API src

Found 934 results.

Related terms

Genetische und molekulare Grundlagen der systemischen Modulation der Architektur des Wurzelsystems von Mais (Zea mays L.) und des Mikrobioms der Rhizosphäre durch die Seminalwurzeln zur besseren Anpassung an Trockenheit

Die Architektur des Wurzelsystems von Mais hat sich während der Domestizierung und Verbesserung durch eine Kombination aus landwirtschaftlicher Selektion und Umweltanpassungen rund um den Globus erheblich verändert. Das Mikrobiom, das die Rhizosphäre um die Pflanzenwurzeln herum besiedelt, spielt eine wichtige Rolle bei der Förderung der Stresstoleranz von Pflanzen. In der ersten Förderperiode dieses Projekts haben wir nachgewiesen, dass die Anzahl der Seminalwurzeln während der Domestizierung von Mais zugenommen hat, gefolgt von einem Rückgang bei lokal angepassten Sorten in Regionen mit begrenzter Wasserverfügbarkeit. Umwelt-, genetische und genomische Analysen ergaben frühere Signaturen der Domestizierung und Anpassung von Maiswurzeln und zeigten das genetische Potenzial zur Verbesserung der Trockentoleranz künftiger Nutzpflanzen auf. In der zweiten Förderperiode verfolgen wir zwei übergeordnete Ziele. Erstens soll ein tieferes Verständnis der genetischen und molekularen Grundlagen der systemischen Modulation der Wurzelmorphologie und -anatomie durch Seminalwurzeln gewonnen werden, um eine bessere Anpassung an die begrenzte Wasserverfügbarkeit zu erreichen. Zu diesem Zweck werden wir die komplexe Pflanzenreaktion auf Trockenstress und die mit diesen Merkmalen assoziierten Gene identifizieren, die an der Architektur des Wurzelsystems als Reaktion auf Trockenheit beteiligt sind. Zweitens wollen wir die genetische Rolle des Wirts bei der Zusammensetzung der mikrobiellen Gemeinschaft des von den Wurzelmerkmalen abhängigen nützlichen Mikrobioms der Rhizosphäre verstehen, um die Widerstandsfähigkeit von Mais gegen Trockenheit zu verbessern. In diesem Zusammenhang werden wir systematisch untersuchen, wie sich die genetische Variation des Wirts und die Genregulation auf die Zusammensetzung des Mikrobioms der Rhizosphäre und auf die Produktivität von Mais und die Widerstandsfähigkeit gegen Trockenheit auswirkt. Schließlich werden wir repräsentative Schlüsselgene und Schlüsselmikroben durch reverse Genetik und synthetische mikrobielle Gemeinschaften funktionell validieren. Diese Ergebnisse werden den Weg für eine verbesserte Pflanzenzüchtung und die Nutzung mikrobieller Ressourcen ebnen, um die künftige Nahrungsmittelproduktion und eine effiziente Ressourcennutzung in der Landwirtschaft zu sichern.

Koordination Waermeschutzforschung im Hochbau

Die Koordinationsstelle Waermeschutzforschung im Hochbau (KWH) will Forschung, auf dem Gebiet des Waermeschutzes, mit dem Forschungsplan koordinieren. Sie will zwischen den einzelnen Forschern vermitteln, sowie mithelfen, Forschungsresultate in die Architektur und Bautechnik einfliessen zu lassen. Im allgemeinen beschraenkt sich die KWH auf die Gebiete der Waermeschutzmassnahmen an der Gebaeudehuelle und auf die passive Sonnenenergie-Architektur. Diese Koordination ist zugleich Ziel und Mittel in der Erfuellung der Aufgaben der KWH. Als wichtige Aufgabe betrachten wir die Beratung des NEFF beim Beurteilen eingehender Gesuche um Forschungsbeitraege. Um diese Beratung nachvollziehbar zu gestalten, haben wir einen Entwurf fuer einen Forschungsplan aufgestellt, mit einer daraus abgeleiteten Kriterienliste. Diese Arbeit erlaubt uns auch, unsere eigenen Forschungsschwerpunkte zu praezisieren, wie z.B. die Installation des Rechenprogrammes DEROB und die damit durchgefuehrten Parameter-Analysen eines Wintergarten. Der Aufbau einer umfassenden Bibliothek ueber Waermeschutz und passive Sonnenenergie-Architektur ist ein weiteres Ziel der KWH. Zusaetzlich ist die KWH jetzt auch an der Koordination des IEA Programms 'Solar', Task 8 beteiligt.

Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Genetic Dissection of Flowering Time in Wheat by High-density Genome-wide Association Mapping

Wheat (Triticum aestivum L.) is grown worldwide and is one of the most important crops for human nutrition. Einkorn wheat (Triticum monococcum) is a diploid relative of bread wheat and both have the A genome in common. The timing of flowering is of major importance for plants to optimally adjust their life cycle to diverse environments. QTL mapping studies indicated that flowering time in cereals is a complex trait, which is controlled by three different pathways: vernalization, photoperiod and earliness per se. In wheat, high-resolution genome-wide association mapping is now possible, because of the availability of a high density molecular marker chip. The main goal of the proposed project is to investigate the regulation of flowering time in wheat using a genome-wide association mapping approach based on a novel high-density SNP array. In particular, the project aims to (1) investigate the phenotypic variation of flowering time of bread wheat and Einkorn wheat in response to environmental cues in multilocation field trials, (2) study the effects of Ppd alleles on flowering time in a candidate 3 gene approach, (3) determine the genetic architecture of flowering time in a high-density genome-wide association mapping, and (4) investigate the plasticity of the genetic architecture of flowering time in wheat by a comparison between bread wheat and Einkorn wheat.

Modifizierte (Bio)polyelectrolyte zur Abtrennung von NOM (Natural Organic Matter) von Wasser – Eine grundlegende Untersuchung für den Fall von Huminsäure als Modell NOM

In diesem Projekt soll die wichtige Thematik der Entfernung von NOM (Natural Organic Matter) aus Trinkwasser im Aufbereitungsprozess aus der grundlegenden Sicht der Kolloidwissenschaften untersucht werden. Dieses Thema ist eine zentrale Frage der menschlichen Gesundheit und bei Oberflächenwasser wird meist ein Polykation (cPE) zur Bindung und Präzipitation der negativ geladenen NOM Moleküle eingesetzt. Trotz der hohen Bedeutung dieser Fragestellung gibt es nur wenige fundamentale, kolloidchemische Arbeiten zu dieser Thematik. Dieser ist Ansatz dieses Projekts, in dem wir aufgereinigte Huminsäure (HA, Hauptbestandteil von NOM) als Modellsystem nehmen und seine Komplexierung mit unterschiedlich modifiziertem kationischen (quaternisierten) Chitosan (q-Chit) untersuchen wollen. Tests mit australischen Partnern haben bereits vielversprechende Resultate bei der NOM Abtrennung mit q-Chit gezeigt. Seine Hauptvorteile sind Biokompatibilität und Variabilität des molekularen Aufbaus aufgrund einfacher chemischer Modifikation. q-Chit wird hier maßgeschneidert synthetisiert, wobei Parameter wie Ladungsdichte, Mw und Hydrophobizität systematisch variiert werden. Das Phasenverhalten soll als Funktion des Mischungsverhältnisses untersucht werden, inklusive einer quantitativen Bestimmung der im Zweiphasengleichgewicht in Lösung verbleibenden Menge an HA. Dies wird ergänzt durch umfangreiche thermodynamische Untersuchungen (ITC) und der Bestimmung der mesoskopischen Struktur der gebildeten Komplexe mit Hilfe von Licht, Röntgen- und Neutronenstreuung. Wichtig ist auch die zeitliche Entwicklung der Systeme, die durch kinetische Strukturmessungen verfolgt wird. Diese umfassende thermodynamische, strukturelle und kinetische Charakterisierung soll systematische Korrelationen zwischen den cPEs und der Stärke ihrer Wechselwirkungen mit HA liefern. Hieraus soll abgeleitet werden welche molekularen Motive wichtig sind, um die Entfernung von HA aus Wasser zu optimieren. Diese Motive werden in einer optimierten Synthese entsprechend verwendet. q-Chit ist im Fokus, aber später soll auch quaternisiertes verzweigtes Polyethylenimin (PEI) eingesetzt werden, bei dem es sich um kompaktes globuläres Polykation mit hoher Ladungsdichte handelt. Sein Einfluss auf Phasenverhalten und Struktur in Mischungen mit HA soll untersucht werden, mit dem Fokus auf Mischungen in denen auch (lineares) q-Chit enthalten ist, da man einen ausgeprägten Synergismus bei der Wechselwirkung mit den sehr unterschiedlichen anionischen Molekülen der HA erwarten kann. Auf dieser Basis einer umfassenden physiko-chemischen Charakterisierung wollen wir ein solides grundlegendes Verständnis der in Mischungen aus cPE und HA vorliegenden Wechselwirkungen generieren. Dieses soll die Grundlage sein für systematische Verbesserungen bei der Entfernung von NOM aus Trinkwasser, einer der zentralen aktuellen technologischen Herausforderungen der Menschheit.

Individuen-basierte Modellierung der Xylem-Lebensgeschichte zur Verbesserung von Prognosen zur Reaktion von Bäumen auf den Klimawandel

Die Intensität und Häufigkeit von Dürren haben in den letzten zehn Jahren dramatisch zugenommen. Viele Wälder haben eine hohe Dürre-Anfälligkeit gezeigt, aber die Reaktionen sind komplex und nicht einheitlich, auch nicht für Bäume derselben Art. Um zu verstehen, wie Bäume auf künftige Klimabedingungen reagieren werden, ist es von größter Bedeutung auch ihre Anpassungsfähigkeit zu berücksichtigen. Änderungen der hydraulischen Eigenschaften des Xylems sind mittel- bis langfristige Anpassungen, die sich aus der Reaktion eines Baumes auf den Verlauf der Umweltbedingungen ergeben, denen er im Laufe seines Lebens ausgesetzt ist. Die Interaktion der daran beteiligten Treiber und Prozesse wie Wasserverfügbarkeit, Xylembildung, Kavitation, hydraulische Leitfähigkeit und Baumwachstum zu verstehen und zu beschreiben stellt für die Wissenschaft weiterhin eine Herausforderung dar. Mithilfe Individuen-basierter Modelle können die zugrundeliegenden Mechanismen direkt beschrieben und Merkmale als emergente Eigenschaften modelliert werden, wodurch diese Modelle auch besser als andere für Prognosen geeignet sind. Mit dem vorgeschlagenen Projekt beabsichtigen wir, das Verständnis über die Wechselwirkungen zwischen Baumwachstum, hydraulischer Architektur und Wasserverfügbarkeit zu erweitern, indem wir Muster holzanatomischer Studien für die Entwicklung eines neuen Individuen-basierten Xylem-Wachstumsmodells übernehmen und dieses in bestehende Waldsimulationsmodelle implementieren. Diese Arbeit wird sich auf einen bereits entwickelten Modellprototyp stützen und systematisch empirisch abgeleitete Hypothesen über die Interaktion von Prozessen testen. Das entwickelte Modell wird schließlich dazu dienen, die individuelle, adaptive, jährliche Veränderung der Xylemeigenschaften als Reaktion auf die Dynamik der Umweltbedingungen zu simulieren. Langfristige holzanatomische Daten aus Herkunftsexperimenten von Fagus sylvatica und Quercus rubra werden zur Modellanpassung und Kreuzvalidierung verwendet. Die Daten werden uns ermöglichen das Modell sowohl für diffus- als auch für ringporige Baumarten zu parametrisieren und die herkunftsspezifische Plastizität der Xylembildung zu charakterisieren. Mithilfe von Simulationsexperimenten sollen letztlich Chancen und Risiken unterschiedlich plastischen Xylem-Bildungsverhaltens unter verschiedenen Szenarien des Klimawandels identifiziert werden, sowohl auf Einzelbaum- wie auch auf Bestandesebene. Für letzteres soll das Xylem-Wachstumsmodell als Baustein für die Simulationsumgebung pyMANGA zur Verfügung gestellt werden, was die Integration des Xylem-Wachstumsmodells in einen bereits bestehenden Waldbestandssimulator ermöglicht. Mit dieser Erweiterung wird schließlich die lokale Konkurrenz vieler Bäume mit sich gleichzeitig entwickelnden Xylem-Merkmalen simuliert und untersucht wie sich unterschiedliche Zusammensetzungen von Arten des Xylem-Bildungsverhaltens auf die Widerstandsfähigkeit zukünftiger Waldökosysteme auswirken.

Linking soil architecture formation with changing permafrost regime to carbon turnover in high latitude soils at multiple spatial scales

Most soils develop distinct soil architecture during pedogenesis and soil organic carbon (SOC) is sequestered within a hierarchical system of mineral-organic associations and aggregates. Permafrost soils store large amounts of carbon due to their permanently frozen subsoil and a lack of oxygen in the active layer, but they lack complex soil structure. With permafrost thaw more oxidative conditions and increasing soil temperature presumably enhance the build-up of more complex units of soil architecture and may counterbalance, at least partly, SOC mineralization. We aim to explore the development of mineral-organic associations and aggregates under different permafrost impact with respect to SOC stabilization. This information will be linked to environmental control factors relevant for SOC turnover at the pedon and stand scale to bridge processes occurring at the aggregate scale to larger spatial dimensions. We will combine in situ spectroscopic techniques with fractionation approaches and identify mechanisms relevant for SOC turnover at different scales by multivariate statistics and variogram analyses. From this we expect a deeper knowledge about soil architecture formation in the transition of permafrost soils to terrestrial soils and a scale-spanning mechanistic understanding of SOC cycling in permafrost regions.

Transregio (TRR) 280: Konstruktionsstrategien für materialminimierte Carbonbetonstrukturen - Grundlagen für eine neue Art zu bauen; Transregio (TRR 280): Design Strategies for Material-Minimised Carbon Reinforced Concrete Structures - Principles of a New Approach to Construction, Transregio (TRR) 280: Konstruktionsstrategien für materialminimierte Carbonbetonstrukturen - Grundlagen für eine neue Art zu bauen

Neue Materialien ermöglichen neue Bauformen und Konstruktionsarten. Was so einfach klingt, ist in der Realität oft ein langer, mühsamer und nicht selten mit Irrtümern gepflasterter Weg. Im Bauwesen dauern Innovationsprozesse aufgrund hoher Anforderungen an Sicherheit und Dauerhaftigkeit und wegen aufwändiger Normungs- und Zulassungsverfahren besonders lange. Dies gilt auch und insbesondere für leistungsfähige Baustoffkombinationen wie Textil- und Carbonbeton, die einen Paradigmenwechsel oder gar eine Revolution im Bauen mit Beton, dem weltweit mengenmäßig wichtigsten Baustoff, mit sich bringen werden. Mit diesen Baustoffkombinationen können gleichzeitig der enorme Ressourcenverbrauch und der CO2-Ausstoß der Bauindustrie wesentlich verringert, aber auch zusätzliche Funktionen erschlossen werden. Erste Bauprojekte mit den neuen Materialien verdeutlichen aber zugleich, dass zunächst weiterhin nach traditionellen, dem Stahlbeton entlehnten Konstruktionsprinzipien gebaut wird, herkömmliche Materialien also lediglich substituiert werden. Erst in Verbindung mit intelligenten Konstruktionsstrategien wird das volle Potential des innovativen Werkstoffs Carbonbeton ausgenutzt. Baustoffgerechte Methoden für das Entwerfen, Modellieren und Konstruieren mit neuen Werkstoffen bedürfen einer tiefergehenden Grundlagenforschung. Um vorhandene traditionelle Entwurfsprinzipien zu hinterfragen, gegenseitige Abhängigkeiten von Materialien zu begreifen und darauf aufbauend eine neue Entwurfs- und Konstruktionsstrategie zu etablieren, ist ein umfassender und ganzheitlicher Ansatz nötig. Nur so können neue, dem innovativen Hochleistungswerkstoff Carbonbeton gerechte Leichtbauprinzipien erarbeitet werden. Zentrale Ideengeber für Bauelementgeometrien sind dabei sowohl die Biologie, hier vor allem Botanik, als auch weitere Fachbereiche wie etwa Mathematik und Kunst. Angestrebt werden Konstruktionsformen aus mineralischen Kompositen, die Kräfte überwiegend durch Normalspannungen abtragen und mit neuen, industriellen, maschinengestützten Fertigungsmethoden hergestellt werden. Die als zielführend erkannten Konstruktionsstrategien ermöglichen eine vollkommen andere Formensprache. Dabei ist die Entwicklung neuartiger Strukturen eng verknüpft mit Fragen der Herstellbarkeit unter Berücksichtigung einer begleitenden produktbezogenen Nachhaltigkeitsbewertung. Losgelöst von heutigen, etablierten Denkmustern sollen die Grundlagen für eine neue Form des Bauens mit Beton auf Basis tiefgreifender Erkenntnisse zum strukturmechanischen Verhalten neuartiger mineralisch basierter Strukturen geschaffen werden. Die neuen Konstruktionsstrategien und Werkstoffkombinationen reduzieren Ressourcen- und Energieverbrauch durch bisher unbekannte Leichtbauprinzipien bei gleichzeitig hoher Gebrauchstauglichkeit, Tragsicherheit und Dauerhaftigkeit und spiegeln sich auch in einer anspruchsvollen Ästhetik wider, die sich zu einer neuen ' Kunst des Bauens' entwickeln wird.

Schwerpunktprogramm (SPP) 2451: Lebende Materialien mit adaptiven Funktionen

Im SPP 2451 werden Material- und Biotechnikingenieure zusammenarbeiten, um das Potenzial der synergistischen Integration von nicht-lebenden und lebenden Komponenten in neuen Materialien zu erschließen. Durch interdisziplinäre Zusammenarbeit wird diese multidisziplinäre Gemeinschaft dazu beitragen (i) das grundlegende Verständnis bezüglich der Anforderungen für eine funktionale Verbindung von nicht-lebenden Materialien mit lebenden Komponenten zu erlangen und (ii) das Potenzial adaptiver lebender Materialien zur Vereinigung von Technologie- und Nachhaltigkeitsanforderungen in zukünftigen materialbasierten Technologien in Laborprototypen zu demonstrieren. Das Koordinationsprojekt des SPP wird zur Vernetzung, Zusammenarbeit und Sichtbarkeit des SPP-Themas und der Wissenschaftsgemeinschaft beitragen, indem es SPP-Treffen und Konferenzen organisiert. Es wird auch zur Organisation spezialisierter Schulungen und zur beruflichen Entwicklung von 30 Nachwuchswissenschaftlern auf Promotions- und Postdoc-Ebene beitragen und ihr Netzwerk in der Wissenschafts Community stärken. Das Koordinationsprojekt wird sich auch mit drei ELM-spezifischen Themen von zentraler Bedeutung für die SPP-Gemeinschaft befassen: (i) die Ausarbeitung von Dokumentations-, Berichts- und Datenmanagementstandards, die die Bereitstellung von FAIR-Daten für die Entwicklung von ELMs im SPP erleichtern können; (ii) die Förderung der Diskussion über Umweltsicherheitsaspekte von ELMs; (iii) die Verbreitung von Informationen über ELMs, um Akzeptanz für sichere, auf ELMs basierende Technologien in der Industrie und der Gesellschaft zu gewinnen. Das SPP bietet eine Gelegenheit, diese Fragen bereits in dem sehr frühen Entwicklungsstadium der lebenden Materialien anzugehen. Diese vorteilhafte Position wird dem SPP erhebliche Sichtbarkeit verschaffen und seine Auswirkungen weltweit verstärken.

Energieeffiziente Bürogebäude

Die kombinatorische Vielfalt der Einflussgrößen auf den Energieverbrauch von Gebäuden verursacht meistens Unsicherheit in der Planung. Ziel dieses Projektes ist es, für Architekten und Fachplaner eine umfassende Matrix zu erstellen, die es erlaubt, die Auswirkungen von Planungsschritten auf den Energiehaushalt und die Behaglichkeit von Gebäuden hinreichend genau zu bewerten und Alternativen gegeneinander abzuwägen. Anhand eines standardisierten Bürogebäudes werden unter Berücksichtigung der äußeren und inneren Lasten und für definierte zu erreichende Raumzustände alle wichtigen Faktoren wie z.B. der Anteil an thermisch aktiver Masse oder der Grad an Verglasung variiert. Die zur Anwendung kommende Methode der thermischen Gebäudesimulation und Strömungssimulation erlaubt eine sehr differenzierte Betrachtungsweise.

Non-destructive characterization and monitoring of root structure and function at the rhizotron and field scale using spectral electrical impedance tomography (ImpTom)

This subproject aims at the development of spectral electrical impedance tomography (EIT) as a non-destructive tool for the imaging, characterization and monitoring of root structure and function in the subsoil at the field scale. The approach takes advantage of the capacitive properties of the soil-root interface associated with induced electrical polarization processes at the root membrane. These give rise to a characteristic electrical signature (impedance spectrum), which is measurable in an imaging framework using EIT. In the first project phase, the methodology is developed by means of controlled rhizotron experiments in the laboratory. The goal is to establish quantitative relationships between characteristics of the measured impedance spectra and parameters describing root system morphology, root growth and activity in dependence on root type, soil type and structure (with/without biopores), as well as ambient conditions. Parallel to this work, sophisticated EIT inversion algorithms, which take the natural characteristics of root system architecture into account when solving the inherent inverse problem, will be developed and tested in numerical experiments. Thus the project will provide an understanding of electrical impedance spectra in terms of root structure and function, as well as specifically adapted EIT inversion algorithms for the imaging and monitoring of root dynamics. The method will be applied at the field scale (central field trial in Klein-Altendorf), where non-destructive tools for the imaging and monitoring of subsoil root dynamics are strongly desired, but at present still lacking.

1 2 3 4 592 93 94