Objective weather types of Deutscher Wetterdienst derived from different Reanalysis and Global Climate Model simulations for the control run (1951-2000) and the projection period (2000-2100). On the one hand, the dataset is useful for evaluation of representative circulation statistics in Central Europe, on the other hand, for the analysis of future weather types due to climate change. Added temperature and precipitation data allow to study the weather type effectiveness for these important climate parameters.
Es sollen Techniken entwickelt werden um die Kopplung zwischen Atmosphäre und Ozean durch die Formation und das Brechen von Oberflächenwellen im Ozean zu quantifizieren. Diese Techniken beinhalten eine numerische Implementierung von diffusen Grenzflächenmethoden für eine thermodynamisch konsistente und voll gekoppelte Simulationen der Grenzfläche zwischen Luft und Wasser, sowie Feldexperimente zur gleichzeitigen Messung von Luftstrom, der Ozeanwellenkopplung, und der turbulenten Energiedissipation im oberen Ozean.
Der Beginn der nordhemisphärischen Vereisung und die Entwicklung kontinuierlichen Permafrostes in Eurasien zwischen dem Ende des Miozäns und dem frühen Pleistozän zählt zu den bedeutendsten klimatischen Ereignissen des Känozoikums. Der Zeitpunkt extensiver Vereisung auf den Kontinenten und des Arktischen Ozeans und damit verbundene Veränderungen der klimatischen Bedingungen bleibt bislang ungenau bestimmt.Speläotheme (sekundäre Höhlenkarbonate) stellen ein wichtiges Archiv kontinentaler Umweltbedingungen dar, welches durch besonders genaue radiometrische Altersmodelle für eine grosse Bandbreite an Paläoklimaproxies charakterisiert ist.Wir konnten erfolgreich diagenetisch unveränderte und datierbare Proben aus Zentral- und Nordsibirien identifizieren und schlagen eine Multi-proxy-Studie an U/Pb-datierten Stalagmiten vor. Diese Studie wird Einblicke in die thermalen und hydrologischen Bedingungen zwischen 10.3 Ma und 8 Ma liefern. Wasser aus in den Speläothemen eingeschlossenen Fluidinklusionen wird auf seine Isotopenzusammensetzung hin untersucht. Zudem wird die in den Speläothemen beobachtete Lamination genutzt, um die Saisonalität während des Torton und Messiniums zu rekonstruieren. Wir suchen finanzielle Unterstützung für die parallele Analyse der Isotopie des Fluidinklusionswassers, der Sauerstoff- und Kohlenstoffisotopie des Karbonates, und der Elementkonzentration in den Speläothemen. Diese Kombination geochemischer Methoden wird Einblicke in regionale Umweltbedingungen, die Niederschlagshistorie und Temperaturen während des Miozäns und vor der Entwicklung kontinuierlichen Permafrostes geben. Zusätzliche Proben werden genutzt, um den Wechsel vom eisfreien zu einem durch Permafrost charakterisierten Sibirien zeitlich genauer einzugrenzen.Das vorgeschlagene Projekt wird unser Wissen zur atmosphärischen Zirkulation, und daran geknüpfter Veränderungen des Feuchte- und Temperaturregimes während eines saisonal eisfreien Arktischen Ozeans erweitern.
Nebel als meteorologisches Phänomen kann große Auswirkungen für die Wirtschaft, aber auch auf die persönliche Sicherheit haben, indem er die Sichtweite in der atmosphärischen Grenzschicht reduziert. Wirtschaftliche Verluste für den Luft-, See-, und Landvekehr als Folge von Nebel sind dabei vergleichbar zu Verlusten durch Winterstürme. Trotz der Fülle an Literatur über Nebel bleibt unser Verständnis der physikalischen Prozesse die zu Nebelbildung und seiner Mikrophysik beitragen unvollständig. Dies ist dadurch begründet, dass mehrere komplexe Prozesse, wie z.B. Strahlungsabkühlung, turbulentes Durchmischen und die mikrophysikalischen Prozesse nichtlinear miteinander interagieren. Zusätzlich verkomplizieren Bodenheterogenitäten bezüglich Vegetation und Bodeneigenschaften die Vorhersagbarkeit von Nebel. Die Fähigkeit von numerischen Wettervorhersagemodellen Nebel vorherzusagen ist in Folge dessen noch dürftig. In diesem Projekt werden hochaufgelöste Grobstruktursimulationen (Large-Eddy Simulationen, LES) verwendet um den Effekt von Turbulenz auf nächtliche Strahlungsnebel zu untersuchen. Das LES Modell PALM wird dazu mit einer sehr hohen Auflösung von etwa 1 m verwendet. Dabei werden in den LES sowohl ein Euler'sches Bulk Wolkenphysikschema, als auch ein Lagrange'sches Partikelmodell, welches die explizite Behandlung von Aerosolen und Nebeltropfen erlaubt, verwendet. Dieser innovative Ansatz erlaubt die Nebeltropfen-Turbulenz-Interaktion zum ersten Mal mit LES zu untersuchen. Das Ziel dieser Studie ist es, einen umfassenden Überblick über die Schlüsselparameter zu erhalten, welche den Lebenszyklus sowie die dreidimensionale Makro- und Mikrostruktur von Strahlungsnebel bestimmen. Weiterhin wird der Effekt von nächtlichem Strahlungsnebel auf die morgendliche Übergangszeit und die Grenzschicht am Tag untersucht. Der Effekt von Bodenheterogenitäten auf nächtlichen Strahlungsnebel wird mit Hilfe von aufgeprägten regelmäßigen idealisierten und unregelmäßigen beobachteten Bodenheterogenitäten in den LES untersucht. Die LES Daten werden anhand von Messdaten der meteorologischen Messstandorte in Cabauw (Niederlande) und Lindenberg (Deutschland) validiert und mit Simulationsdaten des eindimensionalen Grenzschicht- und Nebelvorhersagemodells PAFOG (Universität Bonn) verglichen.
Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.
Die Dynamik der Mesosphäre und unteren Thermosphäre wird zu großen Teilen von solaren Gezeiten dominiert. Eine davon ist die 6-stündige Gezeit (quarterdiurnal tide, QDT), die unter anderem in sporadischen E-Schichten und mit Hilfe von Radar- und Satellitenmessungen beobachtet wurde. Während allerdings die ganztägigen, halbtägigen, und auch 8-stündigen Gezeiten vergleichsweise gut dokumentiert und untersucht sind, sind Beobachtungen und Analysen der - weniger starken aber nichtsdestoweniger als ein Bestandteil der dynamischen Prozesse in ihrer Gesamtheit zu sehenden - 6-stündigen Komponente bislang selten. Um diese Lücke zu schließen, werden innerhalb des QuarTA-Projekts die 6-stündigen Gezeiten und ihre Antriebsmechanismen im Detail untersucht. Die Klimatologie der Gezeiten wir mit Hilfe von Meteorradarwindmessungen, vor allem der Langzeitreihe in Collm, ergänzt durch weitere Radarmessungen, erstellt. Die globale Verteilung der Gezeitenamplituden wird mit Hilfe von Ionosonden- und GPS-Radiookkultationsmessungen sporadischer E-Schichten untersucht, und die Beobachtungen in Verbindung mit Windscherungen aus Radarmessungen und numerischen Simulationen interpretiert. Um Einblick in die hauptsächlichen Anregungsmechanismen der 6-stündigen Gezeiten zu erhalten, wird ein nichtlineares mechanistisches Zirkulationsmodell, welches auch die Anregung durch Absorption solarer Strahlung enthält, verwendet. Hierbei wird, einzeln und in Kombination, die Anregung der 6-stündigen Gezeit durch Absorption solarer Strahlung und durch nichtlineare Wechselwirkung von Gezeiten in den Simulationen ausgeschaltet, so dass die Hauptantriebsquelle erkennbar wird. Innerhalb des QuarTA-Projekts wird daher, durch die Kombination von Beobachtungen und Modellsimulationen, ein vertiefter Einblick in die Klimatologie und die Anregung der 6-stündigen Gezeiten ermöglicht, der bislang noch nicht in ausreichendem Maße gegeben ist.
Der weit nach Süden vordringende Keil Südamerikas ist weltweit die einzige nennenswerte Landmasse zwischen ca. 45° und 60°Süd. Das senkrecht zur Hauptwindrichtung verlaufende Andengebirge stellt eine wirksame Barriere für die Westwinddrift dar und hat einen bestimmenden Einfluss auf die hemisphärische Zirkulation sowie das lokale Wettergeschehen. Das Gebirge zwingt die maritimen Luftmassen zum Aufsteigen, was häufig mit intensiven Steigungsregen auf der Luvseite der Anden einhergeht. Durch die Überströmung des Gebirges kommt es zur Ausbildung von speziellen Prozessgefügen in der atmosphärischen Strömung sowohl auf der Meso- als auch regionaler Skala. Der damit einhergehende Transport und Austausch von Energie und Masse beeinflusst maßgeblich die Entstehung und den Ausfall von Hydrometeoren. Trotz der starken Wechselwirkung zwischen Strömung, Topographie und Niederschlag wurde in Patagonien darüber bisher nur wenig geforscht. Das vorgeschlagene Forschungsvorhaben leistet daher einen Beitrag zum Verständnis der Wechselwirkung zwischen dynamischen Prozessen und der räumlichen und zeitlichen Variabilität von Niederschlag in dieser Region. Ziel des Projektes ist die Quantifizierung wichtiger Prozesse die neue Aufschlüsse über die relevanten Mechanismen liefern soll. Anhand von hochauflösenden numerischen Simulationen werden an Einzelfallstudien die dynamischen und thermodynamischen Eigenschaften der atmosphärischen Strömung im Detail analysiert. Begleitende Sensitivitätsstudien mit vereinfachten analytischen Modelle werden zudem Aussagen zu den Auswirkungen der atmosphärischen Variabilität auf die Niederschlagsverteilung liefern. Das aus der Studie gewonnene Prozessverständnis ist eine wichtige Grundlage für weiterführende Forschungsarbeiten im Bereich der Hydrologie, Glaziologie und Ökologie.
Der Klimawandel stellt eines der größten Probleme unserer Gesellschaft der nächsten Jahrzehnte dar. Verlässliche Klimaprognosen sind in diesem Zusammenhang von enormer politischer und sozioökonomischer Relevanz. Genaue Vorhersagen sind jedoch derzeit durch ein noch begrenztes Verständnis wichtiger atmosphärischer Parameter, wie zum Beispiel der chemischen Zusammensetzung der Atmosphäre, der Aerosolbelastung, den Zirruswolken und Zirkulationsrückkopplungen in der oberen Troposphäre/unteren Stratosphäre (OTUS) nur sehr eingeschränkt möglich. Insbesondere unser Wissen über die wichtigsten klimarelevanten atmosphärischen Bestandteile wie z.B. der Wasserdampf, Eis- und Aerosolpartikel ist unvollständig.Kürzlich wurden in der OTUS starke Partikelneubildungsereignisse beobachtet, in einer Region, in der Eisbildung und tiefe Konvektion vorherrschen. Es scheint, dass die Region überhalb troposphärischen Wolken ein günstiger Ort für die Bildung neuer Teilchen ist. Der zugrunde liegende Bildungsmechanismus ist jedoch nur sehr qualitativ verstanden. Diese Partikelneubildungsereignisse sind möglicherweise mit der Bildung von kondensierbaren Dämpfen in großer Höhe verbunden und nicht nur mit dem Aufsteigen verschmutzter Luftmassen, die diese enthalten. Partikelneubildung erfordert somit eine Quelle von atmosphärischen Oxidationsmitteln, die die Flüchtigkeit von Vorläufergasen reduzieren, um Partikel im unteren Nanometerbereich durch Gas-zu-Partikel-Umwandlung zu bilden. Diese Oxidationsmittelquelle muss stark genug sein, um mit den durch die bereits vorhandenen Partikel induzierten Kondensationssenken zu konkurrieren.Wir vermuten, dass die Bildung von Eispartikeln durch das Gefrieren von unterkühltem flüssigem Wasser, gefolgt von Wasserkondensation, Quellen von H2O2 oder HOx-Radikalen in der OTUS sind, die zur Partikelneubildung führen Es ist bekannt, dass das Gefrieren wässriger Lösungen elektrische Felder erzeugt (sogenannter Workman-Reynolds-Effekt). In ähnlicher Weise wurde kürzlich gezeigt, dass die bevorzugte Orientierung der Wassermoleküle an der Grenzfläche zwischen Luft und Wasser ein elektrisches Grenzflächenpotential induziert. Solche lokalisierten elektrischen Felder können elektrochemische Prozesse in oder auf den Eispartikeln induzieren, die H2O2 oder HOx produzieren und erheblich zur Oxidationskapazität der Atmosphäre beitragen, wodurch die Bildung neuer Partikel und Wolken und schließlich der Strahlungshaushalt und das Klima der Erde beeinflusst werden. Diese Hypothese wird durch einige sehr aktuelle aktuelle Messungen gestützt.Dieses Projekt hat zum Ziel, diese Oxidationsprozesse zu charakterisieren und quantifizieren.
Es gibt konzeptionelle Gründe, Interesse an effizienten Atmosphärenmodellen zu haben, weil diese tiefere Einblicke in der Atmosphärendynamik erlauben, z.B. in Hinsicht auf Klimavariabilität. Solche Modelle sind aber auch ein nützliches Werkzeug bei Untersuchungen der Klimasensitivität oder des Paläoklimas, wo sehr viele oder sehr lange Integrationen benötigt werden und somit die Recheneffizienz eine wichtige Rolle spielt. Besonders bei diesen Anwendungen muss darauf Wert gelegt werden, dass die unvermeidlichen Subgitterskalenparametrisierungen möglichst viel auf ersten Prinzipien basieren. Die stochastische Modenreduktion (SMR) bietet hier eine Strategie, bei der ein großer Teil der Parametrisierung auf Papier hergeleitet wird, wenn bestimmte Terme, die Wechselwirkungen zwischen nichtaufgelösten Moden beschreiben, durch einen einfachen stochastischen Prozess modelliert werden können. In früheren Anwendungen der SMR wurden die reduzierten Atmosphärenmodelle immer im Spektralraum formuliert. Somit koppelt die dazugehörige globale subgitterskalige Parametrisierung alle aufgelösten Moden miteinander. Letztes begrenzt die Anwendbarkeit der Methode auf niedrigdimensionale Systeme. Um dieses Problem zu umgehen, ist unlängst eine Implementierung der SMR für gitterbasierte Raumdiskretisierungen entwickelt worden, die in einer lokalen Parametrisierung resultiert. Diese Strategie wurde bis jetzt nur im Rahmen der Burgersgleichung getestet. Das vorgeschlagene Projekt soll signifikant dazu beitragen, die lokale SMR auf realistische Modelle der Atmosphärendynamik anzuwenden. Dabei sollen subgitterskalige Parametrisierungen für die barotrope Vorticitygleichung und für die Flachwassergleichungen auf der f-Ebene konstruiert werden. Beide Modelle beinhalten wesentliche Eigenschaften, die berücksichtigt werden müssen, wenn man die lokale SMR auf die allgemeinen Gleichungen für die Beschreibung der Atmosphärendynamik anwenden will. Die neuen subgitterskaligen Parametrisierungen sollen folgende Kriterien erfüllen: i) sie sollen systematisch aus den Modellgleichungen unter einer relativ kleinen Anzahl von Grundannahmen hergeleitet werden ii) sie sollen so konsistent wie möglich mit den Erhaltungseigenschaften der Gleichungen sein und iii) sie sollen eine minimale (falls möglich gar keine) Anpassung an Daten der aufgelösten Skalen verwenden. In der Klimamodellierung existiert ein großer Bedarf an physikalisch basierten und auflösungsunabhängig formulierten stochastischen Parametrisierungen. Die Entwicklung von subgitterskaligen Parametrisierungen mittels der SMR, wie in diesem Projekt vorgeschlagen, wird zu solchen Verfahren beitragen. Die Turbulenzparametrisierung in grob auflösenden Simulationen ist ein anderes Feld, das von einer solchen Entwicklung profitieren kann.
Das Thermosphären/Ionosphären (T/I) System wird sowohl von oben (solar, geomagnetisch), als auch von unten stark beeinflusst. Einer der wichtigsten Einflüsse von unten sind Wellen (z.B. planetare Wellen, Gezeiten, oder Schwerewellen), die größtenteils in der Troposphäre bzw. an der Tropopause angeregt werden. Die vertikale Ausbreitung der Wellen bewirkt hierbei eine vertikale Kopplung der T/I mit der unteren und mittleren Atmosphäre. Vor allem der Einfluss von Schwerewellen (GW) ist hierbei weitestgehend unverstanden. Einer der Gründe hierfür ist, dass GW sehr kleinskalig sind (einige zehn bis zu wenigen tausend km) - eine Herausforderung, sowohl für Beobachtungen, als auch für Modelle. Wir werden GW Verteilungen in der T/I aus verschiedenen in situ Satelliten-Datensätzen ableiten (z.B., sowohl in Neutral-, als auch in Elektronendichten). Hierfür werden Datensätze der Satelliten(-konstellationen) SWARM, CHAMP, GOCE und GRACE verwendet werden. Es sollen charakteristische globale Verteilungen bestimmt, und die wichtigsten zeitlichen Variationen (z.B. Jahresgang, Halbjahresgang und solarer Zyklus) untersucht werden. Diese GW Verteilungen werden dann mit von den Satelliteninstrumenten HIRDLS und SABER gemessenen Datensätzen (GW Varianzen, GW Impulsflüssen und Windbeschleunigungen durch GW) in der Stratosphäre und Mesosphäre verglichen. Einige Datensätze (CHAMP, GRACE, SABER) sind mehr als 10 Jahre lang. Räumliche und zeitliche Korrelationen zwischen den GW Verteilungen in der T/I (250-500km Höhe) und den GW Verteilungen in der mittleren Atmosphäre (Stratosphäre und Mesosphäre) für den gesamten Höhenbereich 20-100km werden untersucht werden. Diese Korrelationen sollen Aufschluss darüber geben, welche Höhenbereiche und Regionen in der mittleren Atmosphäre den stärksten Einfluss auf die GW Verteilung in der T/I haben. Insbesondere Windbeschleunigungen durch GW, beobachtet von HIRDLS und SABER, können zusätzliche Hinweise darauf geben, ob Sekundär-GW, die mutmaßlich in Gebieten starker GW Dissipation angeregt werden, in entscheidendem Maße zur globalen GW Verteilung in der T/I beitragen. Zusätzlich wird der Versuch unternommen, sowohl GW Impulsfluss, als auch Windbeschleunigungen durch GW aus den Messungen in der T/I abzuleiten. Solche Datensätze sind von besonderem Interesse für einen direkten Vergleich mit von globalen Zirkulationsmodellen simulierten GW Verteilungen in der T/I. Diese werden für eine konsistente Simulation der T/I in Zirkulationsmodellen (GCM) benötigt, stellen dort aber auch eine Hauptunsicherheit dar, da eine Validierung der modellierten GW durch Messungen fehlt.
| Origin | Count |
|---|---|
| Bund | 214 |
| Land | 3 |
| Wissenschaft | 11 |
| Type | Count |
|---|---|
| Daten und Messstellen | 9 |
| Förderprogramm | 211 |
| unbekannt | 5 |
| License | Count |
|---|---|
| offen | 221 |
| unbekannt | 4 |
| Language | Count |
|---|---|
| Deutsch | 157 |
| Englisch | 144 |
| Resource type | Count |
|---|---|
| Archiv | 6 |
| Datei | 3 |
| Dokument | 1 |
| Keine | 132 |
| Webseite | 84 |
| Topic | Count |
|---|---|
| Boden | 172 |
| Lebewesen und Lebensräume | 160 |
| Luft | 225 |
| Mensch und Umwelt | 225 |
| Wasser | 181 |
| Weitere | 223 |