API src

Found 875 results.

Similar terms

s/ascha/Asche/gi

Cerastoderma glaucum - biomass (AFDW)

Distribution of biomass (ash free dry weight in g/m²) for 10 key species modeled with random forests method.Macrozoobenthic data from 1191 sampling stations located in the German part of the Baltic Sea were analyzed (data sources: Leibniz Institute for Baltic Sea Research). Samples have been collected from 1999 to 2015. Sample data were averaged per stations and standardized to the area of 1 m².For modeling R package “Random Forest” (RF, Version 4.6–7, Liaw and Wiener, 2002), based on random forests statistical analysis (Breiman, 2001) is used.Predictors and modeling algorithm as described in Gogina, M., Morys, C., Forster, S., Gräwe, U., Friedland, R., Zettler, M.L. 2017. Towards benthic ecosystem functioning maps: Quantifying bioturbation potential in the German part of the Baltic Sea. Ecological Indicators 73: 574-588. doi.org/10.1016/j.ecolind.2016.10.025

Mya arenaria - biomass (AFDW).tif

Distribution of biomass (ash free dry weight in g/m²) for 10 key species modeled with random forests method.Macrozoobenthic data from 1191 sampling stations located in the German part of the Baltic Sea were analyzed (data sources: Leibniz Institute for Baltic Sea Research). Samples have been collected from 1999 to 2015. Sample data were averaged per stations and standardized to the area of 1 m².For modeling R package “Random Forest” (RF, Version 4.6–7, Liaw and Wiener, 2002), based on random forests statistical analysis (Breiman, 2001) is used.Predictors and modeling algorithm as described in Gogina, M., Morys, C., Forster, S., Gräwe, U., Friedland, R., Zettler, M.L. 2017. Towards benthic ecosystem functioning maps: Quantifying bioturbation potential in the German part of the Baltic Sea. Ecological Indicators 73: 574-588. doi.org/10.1016/j.ecolind.2016.10.025

Total biomass

These data sets are based on approx. 1400 stations sampled in the German Baltic Sea by the Leibniz Institute for Baltic Sea Research (IOW) during the past 15 years (as part of the regular monitoring or within different research programmes). Benthic samples were taken with a 0.1 m² van Veen grab. Depending on sediment composition, grabs of different weights were used. As a standard three replicates of grab samples were taken at each station. Additionally a dredge haul (net mesh size 5 mm) was taken in order to obtain mobile or rare species. All samples were sieved through a 1 mm screen and animals were preserved in the field with 4% formaldehyde. For sorting in the laboratory, a stereomicroscope with 10–40 magnification was used, species were counted and weighted. Total ash free dry weight biomass was derived using random forests statistical analysis (Breiman, 2001) in R environment (Version 3.0.2, The R Foundation for Statistical Computing, 2013) and the package ‘random Forest’ (RF, Version 4.6–7, Liaw and Wiener, 2002). Total biomass shows AFDW biomass g per m².Environmental data used as predictors: Substrate (Tauber 2012), Depth (FEMA project), Salinity mean, temperature mean JJA, bottom velocity max (GETM, Klingbeil et al. 2013) Light penetration depth (mean over growth period), oxygen deficit zones (number of days / year smaller 2 ml / l) and detritus rate (mm / year) (ERGOM, Friedland et al. 2012).

Limecola balthica - biomass (AFDW)

Distribution of biomass (ash free dry weight in g/m²) for 10 key species modeled with random forests method.Macrozoobenthic data from 1191 sampling stations located in the German part of the Baltic Sea were analyzed (data sources: Leibniz Institute for Baltic Sea Research). Samples have been collected from 1999 to 2015. Sample data were averaged per stations and standardized to the area of 1 m².For modeling R package “Random Forest” (RF, Version 4.6–7, Liaw and Wiener, 2002), based on random forests statistical analysis (Breiman, 2001) is used.Predictors and modeling algorithm as described in Gogina, M., Morys, C., Forster, S., Gräwe, U., Friedland, R., Zettler, M.L. 2017. Towards benthic ecosystem functioning maps: Quantifying bioturbation potential in the German part of the Baltic Sea. Ecological Indicators 73: 574-588. doi.org/10.1016/j.ecolind.2016.10.025

Hediste diversicolor - biomass (AFDW)

Distribution of biomass (ash free dry weight in g/m²) for 10 key species modeled with random forests method.Macrozoobenthic data from 1191 sampling stations located in the German part of the Baltic Sea were analyzed (data sources: Leibniz Institute for Baltic Sea Research). Samples have been collected from 1999 to 2015. Sample data were averaged per stations and standardized to the area of 1 m².For modeling R package “Random Forest” (RF, Version 4.6–7, Liaw and Wiener, 2002), based on random forests statistical analysis (Breiman, 2001) is used.Predictors and modeling algorithm as described in Gogina, M., Morys, C., Forster, S., Gräwe, U., Friedland, R., Zettler, M.L. 2017. Towards benthic ecosystem functioning maps: Quantifying bioturbation potential in the German part of the Baltic Sea. Ecological Indicators 73: 574-588. doi.org/10.1016/j.ecolind.2016.10.025

Untersuchungen zur möglichen Freisetzung von Nanopartikeln bei der Ablagerung und bodenbezogenen Anwendung von mineralischen Abfällen

Im Forschungsvorhaben "Untersuchungen zur möglichen Freisetzung von Nanopartikeln bei der Ablagerung und bodenbezogenen Anwendung von mineralischen Abfällen" wurden mögliche Freisetzungspfade von Nanopartikeln bei der Aufbereitung und Verwertung fester Verbrennungsrückstände aus der Haumüll- und Klärschlammverbrennung untersucht. Zu diesem Zweck wurden Hausmüll- und Klärschlammchargen mit nanoskaligem Titandioxid dotiert und anschließend in Verbrennungsanlagen thermisch behandelt. Die erzeugten nanomaterialhaltigen Schlacken und Aschen wurden unter Zuhilfenahme der Röntgenspektroskopie (REM EDX) hinsichtlich ihres Agglomerations- bzw. Aggregationsverhaltens untersucht und bewertet. Darüber hinaus wurden die Asche- und Schlackeproben im Hinblick auf Staubfreisetzung bei der mechanischen Aufbereitung bewertet und mittels Lysimeter- bzw. Deponiekörperreaktoren das Elutionsvermögen der Nanopartikel untersucht. Die Forschungsergebnisse legen eine besondere Sorgfalt bei der mechanischen Aufbereitung der Verbrennungsrückstände nahe, z.B. durch Maßnahmen wie Kapselung und Befeuchtung zur Minderung der Staubemissionen, sowie bei der bodenbezogenen Verwertung der Klärschlammverbrennungsaschen. Veröffentlicht in Texte | 136/2020.

Messergebnisse zur Radioaktivität in: Asche (11.06.2015)

Messdaten zur Überwachung der Radioaktivität in der Umwelt, in Lebens- und Futtermitteln

Results of evolved gas analysis (EGA) on ash + salt samples from the 15 January 2022 eruption of Hunga volcano, Tonga

Abstract

Particle size distribution analyses of volcanic ash from Campi Flegrei (Italy) and Sakurajima (Japan) volcanoes

Abstract

Geochemical compositions of igneous rocks of the Central Andean orocline

Abstract

1 2 3 4 586 87 88