Die Oberflächen- und Grenzschichtschemata des nichthydrostatischen, konvektionserlaubenden COSMO-DE Modells werden abgeschätzt. Ziel ist die Reduktion der Unsicherheit in der Darstellung der Oberflächenflüsse, und damit auch derjenigen von konvektiven Wolken im Vorhersagemodell. Dazu werden verschiedene neu entwickelte Ensemblealgorithmen zur Parameterschätzung an einem gemeinsamen idealisierten Testfall erprobt. Das neuartige Vorgehen schätzt objektiv die Parameter zur Schließung des Turbulenzansatzes, die nicht direkt gemessenen werden können, und ermöglicht Einsichten auf deren Auswirkung zur modellhaften Darstellung von Wolken.
Der Einfluss dreidimensionaler strahlungsbedingter Erwärmungs- und Abkühlungsraten wird systematisch mit Hilfe eines analytischen Wolkenmodells, eines Grobstrukturmodells und eines numerischen Wettervorhersagemodells untersucht. Neue Parametrisierungen werden für die beiden Skalen entwickelt, um zu quantifizieren, wie diese Prozesse die Wolkenbildung, die Wolkenmikrophysik und schließlich die Dynamik beeinflussen. Diese Untersuchungen werden dazu beitragen, das Verständnis der Strahlungs-Wolken-Wechselwirkung deutlich zu verbessern und die Strahlungsprozesse als diabatische Wärmequelle und -senke in der Atmosphäre zu quantifizieren.
Die erfolgreiche Durchführung des beantragten SFB/TRR benötigt eine gut strukturierte wissenschaftliche und organisatorische Koordination. Diese wichtige Arbeit wird durch eine/n Koordinationsassistent/in (CA) geleistet der/die eng mit dem Sprecher zusammenarbeiten wird. Der/die CA wird in Hamburg arbeiten und eng mit dem CEN-Büro in Hamburg und dem MARUM-Büro in Bremen kooperieren.
Ziel des Projektes ist es, extreme Ereignisse in simulierten Wasserkreislaufkomponenten zu identifizieren, indem neuartige tiefe generative Netzwerke entwickelt werden, die anomale Ereignisse in simulierten Daten erkennen. Da die Erkennung von anomalen Ereignissen datengetrieben ist, werden sie nicht immer mit Extremen wie Dürren zusammen auftreten. Wir werden daher neuartige Methoden auf Basis von Deep Learning entwickeln, die die Auswirkungen von anomalen Ereignissen, wie landwirtschaftliche Dürren, vorhersagen. Darüber hinaus werden wir die entwickelten Ansätze nutzen, um die Auswirkungen anthropogener Treiber auf anomale Ereignisse zu untersuchen.
Das Klima ist ein angetriebenes, dissipatives Nichtgleichgewichtssystem, wobei unsere Fähigkeiten die beteiligten Prozesse zu verstehen und simulieren begrenzt sind. Meteorologie und Klimaforschung verfügen noch nicht über eine Theorie zur Beschreibung von Instabilitäten, Gleichgewichtsrelaxation, Vorhersagbarkeit, Variabilität, und der Antwort auf Störungen. Trotz großer Fortschritte stoßen Klima- und Wettervorhersagemodelle nach wie vor auf Barrieren aufgrund der komplexen Randbedingungen und der Multiskaleneffekte. Diese Effekte erfordern die Parametrisierung der nicht aufgelösten Prozesse mit der Folge großer systematischer Fehler. Wir nutzen drei erfolgreiche Ansätze aus der statistischen Mechanik und der Theorie dynamischer Systeme: Covariante Lyapunov Vektoren (CLV), instabile periodische Orbits (UPO) und die Response-Theorie (RT). Dies wird uns erlauben, relevante Probleme der geophysikalischen Strömungsdynamik (GFD) im turbulenten Bereich anzugehen. Wir werden diese Ideen auf komplexere numerische Modelle als frühere Studien ausdehnen.1) Instabilitäten: Wir werden Instabilitäten in turbulenten geophysikalischen Strömungen durch CLVs beschreiben. Im Gegensatz zu klassischen Lyapunov-Vektoren bieten CLVs eine kovariante Aufspaltung der Strömung und physikalisch interpretierbare Muster und erlauben damit eine neue Interpretation von Instabilitäten. Dies wird es uns ermöglichen, eine Verbindung zwischen der Energetik und der dynamischen Eigenschaften herzustellen und damit die mesoskopischen mit den makroskopischen Eigenschaften der Strömung zu verknüpfen.2) Vorhersagbarkeit: Wir werden CLVs und UPOs nutzen, um die Vorhersagbarkeit zu analysieren und Zustände hoher und niedriger Vorhersagbarkeit besser zu verstehen. Wir werden untersuchen auf welche Weise Schwankungen der Lyapunov Exponenten (LE) mit bestimmten Eigenschaften der entsprechenden CLVs zusammenhängen. Wir werden den sogenannten Return-of-Skill in Vorhersagen von Strömungen in einen Zusammenhang mit vorübergehenden Abweichungen in der Summe der positive LEs der Strömung bringen und damit die in der Wettervorhersage beobachteten Schwankungen der Vorhersagbarkeit erklären. Wir werden die Hypothese prüfen inwieweit UPOs die niederfrequente atmosphärische Variabilität erklären können.3) Antworttheorie: Auf der Basis der RT werden wir berechnen wie eine Strömung auf Störungen reagiert, indem nur die Gleichgewichtseigenschaften verwendet werden. Wir werden aus kleinen Ensembles von gestörten Simulationen den Responseoperator empirisch für Klimamodelle ableiten. Dies wird uns eine neue Methode zur Projektion auf verschiedene räumliche und zeitliche Skalen liefern. Wir werden die Antwort von baroklinen Strömungen auf Störungen (z.B. Erwärmung und CO2-Konzentration) analysieren. Wir werden die CLVs nutzen, um die Responseoperatoren in die stabilen, instabilen und neutralen Richtungen zu zerlegen und die Hypothese prüfen inwieweit UPOs mit Resonanzen verbunden sind.
Genaue und konsistente Langzeit-Daten sind nötig, um Klimavariabilität und Klimawandel detektieren, verstehen, und zuordnen zu können. Unser Wissen über Veränderungen in der freien Atmosphäre ist immer noch begrenzt, da solche Daten bis jetzt nicht in ausreichender Qualität zur Verfügung stehen. Eine neue Datenquelle, mittels der man einige Probleme von etablierten Methoden überwinden kann, ist die Radiookkultations-Methode (RO). Mit ihr ist es im Prinzip möglich, eine absolute Referenz ('Benchmark') für die obere Troposphäre und untere Stratosphäre (engl. UTLS) zu erstellen, da die Daten auf einer Zeitmessung basieren, und damit an die internationale Definition der Sekunde gebunden sind. Tatsächlich konnten wir in früheren Arbeiten zeigen, dass RO Klimatologen von unterschiedlichen Satelliten erstaunlich gut übereinstimmen (besser als 0.1 K). Der Wert von RO Daten für die Klima-Beobachtung wird zunehmend erkannt, es existieren aber auch Bedenken, dass es systematische Fehler geben könnte, die Daten von unterschiedlichen Satelliten gemein sind. Wir haben eine Liste solcher möglicher systematischen Fehler zusammengestellt, und werden diese genau analysieren. Das wird zu einem besseren Verständnis dieser (kleinen) Restfehler führen, und es erlauben, sie zu vermeiden oder zu entfernen, oder aber, sie genau zu charakterisieren, falls sie unvermeidbar sind. Wir werden diese Erkenntnisse nützen, um die Methode zur Gewinnung von RO Daten zu verfeinern, und damit RO Klimatologien der Parameter Brechungswinkel, Refraktivität, Dichte, Druck, Geopotentielle Höhe und Temperatur in der UTLS, mit bisher unerreichter Genauigkeit und Konsistenz zu erstellen. Dank ihrer hohen Qualität und einer genauen Fehler-Charakterisierung darf man erwarten, dass diese Daten als absolute Referenz (Benchmark) für globale Klimatologien der UTLS dienen können. Durch die Kombination aus hoher Genauigkeit und guter vertikaler Auflösung eignen sich die Daten auch besonders gut für die Beobachtung von Klimavariabilität und Klimawandel in der UTLS, wie z. B. Änderungen der Tropopausenhöhe, Änderungen der Übergangshöhe zwischen troposphärischer Erwärmung und stratosphärischer Abkühlung, oder Temperaturänderungen, die nach einem größeren Vulkanausbruch zu erwarten sind. Das verbesserte Verständnis der systematischen Fehler wird auch im Bereich der numerischen Wettervorhersage nützlich sein, wo RO Daten jetzt schon mit Erfolg assimiliert werden. usw.
Rossbywellen sind von grundlegender Bedeutung für die Dynamik der Erdatmosphäre. Die Wettersysteme der mittleren Breiten sind häufig in deutlich ausgeprägten Rossbywellenpakete (RWP) eingebettet. Die Bedeutung dieser Wellenpakete für die Wettervorhersage wurde schon vor langem erkannt. Die Rolle der RWP als Vorläufer von Schwerwetterereignissen fand dabei besondere Beachtung. Im allgemeinen ist zu erwarten, dass RWP, da sie sich als großskalige Strömungsmerkmale gemäß balancierter Dynamik entwickeln, einen hohen Grad an Vorhersagbarkeit aufweisen, der sich auch günstig auf die Vorhersagbarkeit der eingelagerten, kleinskaligeren Wetterphänomene auswirkt. Andererseits hat eine Reihe von neueren Studien gezeigt, dass sich Vorhersagefehler und -unsicherheiten innerhalb von RWP ausbreiteten und anwachsen, was zu einer maßgeblichen Beeinträchtigung der Vorhersagbarkeit führen kann. Es steht damit die wichtige Frage im Raum: Unter welchen Bedingungen besitzen RWP eine hohe Vorhersagbarkeit und unter welchen Bedingungen besitzen sie eine geringe Vorhersagbarkeit? Die hier beantragte Arbeit wird zur Beantwortung dieser Frage einen wichtigen Beitrag leisten.Mithilfe dieses Antrags werden wir die Vorhersagbarkeit von RWP aus klimatologischer Sichtweise anhand von Ensemblevorhersagen über einen Zeitraum von 30 Jahren betrachten. Unser Ansatz betrachtet RWP als eigenständige, physikalisch aussagekräftige Einheiten, die durch spezifische Eigenschaften beschrieben werden können: Amplitude, Größe, Form und Lage. Die Vorhersagbarkeit dieser Eigenschaften werden wir aus den Ensembledaten bestimmen und ihre saisonale und regionale Abhängigkeit untersuchen, sowie die Abhängigkeit von der Dauer des RWP und der Phase im Lebenszyklus des RWP. Diese phänomenologische Untersuchung ergänzen wir durch eine prozess-basierte Untersuchung der RWP Dynamik. Das Ziel dabei ist es die Dynamik von RWP mit hoher bzw. niedriger Vorhersagbarkeit gegenüberzustellen, um dadurch ein besseres Verständnis der erheblichen Schwankung der RWP Vorhersagbarkeit zu gewinnen.
Ziel diesen Antrags ist die Teilnahme der universitären Partner an den Messungen der Kampagne PGS (POLSTRACC/ GWLCYCLE/ SALSA), die im Winter 2015/2016 durchgeführt werden sollen. An der geplanten HALO Kampagne sind die Universitäten Frankfurt, Mainz, Heidelberg und Wuppertal beteiligt. Die Universität Mainz ist kein voller Partner dieses Antrages, da es kein Projekt der Universität Mainz (AG Prof. Peter Hoor) in der letzten Phase des Schwerpunktprogramms gab. Der finanzielle Teil der geplanten Aktivitäten der Universität Mainz soll daher über die Universität Frankfurt abgewickelt werden. Der wissenschaftliche Beitrag der Universität Mainz ist allerdings in einer ähnlichen Weise dargestellt wie für die anderen universitären Partner. Das Ziel von PGS ist es, Beobachtungen einer großen Zahl verschieden langlebiger Tracer zur Verfügung zu stellen, um chemische und dynamische Fragestellungen in der UTLS zu untersuchen (POLSTRACC und SALSA) und die Bildung und Propagation von Schwerwellen in der Atmosphäre zu untersuchen. (GWLCYCLE). Die Universitäten Frankfurt und Wuppertal schlagen vor hierfür GC Messungen von verschieden langlebigen Spurengasen und von CO2 (Wuppertal) durchzuführen. Die Universität Mainz schlägt den Betrieb eines Laser Spektrometers für schnelle Messungen von N2O, CH4 und CO vor und die Universität Heidelberg plant Messungen reaktiver Chlor und Bromverbindungen mit Hilfe der DOAS Technik. Die wissenschaftlichen Studien, die mit den gewonnen Daten durchgeführt werden sollen, werden im Antrag umrissen. Es sind Studien zu Herkunft und Transport von Luftmassen in der UTLS, zu Transportzeitskalen und zum chemischen Partitionierung. Es sei an dieser Stelle darauf hingewiesen, dass diese wissenschaftlichen Arbeiten zwar hier umrissen werden, die Studien selbst aber aufgrund der begrenzten Personalförderung und der kurzen Laufzeit nicht Teil dieses Antrags sind. Ziel dieses Antrags ist es, die Vorbereitung und Integration der Messgeräte zu ermöglichen, die Messungen durchzuführen und die Daten für die Datenbank auszuwerten. Wir beantragen daher hier den universitären Anteil an den Missionskosten (incl. Zertifizierung der Gesamtnutzlast und der Flugkosten), die Personalmittel, Reisekosten und Verbrauchskosten für die Durchführung der Messungen.
Das Verständnis darüber, wie lichtabsorbierende atmosphärische Aerosole, insbesondere brauner Kohlenstoff (BrC-Aerosole), das Klima beeinflusst, bleibt eine zentrale Unsicherheit in der Atmosphärenforschung. Vorläufige, an einzelnen Tröpfchen von BrC-Aerosolen durchgeführte Experimente haben gezeigt, dass gängige atmosphärische Prozesse wie Aerosolverdunstung und simulierte Sonneneinstrahlung zu einer Änderung des Phasenzustands des Aerosols von flüssigen Tröpfchen zu einer semi-festen Phase führen. Diese Änderung des Phasenzustands wirkt sich auf die Bildung von Wolkentröpfchen und die nachfolgenden optischen Eigenschaften der Wolken aus (z.B. die Absorption und Streuung der Sonnenstrahlung und die Lebensdauer der Wolken). Daher zielt dieser Projektantrag darauf ab, den Einfluss des BrC-Aerosol-Phasenzustands und der photochemischen Alterung auf die mikrophysikalischen und optischen Eigenschaften von Aerosolen und Wolken zu bestimmen. Für die Experimente sollen die Einrichtungen des Instituts für Meteorologie und Klimaforschung - Atmosphärische Aerosolforschung (IMK-AAF) am Karlsruher Institut für Technologie (KIT) genutzt werden, darunter Einzelpartikelexperimente, die mit einer elektrodynamischen Waage (EDB) durchgeführt werden, sowie Aerosol-Ensemble-Messungen, die mit der Aerosol- und Wolkensimulationskammer AIDA durchgeführt werden. Zu den Hauptzielen des Projekts, das Einzelpartikelmessungen beinhaltet, gehören die Untersuchung des Phasenzustands und der Morphologie verschiedener Arten von BrC-Aerosolen über einen Bereich atmosphärisch relevanter Bedingungen; die Bestimmung des Phasenzustands von BrC-Aerosolen, wenn es mit einer anorganischen Komponente gemischt wird; und die Bestimmung des Effekts der photochemischen Alterung auf den Phasenzustand sowie die chemische Zusammensetzung und die optischen Eigenschaften von BrC-Aerosolen. Die Hauptziele des Projekts, das Aerosol-Ensemble-Messungen beinhaltet, sind die Untersuchung des Einflusses des Phasenzustands von BrC-Aerosol und der photochemischen Alterung auf die Bildung von Wolkentröpfchen sowie die Eiskeimbildung und die damit verbundenen optischen Eigenschaften von Aerosol und Wolken. Insgesamt wird dieses Projekt das Verständnis der Rolle von lichtabsorbierenden Aerosolen für das Klima verbessern.
Das hier vorgeschlagene Projekt basiert auf und ergänzt Untersuchungen die im Rahmen des DFG-Transregios 172 'Arktische Klimaveränderungen', und hier speziell dem Projekt B04 'Ship-based physical and chemical characteristics and sources of Arctic ice nucleating particles and cloud condensation nuclei', durchgeführt werden. Im Rahmen von TR 172, B04, ist es u.a. das Ziel, über schiffbasierte Messungen detaillierte Informationen hinsichtlich arktischer eisnukleierender Partikel (Anzahlkonzentration; chemische Natur, mineralisch und/oder organisch; Herkunft, lokal oder Ferntransport) zu erlangen. Diese schiffsbasierten Messungen können allerdings nur ein erster Schritt auf dem Weg zu einem besseren Verständnis von Aerosol-Wolken-Wechselwirkungen in der Arktis im allgemeinen, und der Vereisung Arktischer Wolken im Besonderen, sein. Hierzu sind u.a. Informationen aus unterschiedlichen Höhen (innerhalb der planetaren Grenzschicht und in der freien Troposphäre) erforderlich. Daher sollen die in TR 172, B04, geplanten Aktivitäten u.a. durch INP-bezogene Messungen an Bord des Forschungsflugzeuges HALO ergänzt werden. Spezifisch zielen wir auf die Bestimmung von INP-Anzahlkonzentrationen, und über Analyse der chemischen Partikelzusammensetzung auf Hinweise bzgl. der INP Herkunft / Quellen. Im Rahmen des vorliegenden Antrages werden wir uns daher auf die Entwicklung, den Test und die Zulassung eines Hochvolumenstrom-Aerosolpartikelsammlers für sub- und supermikrone Aerosolpartikel für das Forschungsflugzeug HALO konzentrieren. Das Sammlersystem wird im Wesentlichen aus einer adaptierten Version des schon existierenden (aber noch zuzulassenden) 'Micrometre Aerosol Inlet' (MAI) und einem noch zu entwickelnden Hochvolumenstrom-Filtersammler, bestehen. Die Berücksichtigung hoher Volumenströmen (Größenordnung 100 l/min) ist aufgrund der zu erwartenden niedrigen Aerosolpartikel- und INP-Konzentrationen, und dem daraus resultierenden Bedarf nach der Sammlung großer Luftvolumina erforderlich. Der erste wissenschaftliche Einsatz des entwickelten Systems soll im Rahmen der ARCTIC-HALO-Kampagne erfolgen, welche für die zweite Phase des TR 172 (2020-2023) geplant ist. Nach seiner Entwicklung, steht das Sammlersystem (Einlass und/oder Filtersammler) für sub- und supermikrone Aerosolpartikel für weitere HALO-Missionen zur Verfügung. Zur Durchführung der notwendigen Arbeiten beantragen wir Mittel für eine 75 % und eine 50% PostDoc-Stelle für jeweils 3 Jahre. Ferner beantragen wir Mittel für die Adaptierung und die Zulassung des Hochvolumenstrom-Aerosolpartikelsammlers. Alle anderen direkten Kosten werden aus dem Haushalt des TROPOS übernommen.
| Origin | Count |
|---|---|
| Bund | 342 |
| Europa | 1 |
| Land | 1 |
| Wissenschaft | 17 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 339 |
| Sammlung | 17 |
| Text | 3 |
| License | Count |
|---|---|
| geschlossen | 6 |
| offen | 352 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 285 |
| Englisch | 257 |
| Resource type | Count |
|---|---|
| Datei | 1 |
| Dokument | 1 |
| Keine | 237 |
| Webseite | 122 |
| Topic | Count |
|---|---|
| Boden | 250 |
| Lebewesen und Lebensräume | 215 |
| Luft | 350 |
| Mensch und Umwelt | 360 |
| Wasser | 250 |
| Weitere | 348 |