API src

Found 5998 results.

Related terms

Sentinel-5P TROPOMI – Cloud Optical Thickness (COT), Level 3 – Global

This product displays the Cloud Optical Thickness (COT) around the globe. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud optical thickness is retrieved from the O2-A band using the ROCINN algorithm. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Abruf der Feinstaubwerte in der Neujahrsnacht für Baden-Württemberg

null Abruf der Feinstaubwerte in der Neujahrsnacht für Baden-Württemberg Sehr geehrte Kolleginnen und Kollegen der baden-württembergischen Redaktionen, wenn Sie sich für die Entwicklung der Feinstaubwerte in der Silvesternacht interessieren und aktuell am 01.01.2025 oder 02.01.2025 berichten möchten, erinnern wir Sie daran, dass Sie die Werte auf unserer Webseite Immissionsdaten Baden-Württemberg selbst abrufen können, und zwar für alle Messstellen, an denen wir Feinstaub PM10 kontinuierlich messen. Dies betrifft Standorte im städtischen und ländlichen Hintergrund sowie einige verkehrsnahe Standorte. Anleitung: Abruf von gemessenen Werten für Feinstaub PM10 auf den Webseiten der LUBW Landesanstalt für Umwelt Baden-Württemberg Möchten Sie die Entwicklung der Feinstaubwerte verfolgen, rufen Sie unsere Webseite: Themen/Luft/Aktuelle Messwerte/Tabelle auf. Um eine Übersicht über die höchsten Werte des Tages zu erlangen, wählen Sie die Funktion „Tabelle“ sowie den Luftschadstoff „Feinstaub PM10“. Hier können Sie den höchsten Wert des Tages und des Vortages ablesen. Die Tabelle ist sortierbar. Um den zeitlichen Verlauf und die Konzentration zu einer bestimmten Uhrzeit ablesen zu können, wechseln Sie zur Funktion Diagramm , wählen die entsprechende Station aus und fahren mit Ihrem Maus-Cursor entlang der Kurve im Diagramm zur höchsten Stelle am entsprechenden Tag. So können Sie die Uhrzeit ermitteln, zu der der höchste 24h-Mittelwert (in µg/m³) ermittelt wurde. In der Grafik darunter finden Sie die Stundenmittelwerte. Auch hier fahren Sie mit Ihrem Maus-Cursor an der Kurve im Diagramm entlang zur höchsten Stelle am entsprechenden Tag. So können Sie sich den höchsten Stundenmittelwert (in µg/m³) des Tages anzeigen lassen. Rückblick: Feinstaubwerte in der Silvesternacht in den vergangenen Jahren Erhöhte Werte meist kurz nach Mitternacht In den vergangenen Jahren kam es in der Silvesternacht meist kurz nach Mitternacht zum Anstieg der Feinstaubwerte an den wohnortnahen LUBW-Messstellen zur Überwachung der Luftqualität. Der Rauch von gezündeten Böllern und Raketen besteht zum großen Teil aus Feinstaub und führt häufig zu einer erhöhten Feinstaubbelastung in der Luft. Dauer und Höhe der Belastung hängen von den Emissionen und den Witterungsverhältnissen ab. Aber auch in den vergangenen Jahren war die Belastung der Luft mit Feinstaub unterschiedlich stark ausgeprägt. Die meteorologischen Größen Wind, Temperatur und Niederschlag haben Auswirkungen auf die Austauschbedingungen in der Luft. Im Winter bestehen während ausgeprägten Hochdruckwetterlagen häufig schlechte Ausbreitungsbedingungen mit geringen Windgeschwindigkeiten und einer stabilen Schichtung der Atmosphäre (Inversionswetterlage). Vereinfacht gesagt: Ist es windig, wird die Feinstaubbelastung meist innerhalb von wenigen Stunden verweht; haben wir eine Inversionswetterlage, kann sich eine erhöhte Belastung auch über einen Tag und mehr in der Luft halten. Informationen zu den meteorologischen Bedingungen während der Silvesternacht finden Sie nun neu unter https://www.lubw.baden-wuerttemberg.de/luft/messwerte-meteorologie#karte . Es handelt sich um aktuelle meteorologische Messwerte des Luftmessnetzes Baden-Württemberg. Wichtiger Hinweis : Die meteorologischen Daten der LUBW durchlaufen keine qualitätssichernde Beurteilung, dennoch vervollständigen sie zusammen mit den Schadstoffdaten das Angebot und geben einen Einblick in die meteorologische Situation vor Ort. Weitere Informationen können Sie unseren Pressemitteilungen zur Neujahrsnacht aus den Jahren 2020 und 2018 entnehmen. Diese Meldungen geben die entsprechenden Entwicklungen für die beiden unterschiedlichen Wetterlagen sehr gut wieder: Inversionswetterlage 02.01.2020 Hohe Belastung der Luft mit Feinstaub am Neujahrstag Feinstaub: Vom Winde verweht 01.01.2018 Baden-Württemberg nach der Silvesternacht Nachfolgend finden Sie die verlinkte Liste der LUBW-Messstationen zur Überwachung der Luftqualität in Baden-Württemberg, an denen Feinstaub-PM10 erfasst wird: Messstelle Aalen Baden-Baden Bernhausen Biberach Eggenstein Freiburg Freiburg Schwarzwaldstraße Friedrichshafen Gärtringen Heidelberg Heilbronn Heilbronn Weinsberger Straße-Ost Karlsruhe Reinhold-Frank-Straße Karlsruhe-Nordwest Kehl Konstanz Ludwigsburg Mannheim Friedrichsring Mannheim-Nord Neuenburg Pfinztal Karlsruher Straße Pforzheim Reutlingen Reutlingen Lederstraße-Ost Schramberg Oberndorfer Straße Schwarzwald-Süd Schwäbische Alb Schwäbisch Hall Stuttgart Am Neckartor Stuttgart Arnulf-Klett-Platz Stuttgart Hohenheimer Straße Stuttgart-Bad Cannstatt Tauberbischofsheim Tübingen Tübingen Mühlstraße Ulm Villingen-Schwenningen Weil am Rhein Wiesloch Bei Rückfragen wenden Sie sich bitte an die Pressestelle der LUBW. Telefon: +49(0)721/5600-1387 E-Mail: pressestelle@lubw.bwl.de

Europäischer Luftqualitätsindex - Teilindex NO2 - Europäischer Luftqualitätsindex (stündliche Messungen) - Teilindex NO2

OGC:WMS:Europäischer Luftqualitätsindex (basierend auf Schadstoffkonzentrationen in µg/m3): stündliche Messungen für den Schadstoff NO2 zur letzten Stunde für jede Station - Der Teilindex NO2 ist verfügbar je nach Art der Station (Industrie, Hintergrund oder Verkehr) und gemäß der Methodik zur Berechnung des europäischen Luftqualitätsindexes für die Messstationen in der gesamten Großregion. - Datentiefe: Der aktuellste Teilindex für die letzten 3 Stunden ist für jede Station stündlich verfügbar. Wenn die Berechnung des Indexes aufgrund fehlender Daten nicht möglich ist, wird ihr Wert durch einen grauen Punkt in der Kartensymbologie gekennzeichnet (Daten nicht verfügbar). - Datenquellen: ATMO Grand Est; Agence Wallonne de l'Air et du Climat - AWAC; Landesamt für Umwelt- und Arbeitsschutz Saarland - IMMESA; Landesamt für Umwelt Rheinland-Pfalz - ZIMEN; Administration de l'environnement Luxembourg. Harmonisierung: ATMO Grand Est und GIS-GR 2020

Sentinel-5P TROPOMI Surface Nitrogendioxide (NO2), Level 4 – Regional (Germany and neighboring countries)

The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Nitrogen Dioxide (NO2) near surface concentration for Germany and neighboring countries as derived from the POLYPHEMUS/DLR air quality model. Surface NO2 is mainly generated by anthropogenic sources, e.g. transport and industry. POLYPHEMUS/DLR is a state-of-the-art air quality model taking into consideration - meteorological conditions, - photochemistry, - anthropogenic and natural (biogenic) emissions, - TROPOMI NO2 observations for data assimilation. This Level 4 air quality product (surface NO2 at 15:00 UTC) is based on innovative algorithms, processors, data assimilation schemes and operational processing and dissemination chain developed in the framework of the INPULS project. The DLR project INPULS develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI - Aerosol Optical Depth (AOD), Level 3 - Global

Aerosol optical depth (AOD) as derived from TROPOMI observations. AOD describes the attenuation of the transmitted radiant power by the absence of aerosols. Attenuation can be caused by absorption and/or scattering. AOD is the primary parameter to evaluate the impact of aerosols on weather and climate. Daily AOD observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI – Ozone (O3), Level 3 – Global

Ozone vertical column density in Dobson Units as derived from Sentinel-5P/TROPOMI observations. The stratospheric ozone layer protects the biosphere from harmful solar ultraviolet radiation. Ozone in troposphere can pose risks to the health of humans, animals, and vegetation. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Daily observations are binned onto a regular latitude-longitude grid. Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Sentinel-5P TROPOMI – Cloud Fraction (CF), Level 3 – Global

Global Cloud Fraction (CF). Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The radiometric cloud fraction is retrieved from the UV using the OCRA algorithm. Daily observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Ressortforschungsplan 2023, Mikroplastik in der Außenluft: Erfassung, Quantifizierung, Identifizierung und Quellen von luftgetragenem Mikroplastik

Mikroplastik (Partikel im µm Bereich) entsteht durch verschiedenste Prozesse, insbesondere jedoch durch Abrieb und Erosion von Plastik. Dabei ist ein Eintrag über den Wasser- und Bodenpfad mittlerweile unbestritten. Jedoch weiterhin ungeklärt ist der tatsächliche Eintrag über den Luftpfad. Zwar belegen Studien das Vorkommen von Mikroplastik an weitentfernten Orten und lassen auch den Schluss eines zumindest teilweisen Transportes über die Luft zu, aber wie hoch dieser Beitrag tatsächlich ist bleibt zurzeit ungeklärt. Darüber hinaus spielt die Identifikation der Polymere und somit die Erfassung der Quellbeiträge eine entscheidende Rolle. Ziel des Projektes ist es den luftgetragenen Eintrag von Mikroplastik und deren Quellen an Hintergrundstationen des Luftmessnetzes zu bestimmen. Dafür sollen an ausgewählten Messstationen des Luftmessnetzes des Umweltbundesamts (UBA) plastikfreie Niederschlagssammler sowie Vorrichtungen zur Feinstaubprobenahme installiert und über den Projektzeitraum repräsentativ PM10 Feinstaub- und Niederschlagsproben gesammelt und deren chemische Zusammensetzung analysiert werden. Zusätzlich sind Analysen von Niederschlagsproben zu Vergleichszwecken vorzusehen. In der Studie soll zudem die Ergebnisse statistisch (deskriptiv und beurteilend) ausgewertet und eine mögliche Quellenidentifikation über die Inhaltsstoffe erarbeitet werden.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Winkelabhängige Lichtstreuung atmosphärischer Eispartikel - Von Einzelpartikelmessungen zu einer globalen Beobachtung der Mikrophysik und Strahlungseigenschaften von Zirren

Im Rahmen dieses Projekts soll das Wolkenpartikelinstrument PHIPS-HALO des KIT um die Messung der winkelabhängigen Polarisation von einzelnen Eispartikeln im rückwärtigen Streuwinkelbereich erweitert werden. Diese Messung ergänzt die bestehenden PHIPS-HALO-Messmethoden zur Erfassung der Partikelform sowie der winkelabhängigen Streufunktion. Die neuen Messmöglichkeiten des PHIPS-HALO/SID-3 Instrumentpakets des KIT werden in der Wolkensimulationskammer AIDA umfangreich getestet und charakterisiert, um diese am Ende der ersten Förderperiode für Messungen auf HALO zur Verfügung zu haben. Dadurch werden schon im Vorfeld der nächsten, für den Winter 2018/2019 geplanten Zirrusmission neuartige relevante Datensätze gewonnen, die von großem Nutzen für die Atmosphärenwissenschaft sein werden. Zusätzlich zu den Labormessungen, soll das verbesserte PHIPS-HALO Instrument sowie das PHIPS-HALO/SID-3 Instrumentpaket im Rahmen des Projekts auch auf anderen Messflugzeugen betrieben und getestet werden. Mit den erweiterten Messmöglichkeiten des PHIPS-HALO/SID-3 Instrumentpakets können in zukünftigen HALO-Missionen Validierungen von Satellitenbeobachtungen durchgeführt werden, die sich auf Polarisationsmessmethoden stützen. Da diese Messmethoden sehr empfindlich auf die Komplexität der Form sowie der Oberflächenrauheit der Eispartikel sind, könnte auf Basis solcher Validierungsmissionen die Frage geklärt werden, ob die Eispartikelkomplexität eine dominante mikrophysikalische Eigenschaft von Zirren ist. Sollte dies der Fall sein, würden Wolkeneispartikel einen deutlich anderen Strahlungseinfluss auf den Wärmehaushalt der Erde haben als bisher angenommen.

Sonderforschungsbereich Transregio 165 (SFB TRR): Wellen, Wolken, Wetter; Waves to Weather - A Transregional Collaborative Research Center, Teilprojekt B04: Strahlungsbedingte Erwärmungs- und Abkühlungsraten in Wolken und ihr Einfluss auf die Dynamik

Der Einfluss dreidimensionaler strahlungsbedingter Erwärmungs- und Abkühlungsraten wird systematisch mit Hilfe eines analytischen Wolkenmodells, eines Grobstrukturmodells und eines numerischen Wettervorhersagemodells untersucht. Neue Parametrisierungen werden für die beiden Skalen entwickelt, um zu quantifizieren, wie diese Prozesse die Wolkenbildung, die Wolkenmikrophysik und schließlich die Dynamik beeinflussen. Diese Untersuchungen werden dazu beitragen, das Verständnis der Strahlungs-Wolken-Wechselwirkung deutlich zu verbessern und die Strahlungsprozesse als diabatische Wärmequelle und -senke in der Atmosphäre zu quantifizieren.

1 2 3 4 5598 599 600