Baugestaltung) auf das Mikroklima im staedtischen Umfeld.
Fallstudien werden herangezogen um leistungsfähige Doppelfassaden in ihrer Wirkung auf Systeme der Gebäudetechnik sowie auf die Energieeffizienz des Gebäudes zu untersuchen. Bei der ersten Fallstudie handelt es sich um einen 21-geschossigen Büroturm im Zentrum von Berlin mit Fertigstellungsdatum 1999. Die Doppelfassade wirkt als solarthermischer Schacht und ermöglicht die natürliche Lüftung des Turmes während 70Prozent des Jahres. Für die verbleibende Zeit erfolgt die Versorgung mechanisch über Quellluft und sorptionsgestützte Klimatisierung. Das zweite Gebäude hat die Funktion einer Hauptverwaltung nahe Frankfurt, fertiggestellt im Jahr 2000. Hier ermöglicht ein extrem effizientes Doppelfassadensystem den Verzicht auf ein konventionelles Heizsystem. Ein Kapillarrohrsystem in der Decke sorgt für Kühlung und Heizung. Die Einsparungen an den konventionellen Systemen können somit den gestiegenen Fassadenkosten gegen gerechnet werden. Die dritte Fallstudie beschäftigt sich mit dem erstgereihten Wettbewerbsentwurf für die neue Hauptverwaltung der europäischen Zentralbank in Frankfurt. Eine zweite Gebäudehülle in Kombination mit einer energetisch optimierten Gebäudeform erlaubt während des gesamten Jahres die natürliche Lüftung des Hochhauses. Zusätzlich zur Ersparnis in den laufenden Betriebsenergiekosten wird ein enormes Einsparpotential bezüglich Investitionskosten (Wegfall des mechanischen Lüftungssystems und Anlagentechnik) geschaffen sowie die Maximierung nutzbarer Fläche (Wegfall/Verringerung der Versorgungsschächte) ermöglicht. Die Fallstudien zeigen deutlich, dass höchst effiziente Doppelfassaden nicht nur das energetische Gebäudeverhalten verbessern können, sondern genauso die Investitionskosten signifikant senken können. Deshalb ist die Wirtschaftlichkeit einer solchen Maßnahme nicht nur bezüglich ihrem Potential zur Senkung von Energiekosten zu bewerten, sondern immer im Zusammenhang mit einer möglichen Reduktion der Investitionskosten für HLK-Systeme im Gebäude zu sehen. Eine bloße Reduktion der Größe dieser Systeme führt oft zu keinen bemerkenswerten Einsparungen.
Anwendung von Lehm als Baumaterial in Planung und Ausfuehrung. Oekologische Aspekte: - Minimierung Energieaufwand bei Herstellung und Benuetzung - Kein Abfall; wiederverwendbarer Baustoff Forschungsgebiet: Entwicklung von optimierten Verarbeitungsmethoden des Baumaterials unter Einsatz von arbeitszeitsparenden Maschinen und Bearbeitungstechnologien.
Die Architektur des Wurzelsystems von Mais hat sich während der Domestizierung und Verbesserung durch eine Kombination aus landwirtschaftlicher Selektion und Umweltanpassungen rund um den Globus erheblich verändert. Das Mikrobiom, das die Rhizosphäre um die Pflanzenwurzeln herum besiedelt, spielt eine wichtige Rolle bei der Förderung der Stresstoleranz von Pflanzen. In der ersten Förderperiode dieses Projekts haben wir nachgewiesen, dass die Anzahl der Seminalwurzeln während der Domestizierung von Mais zugenommen hat, gefolgt von einem Rückgang bei lokal angepassten Sorten in Regionen mit begrenzter Wasserverfügbarkeit. Umwelt-, genetische und genomische Analysen ergaben frühere Signaturen der Domestizierung und Anpassung von Maiswurzeln und zeigten das genetische Potenzial zur Verbesserung der Trockentoleranz künftiger Nutzpflanzen auf. In der zweiten Förderperiode verfolgen wir zwei übergeordnete Ziele. Erstens soll ein tieferes Verständnis der genetischen und molekularen Grundlagen der systemischen Modulation der Wurzelmorphologie und -anatomie durch Seminalwurzeln gewonnen werden, um eine bessere Anpassung an die begrenzte Wasserverfügbarkeit zu erreichen. Zu diesem Zweck werden wir die komplexe Pflanzenreaktion auf Trockenstress und die mit diesen Merkmalen assoziierten Gene identifizieren, die an der Architektur des Wurzelsystems als Reaktion auf Trockenheit beteiligt sind. Zweitens wollen wir die genetische Rolle des Wirts bei der Zusammensetzung der mikrobiellen Gemeinschaft des von den Wurzelmerkmalen abhängigen nützlichen Mikrobioms der Rhizosphäre verstehen, um die Widerstandsfähigkeit von Mais gegen Trockenheit zu verbessern. In diesem Zusammenhang werden wir systematisch untersuchen, wie sich die genetische Variation des Wirts und die Genregulation auf die Zusammensetzung des Mikrobioms der Rhizosphäre und auf die Produktivität von Mais und die Widerstandsfähigkeit gegen Trockenheit auswirkt. Schließlich werden wir repräsentative Schlüsselgene und Schlüsselmikroben durch reverse Genetik und synthetische mikrobielle Gemeinschaften funktionell validieren. Diese Ergebnisse werden den Weg für eine verbesserte Pflanzenzüchtung und die Nutzung mikrobieller Ressourcen ebnen, um die künftige Nahrungsmittelproduktion und eine effiziente Ressourcennutzung in der Landwirtschaft zu sichern.
1
2
3
4
5
…
110
111
112