Bedingt durch Liberalisierungen im Strom- und Gasmarkt und den zunehmenden Einsatz umweltfreundlicher und regenerativer Energiequellen wie beispielsweise Wind, Brennstoffzellen oder Photovoltaik, vollzieht sich ein Strukturwandel in der Energieversorgung. Die hierbei zunehmende Dezentralisierung der Strom- und Wärmeerzeugung stellt neue Anforderungen an die Energieversorgung und das Energiemanagement, um die Versorgungssicherheit und Versorgungsqualität sicher zu stellen. Das bisherige 'top down'-Konzept zur Steuerung und Versorgung muss im Hinblick auf eine 'bottom up'-Integration der Informations- und Kommunikations-'Inseln' in einem dezentralen Energiemarkt neu überdacht werden. Im Projekt 'Dezentrale Energiemanagementsysteme' (DEMS) wird an innovativen Ansätzen für das Management eines Stromnetzes mit zunehmender Dezentralisierung gearbeitet. In einem Konsortium niedersächsischer Hochschulen und Forschungseinrichtungen sowie der EWE Aktiengesellschaft und deren IT-Tochter BTC befasst sich OFFIS mit den Themen IT-Systemarchitektur, Datenmodellierung/Interoperabilität, Prozessmodellierung, Adaptive Verbraucher, Hochverfügbarkeit, Datenqualität und Kommunikationsinfrastruktur. Neben diesen TI-Themen werden in weiteren Teilprojekten Forschungsfragen des Netzmanagements und der Bezugsoptimierung bearbeitet. Dazu werden Ansätze gewählt, die deutliche Innovationspotentiale versprechen, wie der Einsatz von Ontologien, Modellgetriebene Entwicklung, formale Verifikation oder auch der Einsatz von Softwareagenten. Im Schwerpunktthema 'IT-Systemarchitektur' beispielsweise befasst sich OFFIS gemeinsam mit der BTC AG mit dem Aufbau einer Energie-Services Infrastruktur. Aufbauend auf den Konzepten einer serviceorientierten Architektur werden bestehende Altsysteme und neue Funktionalitäten für das dezentrale Energiemanagement als Komponenten gekapselt. Diese Komponenten stellen Services zum Aufruf der fachlichen Funktionen zur Verfügung. Über eine Integrationsplattform werden diese Energie-Services als Web Services angebunden und in Geschäftsprozessen für das Energiemanagement orchestriert. Die Services für das dezentrale Energiemanagement basieren hierbei auf dem im IEC Standard 61850 definierten Datenmodell CIM (Common Information Model). Dieses Datenmodell dient als Basis zur Gewährleistung der semantischen Interoperabilität der Services. Neben dem CIM wird der Einsatz weiterer internationaler Standards und Normen evaluiert, die zum Teil von OFFIS als so genannte 'Ontologien' definiert worden sind. Die Datenbasis für die operativen und strategischen Entscheidungen im Projekt muss von einer hohen Qualität sein. Ansonsten können fehlerhafte Eingangsdaten der Services die Ergebnisqualität des 'Gesamt-DEMS' stark vermindern.
In subsoils, organic matter (SOM) concentrations and microbial densities are much lower than in topsoils and most likely highly heterogeneously distributed. We therefore hypothesize, that the spatial separation between consumers (microorganisms) and their substrates (SOM) is an important limiting factor for carbon turnover in subsoils. Further, we expect microbial activity to occur mainly in few hot spots, such as the rhizosphere or flow paths where fresh substrate inputs are rapidly mineralized. In a first step, the spatial distribution of enzyme and microbial activities in top- and subsoils will be determined in order to identify hot spots and relate this to apparent 14C age, SOM composition, microbial community composition and soil properties, as determined by the other projects within the research unit. In a further step it will be determined, if microbial activity and SOM turnover is limited by substrate availability in spatially distinct soil microsites. By relating this data to root distribution and preferential flow paths we will contribute to the understanding of stabilizing and destabilizing processes of subsoil organic matter. As it is unclear, at which spatial scale these differentiating processes are effective, the analysis of spatial variability will cover the dm to the mm scale. As spatial segregation between consumers and substrates will depend on the pore and aggregate architecture of the soil, the role of the physical integrity of these structures on SOM turnover will also be investigated in laboratory experiments.
Das Hauptziel des Teilprojektes ist die Entwicklung einer umfassenden Methodik zur ganzheitlichen Bewertung der drei Nachhaltigkeitsdimensionen (Life Cycle Sustainability Assessment â€Ì LCSA), die ex ante Nachhaltigkeitsvoraussagen bei der Erforschung materialminimierter Carbonbetonstrukturen ermöglicht und für die Bewertung disruptiver Innovationen genutzt werden kann. Auf operativer Ebene werden hierzu Instrumente der verschiedenen Nachhaltigkeitsdimensionen wie Ökobilanz, Lebenszykluskostenrechnung und Sozialbilanz erforscht und weiterentwickelt.
Anwendung von Lehm als Baumaterial in Planung und Ausfuehrung. Oekologische Aspekte: - Minimierung Energieaufwand bei Herstellung und Benuetzung - Kein Abfall; wiederverwendbarer Baustoff Forschungsgebiet: Entwicklung von optimierten Verarbeitungsmethoden des Baumaterials unter Einsatz von arbeitszeitsparenden Maschinen und Bearbeitungstechnologien.
EQWIN-P soll das Preis-Leistungs-Verhältnis von energieeffizienten Gebäuden verbessern, indem der Automatisierungsgrad der Verarbeitung von Gebäudehülldaten erhöht wird. Das Problem heutzutage ist zum einen, dass Gebäudehülldaten zwar innerhalb einer Softwareanwendung verarbeitet werden, aber zwischen verschiedenen Anwendungen in der Regel nicht kompatibel sind und manuell oder in gebrochenen digitalen Ketten übertragen werden müssen. Dies umfasst zahlreiche proprietäre Formate, die in Teilen auch nur in bestimmten Wissenskontexten interpretierbar sind. Des Weiteren erhalten viele hochkomplexe Messdaten erst durch Algorithmen einen planerischen Mehrwert, so dass es dringend erforderlich ist, relevante Methoden zur Bewertung von Gebäudehüllen dem breiten Markt möglichst einheitlich bereit zu stellen. Fraunhofer konzipiert und implementiert in EQWIN-P gemeinsam mit den Partnern eine Plattform, so dass am Ende des Projektes unter anderem hygrothermische Daten und 'Methoden als Service' für optische Daten online nutzbar sind. Fraunhofer entwickelt dafür auch Demonstratoren für praktische Anwendungsszenarien, z.B. zu Energieberatung, sommerlichem Wärmeschutz, Tageslichtnutzung, Hygrothermik. Fraunhofer stimmt die Arbeiten international über Beteiligung inkl. Leitung eines IEA-Projektes ab. Statt vielen manuellen Schritten können Planende durch das Vorhaben zukünftig einfacher und umfassender aktuelle und hochwertige Gebäudehülldaten nutzen. Anstelle ihre Produktdaten in vielen verschiedenen Formaten anzubieten und die Inhalte kostenintensiv aktuell zu halten, können Komponenten- und Softwarehersteller eine einheitliche Form des Datenaustauschs für zahlreiche Daten und Methodenbibliotheken verwenden, die von verschiedenen Anwendungen genutzt werden. Dies ermöglicht bessere Produktdifferenzierungen am Markt. Energieeffiziente, nachhaltige Gebäude können damit effizienter und preiswerter als bislang geplant werden.
Ziel des Teilvorhabens ist es, die sich aktuell im Rollout befindliche SMGW-Infrastruktur als digitale und hochsichere Kommunikationsplattform in die zu entwickelnde Architektur eines übergreifenden, Gaia-X-konformen Datenraums für die deutsche Energiewirtschaft zu integrieren. Als eine der zentralen Energiedatenquellen sollen die über SMGW bereitgestellten Smart Meter Daten so bspw. zur Optimierung von Bestandsprozessen wie dem Bilanzkreismanagement oder auch als Basis für neue Geschäftsmodelle und berechtigte Akteure gleichermaßen niederschwellig wie auch unter Wahrung von Datenschutzbelangen zugänglich gemacht werden. Der souveräne Austausch dieser Daten über einen Energiedatenraum führt zu einer Beschleunigung und Komplexitätsreduktion energiewirtschaftlicher Prozesse und trägt einen entscheidenden Teil zu einer umfassenden Sektorenkopplung des Energiebereichs bei. Als Konsequenz verspricht die Integration der SMGW-Infrastruktur in einen Energiedatenraum durch die damit verbundenen Mehrwerte für bspw. Netzbetreiber oder auch Energieserviceanbieter eine Steigerung der Wirtschaftlichkeit der Infrastruktur sowie die Öffnung für neue Geschäftsmodelle und Marktbereiche.
Die Architektur des Wurzelsystems von Mais hat sich während der Domestizierung und Verbesserung durch eine Kombination aus landwirtschaftlicher Selektion und Umweltanpassungen rund um den Globus erheblich verändert. Das Mikrobiom, das die Rhizosphäre um die Pflanzenwurzeln herum besiedelt, spielt eine wichtige Rolle bei der Förderung der Stresstoleranz von Pflanzen. In der ersten Förderperiode dieses Projekts haben wir nachgewiesen, dass die Anzahl der Seminalwurzeln während der Domestizierung von Mais zugenommen hat, gefolgt von einem Rückgang bei lokal angepassten Sorten in Regionen mit begrenzter Wasserverfügbarkeit. Umwelt-, genetische und genomische Analysen ergaben frühere Signaturen der Domestizierung und Anpassung von Maiswurzeln und zeigten das genetische Potenzial zur Verbesserung der Trockentoleranz künftiger Nutzpflanzen auf. In der zweiten Förderperiode verfolgen wir zwei übergeordnete Ziele. Erstens soll ein tieferes Verständnis der genetischen und molekularen Grundlagen der systemischen Modulation der Wurzelmorphologie und -anatomie durch Seminalwurzeln gewonnen werden, um eine bessere Anpassung an die begrenzte Wasserverfügbarkeit zu erreichen. Zu diesem Zweck werden wir die komplexe Pflanzenreaktion auf Trockenstress und die mit diesen Merkmalen assoziierten Gene identifizieren, die an der Architektur des Wurzelsystems als Reaktion auf Trockenheit beteiligt sind. Zweitens wollen wir die genetische Rolle des Wirts bei der Zusammensetzung der mikrobiellen Gemeinschaft des von den Wurzelmerkmalen abhängigen nützlichen Mikrobioms der Rhizosphäre verstehen, um die Widerstandsfähigkeit von Mais gegen Trockenheit zu verbessern. In diesem Zusammenhang werden wir systematisch untersuchen, wie sich die genetische Variation des Wirts und die Genregulation auf die Zusammensetzung des Mikrobioms der Rhizosphäre und auf die Produktivität von Mais und die Widerstandsfähigkeit gegen Trockenheit auswirkt. Schließlich werden wir repräsentative Schlüsselgene und Schlüsselmikroben durch reverse Genetik und synthetische mikrobielle Gemeinschaften funktionell validieren. Diese Ergebnisse werden den Weg für eine verbesserte Pflanzenzüchtung und die Nutzung mikrobieller Ressourcen ebnen, um die künftige Nahrungsmittelproduktion und eine effiziente Ressourcennutzung in der Landwirtschaft zu sichern.
| Origin | Count |
|---|---|
| Bund | 1112 |
| Kommune | 1 |
| Land | 4 |
| Type | Count |
|---|---|
| Förderprogramm | 1106 |
| Text | 4 |
| unbekannt | 5 |
| License | Count |
|---|---|
| geschlossen | 5 |
| offen | 1109 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 1002 |
| Englisch | 229 |
| Resource type | Count |
|---|---|
| Dokument | 3 |
| Keine | 789 |
| Webdienst | 3 |
| Webseite | 324 |
| Topic | Count |
|---|---|
| Boden | 633 |
| Lebewesen und Lebensräume | 733 |
| Luft | 506 |
| Mensch und Umwelt | 1113 |
| Wasser | 303 |
| Weitere | 1115 |