Ausgewählte Hamburger Plätze sind mit Foto und Kurzinfos verknüpft sowie mit einem Link auf eine Hintergrundseite auf hamburg.de, auf der der Platz (Lage, Architektur, Besonderheiten, Bildergalerie etc.) ausführlich beschrieben wird. Hinweis: Im Datensatz verlinkte Fotos unterliegen nicht der Veröffentlichungspflicht nach Hamburgischem Transparenzgesetz und sind nicht Teil der freien Lizenz. Weitere Informationen: www.hamburg.de/oeffentliche-plaetze
SeaCause cruise SO186-2, aboard the RV Sonne, was carried out off northern Sumatra between 21st January and 24th February 2006, with mobilisation and demobilisation in Singapore and Penang, Malaysia, respectively. The geophysical survey acquired multichannel seismic data (MCS) using a 240 channel, 3 km Sercel streamer, and a tuned airgun array comprising 16 airguns with a total capacity of 50.8 litres. Bathymetry data, using the 12 kHz Simrad swath system, subseabed data using the hull mounted high resolution Parasound profiler together with gravity and magnetic data were also acquired. The main scientific objective of the survey was to investigate the southern part of the rupture zone of the 26th December 2004 9.3 magnitude earthquake, that caused the catastrophic tsunami of that date, and the rupture zone of the 8.7 magnitude earthquake of March 28th 2005. Specifically, to identify the segment boundary between the two earthquakes, as recognised by the distribution of their aftershocks. This was to be achieved by mapping the structure of the subduction zone including the dip angle of the subducted plate, the architecture of the accretionary prism and the structure of the forearc basins, particularly their strike-slip fault systems. Also to be investigated was whether there was a contribution to the 2004 tsunami from major submarine failures. During the survey a total of 5358 line kilometres of MCS data were acquired, mainly on lines oriented orthogonal to the subduction zone and extending from the ocean basin across the trench and accretionary prism to the forearc basins offshore Sumatra. The orthogonal survey lines were located on average approximately 40 km apart. The survey was planned using the bathymetry from the HMS Scott, RV Natsushima and RV Sonne cruises carried out in 2004. The morphology of the trench and sediment thickness varies from north to south. In the north the trench is poorly defined with shallow seabed dip but with sediment thickness of ~3.5 secs (TWT). The seafloor dips increase southwards, but sediment thickness decreases to ~2.5 secs (TWT) off Nias. Both the ocean basin and trench sediments are dissected by numerous normal faults, oriented subparallel to the plate boundary, with many that penetrate the oceanic crust. In the south Fracture Zones were identified. The structure of the deformation front on the seaward margin of the accretionary prism is highly variable. While the younges main thrust are predominantly landward vergent there are examples for seaward verging thrusts. The frontal fold develops in some cases already in the french while in most cases the frontal fold is at the beginning of the accretionary wedge. At some locations there are large sediment slumps on the frontal thrusts, the slope angle of the prism varies between 6 to 15 degrees, an angle that explains the large scale slumping. The width of the accretionary prism is widest in the north of the area at 140 km and narrows southwards until in the vicinity of the islands it is 40 km. In the north and central parts of the survey area the passage from the deformation front landwards into the older prism is rapid and the seabed gradients steep. The dip of the oceanic crust remains low and there is an obvious twofold increase (6-7 seconds TWT) in the sediment thickness. The basal decollement of the thrusts at the deformation front is in the lower sediment layer overlying oceanic basement. This is traced northeastward. A possible explanation for the increase in thickness of the prism is therefore considered to be the formation of a thrust duplex. Perhaps this is due to the subducted sediment thickness. In this region the prism forms a plateau and the internal pattern of the uppermost sediments shows striking similarities to the trench fill. Offshore of Simeulue Island the prism structure changes and it forms the more usually seen taper. The offscraped sediment forms a thinner section, the thrusts are more steeply dipping. The dip of the subducted plate here is greater than in the north. Three forearc basins were surveyed. In the north the western margin of the Aceh Basin lies along the West Andaman Fault. Within the main basin the sediments are internally undeformed. Farther south in the Simeulue Basin the northern and central parts there are numerous, active steeply dipping faults. In southern part of the basin there is a transpressional fault similarly to the Mentawi Fault off southern Sumatra. There are notable ‘bright spots’ in the upper section that may indicate the presence of hydrocarbon gas. There are also widespread Bottom Simulating Reflectors indication the presence of gashydrates and there may be also one double BSR. At the southern end of the surveyed area the Nias Basin may be subdivided along its length into two parts by a northnorthwest to southsoutheast trending carbonate platform development. The basin has had a varying subsidence history, in the south the subsidence was completed before the northern part started.
The CINCA marine geoscience investigations on the convergent continental margin of Chile between 19°S and 33°30'S were accomplished during three legs of RV SONNE cruise SO-104, from 22. July to 15. October 1995. The objectives of the first leg are to contribute to an understanding of the geological architecture and of the tectonic mechanism in the area of the Chile convergent zone through a geophysical assessment of the tectonic structures of the Chile continental margin and the adjacent oceanic Nazca plate. During the first leg from 22. July to 24. August 1995 multichannel seismic reflection data with BGR's new digital streamer were collected along a systematic grid with a total traverse length of 4,494 km simultaneously with the acquisition of magnetic, gravimetric, Hydrosweep and Parasound data over a total traverse length of 7,012 km. GFZ's mobile land array of 12 seismic stations recorded the air gun shots fired by RV SONNE within the CINCA area. Three seismic lines were surveyed between 32°30'S and 33°30'S in the area of the CONDOR project. Here, the surface of the downbending oceanic crust is smooth. The 5,000 m to 6,000 m deep trench floor is underlain by sediments, in excess 2,500 m thick. The inner trench slope consists of a landward thickening accretionary wedge which terminates against a body forming the base of a fore arc basin near Valparaiso. The principal area of the CINCA project extends between 19°S and 26°S and comprises the convergent continental margin, the Peru-Chile trench and the seaward adjacent part of the Nazca plate up to approximately 75°W longitude. The tectonic regime of these units of the CINCA area is very different from the tectonic system of the respective units of the CONDOR area. The Eocene-aged and sediment-starved oceanic crust of the Nazca plate becomes blockfaulted when approaching the outer trench slope break. The 50 km to 70 km wide outer trench slope is characterized by a complex system of horst and graben structures in the CINCA area probably resulting from the strong downbending. Steep fault scarps forming the flanks of the horsts reach vertical offsets varying between few hundreds of metres to 1,000 m, and locally even more. The 7,000 m to 8,l00 m deep trench is very narrow and mostly sediment-starved in the CINCA area. Morphology and architecture of the continental margin of the CINCA area are controlled by planar and listric faulting and tilted blocks of inferred continental nature, which apparently slid down into the trench. The inferred continental blocks, overlying a reflective mass, are covered by sediments of presumably turbiditic nature. An accretionary wedge is difficult to define on the seismic single channel records from the CINCA area. However, processed seismic data show a deep reflective mass underlying the downfaulted blocks of inferred continental nature. This deep reflective mass is interpreted to consist of a tectonically eroded and underplated continental crust-basalt melange forming the transition between the downfaulted continental upper plate and the subducting oceanic lower plate. Complex structural highs of still unknown origin and nature have been observed on the upper continental slope at 20°S, 24°S and 25°S. The northernmost structural high represents the seaward termination of the Iquique fore arc basin. The accuracy of the acquired gravity and bathymetric data is very good, i.e. better than 1 mGal and less than 10 m. The Chile trench is associated with strong negative gravity anomalies, and the continental margin is characterized by several positive and negative gravity anomalies of varying size and amount. The first results of magnetic modeling show, that the intensive blockfaulting of the oceanic crust across the outer trench slope causes no loss of the magnetization of the oceanic crust. The air gun shots fired by RV SONNE in 50 m intervals along 17 seismic traverses were recorded by GFZ's mobile land array in the coastal area of Chile. Good quality data were obtained out to about 100 km distance and in some cases even out to about 150 km.
The SUMATRA cruise SO189 Leg 1, aboard the RV SONNE, was carried out off Sumatra between 3rd August and 3rd September 2006, with mobilisation in Penang, Malaysia and demobilisation in Jakarta, Indonesia, respectively. The survey was dedicated to marine geophysical measurements and acquired multichannel seismic data (MCS) using a 240 channel streamer, and a tuned airgun array comprising 16 airguns with a total capacity of 50.8 litres. Bathymetry data, using the 12 kHz Simrad swath system, sub-seabed data using the hull mounted high resolution PARASOUND profiler together with gravity (G) and magnetic (M) data were also acquired. Along two lines with a total length of ~ 390 km refraction/wide-angle seismic experiments were carried out. During the survey a total of 4,375 line kilometres of MCS, M and G data were acquired and an additional 990 km with M and G alone. The 41 MCS lines cover as close grid three fore-arc basins. Five lines extend nearly orthogonal to the subduction front and, thus, cover the whole subduction system from the adjacent oceanic plate, the trench and accretionary prism over the Outer Arc High to the forearm basins offshore Sumatra. The survey was planned using the bathymetry from the HMS SCOTT, RV NATSUSHIMA, RV MARION DUFRESNE and RV SONNE cruises carried out in 2004, 2005 and 2006. The main scientific objective of the project SUMATRA is to determine or estimate the hydrocarbon (HC) system (source rocks, HC generation, HC migration and reservoir rocks) of the Sumatra fore-arc region (mainly the fore-arc basins). Cruise SO189 Leg 1 was designed to investigate the architecture, sedimentary thickness, sedimentary evolution and subsidence history of the fore-arc basins Siberut, Nias and Simeulue off Sumatra. In the Simeulue Basin it was possible to connect the seismic lines to three industry wells and to correlate the seismic horizons to the results from the wells. The Simeulue Basin is divided into a northern and southern sub-basin. Carbonate build-ups were found in the northern sub-basin only on the very shallow shelf in the north-east. The maximum thickness was determined to be ~ 3 s TWT. In the southern sub-basin carbonate build-ups (which were already identified on some lines of the SEACAUSE project), bright spots and Bottom Simulating Reflectors (BSRs) are wide spread. The narrowest basin surveyed was the Nias Basin. As the Simeulue Basin the Nias Basin is divided into two sub-basins which are separated by a structural high. Although the basin has a maximum width of only 55 km the maximum sediment thickness exceeds 5 s TWT. The largest fore-arc basin is the Siberut Basin. It extends from the equator to ~ 5°S over 550 km and has a maximum width of 140 km between the island of Siberut and Sumatra. The maximum sediment thickness in this basin is 4.8 s TWT. The basin geometry is uniform along its axis. At the basins termination on the western side to the Outer Arc High the Mentawai Fault Zone could be traced. The geometry of this major fault changes significantly along strike. In some areas it is traceable as one single fold whereas in other areas it spreads in up to three different branches indicating splay faults originating from a main fault. In the Siberut Basin BSRs are very wide spread and very good recognizable over the Mentawai Fault Zone. Along the Mentawai Fault and along the eastern rim of the basin the seismic data show strong indications for active venting. The morphology of the Sunda Trench and its sedimentary cover varies from north to south. In the north the trench is poorly defined with shallow seabed dip but with sediment thickness of ~ 3.5 s TWT. The seafloor dips increase southwards, but sediment thickness decreases to ~ 2.5 s TWT off Nias. Both the ocean basin and trench sediments are dissected by numerous normal faults with a maximum displacement of 0.6 s TWT. Along strike the deformation front between Nias and Siberut displays several incipient folds. As offshore northern Sumatra, both landward (BGR06-228) and seaward verging folds (BGR06-227) are developed at the deformation front. For the first time landward verging folds have now been imaged in this domain of the Sunda subduction zone. In contrary to first thoughts during the expedition SO186-2 SEACAUSE, landward verging folds are not limited to the area off Aceh. Two refraction lines were acquired parallel to the subduction front at 2°30'N and 1°30'S approximately 40 - 50 km seaward of Simeulue and Siberut Island, respectively. The lines were designed to identify the segment boundaries in the subduction system as well as to detect and decipher the subducted aseismic Investigator Ridge. The gravity data set consists now of over 38,000 line km (combining the GINCO, SEACAUSE I and II and the SUMATRA data). With this it was possible to compile a map of the free-air gravity from the northern tip of Sumatra (~ 6°30'N/95°E) to Mid Java( ~8°30'S/110°E). Gravity modelling in parallel with refraction seismic data interpretation was carried along two lines during the cruise. The preliminary results show that the incoming oceanic plate is unusual thin both in the north off Simeulue (6 km) and in the south off Nias (5 km).
The aims of cruise SO197 RISE (Rift Processes in the South China Sea) with RV SONNE from Manila, 28th March 2008 to Singapore, 2nd May 2008 are (1) To gain a better understanding of the processes leading to continental breakup and subsequently formation of oceanic crust. (2) To study the evolution of the South China Sea oceanic basin. The South China Sea is particularly well suited for studying rift processes at the transition from extension of continental lithosphere to the formation of oceanic crust. This relatively young marginal basin is currently in a stadium which is characterised by still preserved differences in subsidence and thermal history resulting from rifting. The initial, complex and hardly quantifiable rift processes, however are long enough ago. The area under study comprises the eastern subbasin of the South China Sea, the West Luzon Basin and the transition area from oceanic crust to extended continental crust between the continental blocks of Reed Bank and the islands of Palawan/Calamian Group. By including existing data of earlier cruises (SO-23, -27, -49) a comparison of conjugated margin transects is intended later within the project. A major goal of the project is to study structures at the transition from continental rifting to oceanic spreading and processes resulting from extension of continental lithosphere to the formation of oceanic crust in time and space. The sequence stratigraphy of the synrift and drift sediments will give insights into the formation and evolution of the individual rift basins. The distribution and thickness of the postrift sediments on the continental fragment of the NW Palawan area define the subsidence history. The depth and topography of the Moho show the location of the stretched and thinned crust. By a joint interpretation of the structural setting, the position, distribution and architecture of the basin bounding faults a reasonable rift model will be derived. In addition, we will investigate the transition of a passive rifted margin (off Palawan) to a convergent margin (off Luzon). The timing of the evolution of the South China Sea basin will be more exactly determined by comparing the magnetic anomalies from the eastern subbasin of the South China Sea with existing data from the central/western basin. Particularly the question of a symmetric/asymmetric opening of the oceanic basin and the timing and location of the individual rift/drift episodes will be investigated. Therefore, we investigated rift structures at the southeastern margin of the South China Sea by means of reflection seismology, gravity, magnetics, bathymetry and sediment echosounder and we performed magnetic measurements to identify seafloor spreading anomalies in the eastern subbasin of the South China Sea.
The MSM67 SEGMENT research cruise was carried out between August 31st and October 4th 2017 aboard the research vessel MARIA S. MERIAN. Survey MSM67 SEGMENT it is intended to study the architecture of the rifted continental margin off East Greenland around the Jan Mayen fracture zone. Key issues to be addressed are margin segmentation and the location of the continent-ocean transition (COT). Both subjects are highly debated. Symmetric segmentation of conjugate margins has significant implications on our general understanding of continental rifting processes, and a margin-parallel COT off East Greenland would indicate an N-S opening in the Norwegian/Greenland Sea. The latter challenging most publications on the early evolution of the North Atlantic. A major open question is also the timing, duration and distribution of magmatism that resulted in the formation of the North Atlantic large igneous province. Previous suggestions of very short (~3 Myr) periods of intense magmatism have been challenged and a much longer duration and/or a post-breakup origin are under discussion. Here, we want to establish the amount of post-breakup magmatism as evident in high-velocity lower crust and test the dependence of magmatism with distance from the proposed hot-spot under Iceland and the influence of major fracture zones on volcanism.
In 1998, as part of the expedition NOGRAM I (Northern Gravity, Radio Echo Sounding and Magnetics), a flight campaign was carried out over the Lincoln Sea north of Greenland with the Polar 2 aircraft (Dornier 228-100) in cooperation with the Alfred Wegener Institute Helmholtz Center for Polar and Marine Research. A second flight campaign NOGRAM II took place in 2011 with the Polar 5 (Basler BT-67) over the Wandel Sea north of Greenland. The aim of the research was the structure and architecture of the upper Earth’s crust underneath the ice-covered offshore areas of the Morris Jesup Plateau and coastal waters north of Greenland. The airborne magnetic surveys were carried out with a flight line spacing of 3 km, and control profiles were flown every 30 km. During the two expeditions, 33000 km of line data were collected (16000 km in 1998, and 17000 km in 2011).
Onshore geological field work combined with an onshore/offshore aeromagnetic survey was carried out during a joint expedition of the German BGR and the Canadian GSC to understand the structural architecture of the North American continental margin. The helicopter-borne magnetic survey of 2008 covered the northern coastal areas of Ellesmere Island and the adjacent marine areas. The survey was conducted with a line separation of 2 km and covered a 40 to 50 km wide swath offshore about parallel to the north coast of Ellesmere Island from Yelverton Bay in the west to Parr Bay east of Cape Columbia, the northernmost point of Canada. Between Yelverton Bay and M'Clintock Inlet, the survey extended about 40 to 50 km inland, which was the prime target area of the CASE 11 geological investigations. This section of mountainous terrain was flown in a “draped” mode to keep the distance to ground at approximately 1500 ft, same as over the offshore areas. During a 4-weeks period in May/June 2008, close to 8000 km of aeromagnetic line data were acquired, covering an area of 12000 km².
Flyer for the offices of the Federal Environment Agency in Dessau. Visitors who wish to be fully informed about the architectural and environmental design of the new building and head to the atrium can join one of the guided tours. Veröffentlicht in Flyer und Faltblätter.
The European Climate Law mandates the European Commission to propose a 2040 emissions reduction target by early 2024. In light of the latest report from the European Scientific Advisory Board on Climate Change, the German Environment Agency follows suit and recommends adhering to scientific advice, aiming for the most plausible climate ambition, and setting a domestic 2040 net greenhouse gas emissions reduction target of 95%, compared to 1990. With this 2040 interim target in mind, the paper further discusses the interaction between emissions reductions and sinks, the implications for the current architecture of climate policy (consisting of the three pillars: emissions trading, effort sharing and LULUCF regulations) as well as aspects of regular target reviewing and tightening. Veröffentlicht in Scientific Opinion Paper.
Origin | Count |
---|---|
Bund | 1815 |
Land | 131 |
Wissenschaft | 1 |
Zivilgesellschaft | 5 |
Type | Count |
---|---|
Ereignis | 3 |
Förderprogramm | 1722 |
Text | 139 |
Umweltprüfung | 4 |
unbekannt | 64 |
License | Count |
---|---|
geschlossen | 201 |
offen | 1725 |
unbekannt | 6 |
Language | Count |
---|---|
Deutsch | 1907 |
Englisch | 265 |
unbekannt | 3 |
Resource type | Count |
---|---|
Archiv | 8 |
Bild | 5 |
Datei | 3 |
Dokument | 46 |
Keine | 1265 |
Unbekannt | 6 |
Webdienst | 1 |
Webseite | 635 |
Topic | Count |
---|---|
Boden | 1133 |
Lebewesen & Lebensräume | 1221 |
Luft | 946 |
Mensch & Umwelt | 1932 |
Wasser | 646 |
Weitere | 1876 |