In today's biodiversity crisis, there is an urgent need to monitor terrestrial and aquatic species in their natural habitats, especially those that may be endangered, invasive or elusive. Traditional species observation methods, based on acoustic or observational surveys are inefficient, costly and time consuming. On the other hand, DNA is continuously deposited in the environment from natural processes and this environmental DNA (eDNA) allows us to detect species and reconstruct their communities with a high level of sensitivity. These data can be used to obtain occurrence records and to collect more population information in field. Crucially, these data are necessary to inform management agencies about the current state of our biodiversity, and are especially urgent for species that are currently data deficient. The aims of this study are to firstly identify occurrence records from diverse sources (databases, literature) and generate a database of distributional data for species of crustacean and mollusks that are data deficient in Sweden. Secondly, we aim to detect threatened species in Swedish marine, freshwater and terrestrial habitats using novel genomic methods (DNA metabarcoding, ddPCR). Finally, based on the new data, we will run species distribution and population models, to improve information on geographic range and population status for threatened invertebrates. The results will be integrated into current monitoring programmes (e.g. red-listing) and action plans.
Halogenradikale spielen eine Schlüsselrolle in der Chemie der polaren Grenzschicht. Alljährlich im Frühjahr beobachtet man riesige Flächen von mehreren Millionen Quadratkilometern mit stark erhöhten Konzentrationen von reaktivem Brom, welches von salzhaltigen Oberflächen in der Arktis und Antarktis emittiert werden. Dieses Phänomen ist auch als Bromexplosion bekannt. Des Weiteren detektieren sowohl boden- als auch satellitengestützte Messungen signifikante Mengen von Jodoxid über der Antarktis, jedoch nicht in der Arktis. Die Gründe für diese Asymmetrie sind nach wie vor unbekannt, aber das Vorhandensein von nur wenigen ppt reaktiven Jods in der antarktischen Grenzschicht sollte einen signifikanten Einfluss auf das chemische Gleichgewicht der Atmosphäre haben und zu einer Verstärkung des durch Brom katalysierten Ozonabbaus im polaren Frühjahr haben. Der Schwerpunkt der Aktivitäten im Rahmen von HALOPOLE III wird auf der Untersuchung von wichtigen Fragestellungen liegen, die im Rahmen der Vorgängerprojekte HALOPOLE I und II im Bezug auf die Quellen, Senken und Transformationsprozesse von reaktiven Halogenverbindungen in Polarregionen aufgetreten sind. Basierend sowohl auf der synergistischen Untersuchung der bislang gewonnen Daten aus Langzeit - und Feldmessungen sowie auf neuartigen Messungen in der Antarktis sind die wesentlichen Schwerpunkte: (1) Die Untersuchung einer im Rahmen von HALOPOLE II aufgetretenen eklatanten Diskrepanz zwischen aktiven und passiven Messungen DOAS Messungen von IO. (2) Eine eingehende Analyse der DOAS Langzeitmessungen von der Neumayer Station und Arrival Heights (Antarktis) sowie Alert (Kanada) bezüglich Meteorologie, Ursprung der Luftmassen, Vertikalverteilung, sowie des Einflusses von Schnee, Meereis und Eisblumen auf die Freisetzung von reaktiven Halogenverbindungen. (3) Die Untersuchung der kleinskaligen räumlicher und zeitlichen Variation von BrO auf der Basis einer detaillierten Analyse der flugzeuggebundenen MAX-DOAS Messungen während der BROMEX 2012 Kampagne in Barrow/Alaska. (4) Die Analyse der kürzlich in der marginalen Eiszone der Antarktis auf dem Forschungsschiff Polarstern durchgeführten Messungen im Hinblick auf die horizontale und vertikale Verteilung von BrO und IO, sowie den Einfluss der Halogenchemie auf den Ozon- und Quecksilberhaushalt. (5) Weitere detaillierte Untersuchungen des Einflusses von Halogenradikalen, insbesondere Chlor und Jod, auf das chemische Gleichgewicht der polaren Grenzschicht auf der Basis einer Messkampagne in Halley Bay, Antarktis. (6) Detailliertere Langzeit-Messungen von Halogenradikalen und weiteren Substanzen auf der Neumayer Station mittels eines neuen Langpfad-DOAS Instruments welches im Rahmen dieses Projektes entwickelt wird. Zusätzlich zu den bereits existierenden MAX-DOAS Messungen werden diese eine ganzjährige Messungen des vollen Tagesganges sowie die Untersuchung nicht nur der Brom- und Jodchemie, sondern auch der Chlorchemie ermöglichen.
Der biologische C-Kreislauf in der Antarktis unterliegt der Kontrolle der planktischen und benthischen Primärproduzenten. Die Menge an fixiertem Kohlenstoff hängt dabei nicht nur von deren photosynthetischer Aktivität ab, sondern auch von den Verlusten durch Respiration. Daher ist das Verhältnis von Photosynthese zu Respiration (rP/R) ein wichtiger Parameter den Einfluss des Klimawandels auf den antarktischen Kohlenstoffkreislauf abschätzen zu können, da aus Laborstudien bekannt ist, dass dieser Parameter empfindlich auf Umweltfaktoren reagiert. Allerdings sind quantitative Daten kaum verfügbar und Freilanddaten fehlen ganz. Das ist hauptsächlich einer methodischen Limitierung geschuldet, da sich zwar die Photosynthese Leistung über 14C, Sauerstoff oder Fluorometrie ermittelt lässt, sich die Atmung kaum oder nur mit hohem Aufwand erfassen lässt. In diesem Vorhaben soll zunächst gezeigt werden, wie hoch die Variabilität des Verhältnisses rP/R bei antarktischen Mikroalgen unter global change Bedingungen ist (steigende Temperatur, Eisenmangel. Mit diesen Daten kann dann in Modellrechnungen gezeigt werden, wie hoch der Fehler bei Primärproduktionsmessungen sein kann, wenn die Atmung nicht adäquat berücksichtigt wird. Danach soll eine Methode zur Messung der Atmung entwickelt werden, die ohne Gaswechsel und mit hohem Durchsatz im Freiland eingesetzt werden kann, um auch im Feld richtige rP/R Werte ermitteln zu können. Auf diese Weise können alle Teilprojekte, die sich mit klimawandel-abhängigen Veränderungen der antarktischen C-Bilanz beschäftigen, mit Zusatzinformationen versorgt werden, die den Wert der Daten deutlich steigern können.
Ozeanerwärmung, -versauerung und die Umweltverschmutzung, nehmen zunehmend Einfluss auf die arktische und antarktische Umwelt. Antarktische, stenothermen Fische haben sich evolutionär an die dortigen stabilen Umweltbedingungen angepasst, welche z.B. genetische und funktionellen Veränderungen beinhalten. Diese könnten u.a. die Anpassungsmöglichkeiten antarktischer Fische gegenüber Umweltveränderungen beeinträchtigen. Vergleichsweise dazu leben arktische, gadoide Fische in einem Gebiet mir größeren Umweltschwankungen. In Anbetracht desen wird sich die Klimaveränderung wahrscheinlich unterschiedlich auf Arktische und Antarktische Fische auswirken.Das Herz-Kreislaufsystems stenothermer Fischarten ist prinzipiell nur geringfügig auf Umweltveränderungen zu reagieren. Hierbei stellt die Herzfunktion einen Schlüsselfaktor dar. Studien deuten des Weiteren auf negative und interagierende Einflüsse von Ozeanerwärmung- und versauerung auf Embryos und Larvalen polarer Fischarten hin. Die Exposition der Fische gegenüber mehreren, kombinierten Umweltstressoren kann zudem zu Verschiebungen im Energiehaushalt führen. Diese können eine verringerte Energieverfügbarkeit für andere, lebensnotwendige Funktionen zur Folge haben.Der Antrag befasst sich mit der Frage, wie sich die Umweltstressoren anthropogene Umweltverschmutzung, Klimaerwärmung und Ozeanversauerung auf den Energiestoffwechsel verschiedener Lebensstadien arktischer und antarktischer Fische auswirkt. Die Kernfragen lauten:Beeinträchtigt das Zusammenspiel multipler Stressoren den Schadstoffstoffwechsel polarer Fische? Verursachen multiple Stressoren eine Verschiebung im Energiehaushalt arktischer und antarktischer Fische? Wie beeinflussen Schadstoffe die aerobe und Herzfunktion der verschiedenen Entwicklungsstadien polarer Fische?Was für negative Folgen könnten aus ökologischer Sicht für arktische Gadoiden und antarktische Notothenioiden draus resultieren?Der Antrag soll ein grundsätzliches Verständnis für molekulare, mitochondriale, zellulare und Stoffwechselprozesse schaffen, welche der Anfälligkeit polarer Fische gegenüber Umweltstressoren zugrundeliegen. Als Maß für evolutionäre Anpassungsfähigkeit sollen die Akklimationskapazitäten der verschiedenen Lebensstadien polarer Fische untersucht werden.Für einen Breitengraden-Vergleich von Toleranzen gegenüber Umweltfaktoren konzentriert sich der Antrag auf ökologisch und biologisch vergleichbare stenotherme Arten. Somit wird eine Datengrundlage geschaffen, um die evolutionär verschiedenen aber gleichermaßen stenothermen arktische und antarktische Fische vergleichen zu können.Die in diesem Antrag eruierte physiologische Empflindlichkeit polarer Fische gegenüber Klimawandel sollen abschließend dazu dienen, die zukünftigen Risiken menschengemachter Umweltrisiken für diese Tiere abgeschätzen zu können. Schließlich wird das Projekt eine Grundlage für Management- und Schutzmaßnahmen polarer Ökosysteme gegenüber fortschreitendem globalen Wandel bilden.
Organische Schwefelkomponenten sind abundant in marinen Sedimenten. Diese Verbindungen werden v.a. durch die abiotische Reaktion anorganischer Schwefelverbindungen mit Biomolekülen gebildet. Wegen seiner Bedeutung für globale Stoffkreisläufe, für die Nutzung von Erdöllagerstätten und für die Erhaltung des Paleorecords, gibt es eine Vielzahl von Studien zum Thema. Sehr wenig Aufmerksamkeit wurde allerdings wasserlöslichen Komponenten geschenkt, die beim Prozess der Sulfurisierung entstehen und als gelöster organischer Schwefel (DOS) in die Meere gelangen können. Anhand der wenigen verfügbaren Informationen ist Schwefel vermutlich das dritthäufigste Heteroelement im gelösten organischen Material (DOM) der Meere, nach Sauerstoff und Stickstoff. Einige Schwefelverbindungen, insbesondere Thiole, sind für die Verbreitung von Schadstoffen aber auch essenzieller Spurenstoffe verantwortlich. Wichtige klimarelevante Schwefelverbindungen entstehen aus DOS. Daher spielt der marine DOS-Kreislauf eine Rolle für die Meere und Atmosphäre. Trotz seiner Bedeutung sind die Quellen marinen DOS, seine Umsetzung im Meer und Funktion für Meeresbewohner unbestimmt. Auch ist die molekulare Zusammensetzung von DOS unbekannt. In diesem Projekt werden wir Pionierarbeit in einem neuen Forschungsfeld der marinen Biogeochemie leisten. Wir wollen grundlegende Fragen bzgl. der Bildung und Verteilung von nicht-flüchtigem DOS im Meer beantworten. Unsere wichtigsten Hypothesen:* Bildung von DOS:(1) Sulfatreduzierende Sedimente sind wesentlich für die Bildung von DOS.(2) Reduzierte Schwefelverbindungen (v.a. Thiole) dominieren in Zonen der DOS-Entstehung.(3) DOS wird v.a. über abiotische Sulfurisierung in der Frühdiagenese gebildet.* Transport und Schicksal von DOS im Ozean:(4) DOS wird von sulfat-reduzierenden intertidalen Grundwässern an das Meer abgeben.(5) In der Wassersäule oxidiert DOS schnell (z.B. zu Sulfonsäuren).(6) DOS aus intertidalen Sedimenten ist in oxidierter Form auf den Kontintentalschelfen stabil.Neben dem wissenschaftlichen Ziel der Beantwortung dieser Hypothesen, wird das Projekt drei Promovierenden (eine in Deutschland und zwei in Brasilien) die außergewöhnliche Gelegenheit bieten, ihre Doktorarbeiten im Rahmen eines internationalen Projektes durchzuführen. Wir werden die Stärken beider Partner in Feld- und Laborstudien und Elementar-, Isotopen- und molekularen Analysen kombinieren. Wir werden unterschiedliche Regionen im deutschen Wattenmeer und in brasilianischen Mangroven (Rio de Janeiro and Amazonien) beproben, sowie die benachbarten Schelfmeere. Sulfurisierungsexperimente werden die Feldstudien ergänzen. Zur quantitativen Bestimmung und molekularen Charakterisierung von DOS werden wir neue Ansätze anwenden, die von den beiden Arbeitsgruppen entwickelt wurden. Dabei kommen u.a. ultrahochauflösende Massenspektrometrie (FT-ICR-MS), und andere massenspektrometrischen und chromatographischen Methoden zu Anwendung.
Fragmentation of the natural environment has contributed to major biodiversity loss in South East Asia. Reptiles represent a significant biomass and occupy important functions in our ecosystem. However, these organisms are highly sensitive to relatively minor changes in temperature and habitat alteration. In this study we will investigate the effects of habitat fragmentation and potentially climate change on agamids at several sites in Southeast Asia. We will identify the species richness of agamids, their habitat use, and their diet. By using morphometrics, we aim to correlate morphology and habitat use and diet to explore the ecological niches these lizards occupy. We will also test for microhabitat preferences and optima to understand the ecological impacts on these species caused by forest fragmentation. We hope to use this approach to lay the foundations for macro-ecological modelling proving insights into future distributions and the impact of habitat connectivity.
Um die lückenhaft über große Flächen und oft unberechenbar verteilten Meeresressourcen zu nutzen, fliegen Albatrosse und Sturmvögel oft Hunderte von Kilometern pro Tag und füttern ihre Küken selten. In marinen Ökosystemen unter starkem anthropogenem Einfluss wird die Verfügbarkeit von Beute oft durch die Anwesenheit der Fischereifahrzeuge verändert, die große Mengen an Abfällen wie Innereien von verarbeitetem Fisch, Nichtzielarten und zu kleine Fische verwerfen. Dadurch erzeugen sie nicht nur eine vorhersehbare und reichliche Nahrungsquelle für Seevögel, sondern Fischerei-Abfälle erschließen Seevögeln auch den Zugriff auf demersale Organismen wie Bodenfische als neuartige Nahrungsquelle. In vielen fischreich genutzten Meeresgebieten stellen Abfälle daher einen großen Anteil der Nahrung von Seevögeln. Dies kann erhebliche Auswirkungen auf die Ernährungsökologie der Seevögel haben. Das Ziel der geplanten Studie ist es, unser Verständnis von Verhaltensanpassungen als Reaktion auf Änderungen in der Verfügbarkeit von Beute zu vertiefen. Wir schlagen dazu eine Fallstudie an Sturmtauchern Calonectris diomedea im Mittelmeer vor, einer Art, die sowohl natürliche Beute als auch Fischereiabfälle als Nahrung nutzt. Um das Ausmaß und die Auswirkungen der Nahrungsquellen zu bewerten, werden wir eine Kombination aus GPS-Tracking, Messungen der Stoffwechselrate mit 2 Methoden (Beschleunigungsdaten und Schwerwassermethode) und nicht-invasive genetische Nahrungsbestimmung verwenden. Wir werden untersuchen, ob die Nutzung der Fischereiabfälle durch die Sturmtaucher als Reaktion auf geringe Verfügbarkeit von ihrer natürlichen Beute auftritt oder ob diese Art sich an die neue Nahrungsquelle angepasst hat, und sie unabhängig von der Verfügbarkeit ihrer natürlichen Beute regelmäßig nutzt. Darüber hinaus werden wir erfahren und neue Brutpaare vergleichen, um zu bewerten, wie die Qualität von Alttieren dieses Verhalten beeinflusst, sowie die Energiebilanz der natürlichen Beute und von Fischereiabfällen vergleichen.
Der aktuelle Klimawandel hat bereits Auswirkungen auf eine Reihe natürlicher Prozesse (z.B. Walther et al. 2002, Nature 416: 389-395; Walker et al. 2006, PNAS 103: 1342-1346). Ansteigende Temperaturen haben die Phänologie von Arten verändert mit bedeutenden Auswirkungen für komplexe direkte und indirekte Interaktionen zwischen Arten und es gibt deutliche Hinweise auf aktuelle Arealverschiebungen als Reaktion auf Erwärmung (Walther et al. 2002; 2005, P Roy Soc B-Biol Sci 272: 1427-1432). Die Ergebnisse des International Tundra Experiment (ITEX) Forschungsprogramms zu Auswirkungen von Temperaturerhöhung auf die Struktur von Pflanzengemeinschaften deuten an, dass (1) die Produktivität ansteigen wird, (2) der Deckungsgrad toter Pflanzenteile (Streu) und der Deckungsgrad von Zwergsträuchern und Gräsern zunehmen wird, während (3) der Deckungsgrad von Moosen in arktischen Regionen abnehmen wird (Walker et al. 2006). Die für die Zusammensetzung von Pflanzengemeinschaften und die Verbreitungsreale von Arten erwarteten Veränderungen als Folge des Klimawandels hängen von der Invasibilität von Pflanzengemeinschaften ab. Obgleich letztere wiederum unter anderem durch die Vegetationsstruktur (z.B. Deckung, Höhe der Vegetation) bestimmt wird, ist die Bedeutung verschiedener Komponenten der Vegetationsstruktur (Sträucher, Moose, Gräser, Krautige) noch wenig erforscht. Im Lichte der klimainduzierten Veränderungen dieser Komponenten können empirische Studien zur Invasibilität von Pflanzengemeinschaften wichtige Informationen für die realistische Modellierung bezüglich der erwarteten Veränderung der Zusammensetzung von Vegetation und der Verbreitung von Arten liefern. Daher ist es Ziel dieses Projektes die Auswirkungen von Veränderungen verschiedener Komponenten der Vegetationsstruktur (Lebende Pflanzen, Moose, Streu) auf die Etablierung von Keimlingen in einem subarktischen Heidesystem zu analysieren.
Die Larven ('Raupen') der meisten Schmetterlingsarten leben solitär. Nur wenige Arten bilden komplexere Sozialverbände aus, dies aber konvergent in vielen taxonomischen Gruppen. Die ökologischen Randbedingungen, unter denen gemeinschaftliches Leben und Suchen nach Nahrung vorteilhaft sind, sind bis heute unbefriedigend verstanden. Wir untersuchen, welche Mechanismen zum Zusammenhalt der Gruppen beitragen, welche Rolle dabei chemische und mechanische Kommunikation zwischen den Raupenindividuen spielt, wie wichtig physiologische (vor allem thermobiologische) Effekte bei in Gruppen lebenden Arten sind und welche Konsequenzen das gemeinschaftliche Leben für die Nahrungssuche und mögliche Konkurrenz unter den Geschwistern hat. Diese Untersuchungen werden vergleichend an mehreren Arten mit unterschiedlich komplexen Sozialsystemen durchgeführt, ausgehend von den lockeren, auf die frühen Larvenstadien beschränkten Geschwisterverbänden von Landkärtchen (Araschnia levana) bis zu dauerhaft in Gemeinschaftsnestern lebenden Raupengesellschaften (z. B. Wollafter, Eriogaster lanestris).
Lake Sevan, the only large water reservoir within the South Caucasus, is under severe ecological pressure, and understanding the species composition of the lake and especially the rivers of its drainage basin is of central importance to inform natural resource management decisions in Armenia. Due to the limited capacity in the area for exact and fast taxonomic identification of benthic invertebrates, we started to compile a DNA barcode reference database of aquatic arthropods from the Lake Sevan drainage basin, spearheaded by Dr. Marine Dallakyan from Yerevan's Scientific Center of Zoology and Hydroecology (Armenian Academy of Sciences), whose first visit to ZFMK has been financed by DAAD. The project is closely linked to the efforts undertaken and planned within the GGBC(link is external) project. The project results are aimed at making future standardized assessment of aquatic biodiversity monitoring in Armenia and the Caucasus easier, faster, and more reliable.
| Origin | Count |
|---|---|
| Bund | 891 |
| Type | Count |
|---|---|
| Förderprogramm | 889 |
| unbekannt | 2 |
| License | Count |
|---|---|
| geschlossen | 2 |
| offen | 889 |
| Language | Count |
|---|---|
| Deutsch | 422 |
| Englisch | 648 |
| Resource type | Count |
|---|---|
| Keine | 659 |
| Webseite | 232 |
| Topic | Count |
|---|---|
| Boden | 668 |
| Lebewesen und Lebensräume | 881 |
| Luft | 519 |
| Mensch und Umwelt | 883 |
| Wasser | 535 |
| Weitere | 891 |