API src

Found 226 results.

Related terms

Transportwege von Feuchte und Wasserdampfisotopologe

Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.

6-stündige Gezeiten in den mittleren Atmosphäre (QuarTA)

Die Dynamik der Mesosphäre und unteren Thermosphäre wird zu großen Teilen von solaren Gezeiten dominiert. Eine davon ist die 6-stündige Gezeit (quarterdiurnal tide, QDT), die unter anderem in sporadischen E-Schichten und mit Hilfe von Radar- und Satellitenmessungen beobachtet wurde. Während allerdings die ganztägigen, halbtägigen, und auch 8-stündigen Gezeiten vergleichsweise gut dokumentiert und untersucht sind, sind Beobachtungen und Analysen der - weniger starken aber nichtsdestoweniger als ein Bestandteil der dynamischen Prozesse in ihrer Gesamtheit zu sehenden - 6-stündigen Komponente bislang selten. Um diese Lücke zu schließen, werden innerhalb des QuarTA-Projekts die 6-stündigen Gezeiten und ihre Antriebsmechanismen im Detail untersucht. Die Klimatologie der Gezeiten wir mit Hilfe von Meteorradarwindmessungen, vor allem der Langzeitreihe in Collm, ergänzt durch weitere Radarmessungen, erstellt. Die globale Verteilung der Gezeitenamplituden wird mit Hilfe von Ionosonden- und GPS-Radiookkultationsmessungen sporadischer E-Schichten untersucht, und die Beobachtungen in Verbindung mit Windscherungen aus Radarmessungen und numerischen Simulationen interpretiert. Um Einblick in die hauptsächlichen Anregungsmechanismen der 6-stündigen Gezeiten zu erhalten, wird ein nichtlineares mechanistisches Zirkulationsmodell, welches auch die Anregung durch Absorption solarer Strahlung enthält, verwendet. Hierbei wird, einzeln und in Kombination, die Anregung der 6-stündigen Gezeit durch Absorption solarer Strahlung und durch nichtlineare Wechselwirkung von Gezeiten in den Simulationen ausgeschaltet, so dass die Hauptantriebsquelle erkennbar wird. Innerhalb des QuarTA-Projekts wird daher, durch die Kombination von Beobachtungen und Modellsimulationen, ein vertiefter Einblick in die Klimatologie und die Anregung der 6-stündigen Gezeiten ermöglicht, der bislang noch nicht in ausreichendem Maße gegeben ist.

Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Einfluss von Schwerewellen auf Eiswolken in der Tropopausenregion (GW-ICE)

Schwerewellen stellen eine wichtige Komponente im Atmosphärensystem dar. Sie beeinflussen den vertikalen Impuls- und Energietransport und tragen damit entscheidend für verschiedene Zirkulationsmuster bei. Schwerewellen entstehen hauptsächlich in der Troposphäre und propagieren dann durch die Tropopausen Region in die höhere Atmosphäre. Dabei werden ihre Eigenschaften zum Teil verändert. Außerdem können sie durch die induzierten Vertikalgeschwindigkeiten einen großen Einfluss auf die Bildung und Entwicklung von Eiswolken in der Tropopausen Region haben. In diesem Projekt soll die Interaktion von Schwerewellen und Eiswolken in der Tropopausen Region untersucht werden. Dabei soll das in der ersten Phase von MS-GWaves entwickelte WKB-Modell durch Wolkenphysik erweitert werden und dann zur Untersuchung der Wechselwirkung Wellen-Eiswolken benutzt werden. Zusätzlich werden schwerewelleninduzierte Eiswolken mit Hilfe eines Large Eddy Simulation (LES) Modells untersucht. Mögliche Rückkopplungen der Eiswolken auf die Tropopausen Dynamik durch diabatische Effekte werden ebenfalls untersucht. Die Strahlungseffekt der simulierten Eiswolken (WKB Modell oder LES) wird mit Hilfe eines Strahlungstransportmodells abgeschätzt. Damit wird es möglich sein, den Einfluss der Schwerewellen auf Eiswolken und deren Strahlungsbilanz zu untersuchen, mögliche Wechselwirkungen mit der Tropopause abzuschätzen, und genauere Abschätzungen für die Energiebilanz der schwerewelleninduzierten Eiswolken anzugeben.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Untersuchungen zum Einfluss von geomagnetischer Aktivität auf Zusammensetzung und Zirkulation der Thermosphäre und deren Kopplung in die mittlere und obere Atmosphäre

Neuere Forschungsergebnisse legen nahe, dass Ozon in der mittleren Atmosphäre (10 bis 90 km) von der oberen Atmosphäre beeinflusst werden kann, durch Absinken von NOx (N, NO, NO2) aus Quellregionen in der unteren Thermosphäre (90 bis 120 km) im polaren Winter. Da Ozon eine der wesentlichen strahlungsaktiven Substanzen in der mittleren Atmosphäre ist, können Änderungen im Ozonbudget Temperaturen und Zirkulation der Atmosphäre bis zum Erdboden herunter beeinflussen. Da die Stärke dieser thermosphärischen Einträge mit der geomagnetischen Aktivität variiert, stellen diese winterlichen NOx-Zunahmen einen möglichen Mechanismus der Sonne-Klimakopplung dar. Derzeit sind gängige Chemie-Klimamodelle aber nicht in der Lage, die Quellregion des NOx in der unteren Thermosphäre und den Transport in die mittlere Atmosphäre im polaren Winter realistisch zu simulieren. Um diese Kopplung von der oberen Atmosphäre in die mittlere und untere Atmosphäre in den Modellen realistisch darzustellen, ist eine gute Darstellung der primären Prozesse notwendig: Änderungen der chemischen Zusammensetzung durch präzipitierende Elektronen aus der Aurora, Joule-Heizen, und das daraus folgende Kühlen im infraroten Spektralbereich sowie die Anregung von Schwerewellen. Da in der unteren Thermosphäre angeregte Schwerewellen sich nach oben ausbreiten, kann der letztgenannte Prozess auch einen Einfluss auf die Umgebung von Satelliten in niedrigen Orbits haben. In dem hier vorgeschlagenen Projekt werden wir das gekoppelte Chemie-Klimamodell xEMAC verwenden, welches in seiner derzeitigen Konfiguration bis in die untere Thermosphäre (170 km) reicht, um den Einfluss der verschiedenen mit geomagnetischer Aktivität verbundenen Prozesse auf den Zustand der unteren Thermosphäre, und deren Darstellung in Chemie-Klimamodellen, zu untersuchen. Dazu wollen wir in Zusammenarbeit mit unserem Kooperationspartner an der Jacobs-Universität Bremen die zeitliche und räumliche Variation von Joule-Heizen und Teilchenniederschlag im Modell durch Beobachtungen des Swarm-Instrumentes vorgeben. Sowohl geomagnetisch ruhige als auch sehr aktive Zeiten sollen untersucht werden. Das Modell wird im Rahmen dieses Projektes weiter nach oben erweitert werden, um voraussichtlich in der zweiten Phase des SPPs auch den Einfluss auf die Umgebung von Satelliten zu untersuchen. Der modellierte Einfluss von geomagnetischer Aktivität soll durch adäquate Beobachtungen validiert werden, und Modellergebnisse werden analysiert, um den Einfluss von Joule-Heizen und Teilchenniederschlag auf die chemische Zusammensetzung, Temperatur, und Zirkulation der unteren Thermosphäre sowie deren Kopplung einerseits in die untere und mittlere Atmosphäre, andererseits in die obere Atmosphäre, zu untersuchen. Ziel dieses Projektes ist es, das Verständnis von Sonne-Klimakopplung und die Darstellung der beteiligten Prozesse in Chemie-Klimamodellen zu verbessern, sowie geomagnetische Einflüsse auf die Umgebung von Satelliten zu untersuchen.

Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Mehrskalendynamik von Schwerewellen (Koordinatorantrag)

Eine Verlässlichkeit von Vorhersagen des Klimawandels ist nur dann gegeben, wenn die dabei verwendeten numerischen Modelle das gegenwärtige Klima aus den richtigen Gründen korrekt simulieren. Offene Fragen betreffen z.B. dynamische Aspekte wie die Vorhersage einer Verstärkung der Brewer-Dobson-Zirkulation, den dynamischen Einfluss der Stratosphäre auf die Troposphäre und ein Überschießen in der Erholung der Ozonschicht. Eine besonders große Unsicherheit stellen in diesem Zusammenhang interne Schwerewellen (SW) dar, die durch gegenwärtige Chemie-Klimamodelle nicht aufgelöst werden. Ihr Einfluss muss durch Parametrisierungen erfasst werden, die heutzutage stark vereinfacht sind. Die Forschergruppe (FG) wird explizite Modelle für die Anregung, Ausbreitung und Dissipation von SW formulieren, die mathematisch und physikalisch konsistent sind. Diese werden anhand von prozessauflösenden Simulationen und Messungen validiert. Spezielle Beachtung werden die Mehrskalenwechselwirkungen von SW mit Turbulenz und der balancierten Strömung finden, sowie die Wechselwirkung von kleinskaligen, nichtaufgelösten SW mit großskaligen, aufgelösten SW. Die entwickelten Modelle werden in eine einheitliche SW-Parametrisierung münden, von den Quellen bis zur Dissipation. Sowohl die SW-Parametrisierung als auch globale SW-erlaubende und lokale SW-auflösende Simulationen sollen verwendet werden, um die Unsicherheiten der SW-Effekte auf die atmosphärische Zirkulation, auf großskalige dynamische Prozesse und auf den Klimawandel einzuschränken. Die Untersuchungen der Wellenprozesse selbst als auch ihrer globalen Auswirkungen werden auf der engen interdisziplinären Wechselwirkung zwischen Mathematik, Theorie, hochauflösender numerischer Modellierung und Messungen basieren. Diese Kombination begründet sich darin, dass nur Messungen den direkten Bezug zur Realität haben, nur Theorie uns verstehen lehrt, und nur hochauflösende Modellierung eine detaillierte Diagnose erlaubt. Ein dergleichen umfassendes Programm übersteigt bei weitem die Möglichkeiten einzelner Institute oder ihrer bilateralen Zusammenarbeit. Es erfordert hingegen eine FG, in der experimentelle, numerische, theoretische und mathematische Erfahrungen zusammengeführt werden. Die langfristigen Ergebnisse der FG sollen sein:- Eine erweiterte und vertiefte Kenntnis der räumlichen, zeitlichen und spektralen Verteilung von SW in der Atmosphäre.- Ein wesentlich verbessertes Verständnis der Prozesse, welche die korrespondierende SW-Dynamik erzeugen und kontrollieren.- Darauf aufbauend eine Verbesserung der Belastbarkeit und Vollständigkeit der Parametrisierung von SW als Subgitterskalenphänomen, Quellprozesse, SW-Ausbreitung, die Wechselwirkung von SW mit der aufgelösten Strömung und SW-Dissipation betreffend.- Als Ergebnis ein verlässlicheres Verhalten von SW-Parametrisierungen unter anomalen Bedingungen, z.B. dem Klimawandel.

Aerosol-Wolken-Niederschlags-Wechselwirkungen für regionale Emissionen

Aerosol-Wolken-Wechselwirkungen stellen einen der wesentlichen Unsicherheitsfaktoren bei Verständnis und Quantifizierung der geographischen Verteilung von Wolken- und Niederschlagseigenschaften, aber auch des Strahlungsantriebs des globalen Klimawandels dar. Die grundlegende Idee des Projekts ist es, regional unterschiedliche Trends in anthropogenenen Emissionen von Aerosolen zu nutzen, um deren Einfluss auf Trends in Wolken-, Niederschlags- und Strahlungsgrößen zu bestimmen. Hierzu sollen verschiedene Szenarien in Multi-Klimamodell-Ensembles ('historische' Simulationen mit allen Strahlungsantrieben und 'Aerosol'-Simulationen mit allen Antrieben außer anthropogenem Aerosol) analysiert werden und mit Beobachtungsdaten verglichen werden. Konkret werden vier Fragen untersucht:(i) Welche Beziehung besteht zwischen regionalen Trends in Aerosolemissionen und Wolken-Strahlungs-Effekten? - Diese Studien analysieren Simulationen aus dem Multi-Modell-Ensemble.(ii) Wie erfolgreich reproduzieren die Modelle beobachtete Trends? Hier werden die Klimamodelle mit Beobachtungsdaten verglichen.(iii) Welchen Einfluss haben Emissionstrends für Aerosole und resultierende Strahlungsantriebe auf die atmosphärische Zirkulation? Simulationen mit dem Aerosol-Klima-Modell ECHAM6-HAM2 sollen für drei Zeitscheiben durchgeführt und analysiert werden.(iv) Welche Rolle spielen Emissionstrends für Änderungen in Extremniederschlägen in Südost-Asien? - Mit speziellen Simulationen sollen die verschiedenen Hypothesen getestet werden.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Luftmassenherkunft in der unteren Stratosphäre: HALO Messungen und CLaMS Simulationen (AMOS)

Direkte Transportwege von der Troposphäre in die untere Stratosphäre von Wasserdampf und troposphärischen Spurengasen(z.B. ozonzerstörender Substanzen, wie beispielsweise sehr kurzlebige halogenierte Spurenstoffe)beeinflussen die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre außerhalb der Tropen (ExUTLS). Sogar relativ kleine Änderungen in Ozon und Wasserdampf in dieser Region, haben große Auswirkungen auf das Klima an der Erdoberfläche. Verschiedene direkte Transportwege werden derzeit diskutiert, wie z. B. quasi-horizontaler Transport aus der tropischen Tropopausen Region, horizontaler Transport aus dem Gebieten des asiatischen Monsuns und durch Konvektion induzierte Einträge. Jedoch ist unser derzeitiges Verständnis für diese Transportprozesse und ihre relativen Beiträge unvollständig. Im Rahmen unseres Projekts AMOS, möchten wir die zugrunde liegenden Transportprozesse für verschiedene vergangene (TACTS/ESMVal) und zukünftige HALO-Kampagnen (PGS, WISE) identifizieren und quantifizieren unter Berücksichtigung ihrer jahreszeitlichen und jährlichen Variabilität. Der Schwerpunkt unseres Projekts ist die WISE-Kampagne, die Transportvorgänge, die die chemische Zusammensetzung in der ExUTLS bestimmen, untersuchen wird. Im Rahmen unseres Projekts werden HALO Messungen mit mehrere (Kurz- und Langzeit-) Simulationen mit dem Lagrangen Modell CLaMS kombiniert. Die Implementierung von künstlichen Markern in CLaMS, mit denen man die Herkunft der Luftmassen bestimmen kann, zusammen mit hochaufgelösten HALO-Messungen von verschiedenen Kampagnen ist ein einzigartiges Werkzeug, um die verschiedenen Transportwege und Mischungsprozesse zu identifizieren. Im Rahmen von AMOS können deshalb die Auswirkungen dieser verschiedenen Transportprozesse auf die chemischen Zusammensetzung der unteren Stratosphäre quantifiziert werden.

Sonderforschungsbereich Transregio 165 (SFB TRR): Wellen, Wolken, Wetter; Waves to Weather - A Transregional Collaborative Research Center, Teilprojekt A06: Darstellung von Vorhersageunsicherheit durch stochastische Parameterisierungen

Eine Hauptquelle der Vorhersageunsicherheit liegt in der Auslösung von Konvektion durch bodennahe Prozesse wie Grenzschichtturbulenz oder Strömung über Orographie. Für derlei Prozesse wird eine stochastische Beschreibung weiterentwickelt und implementiert. Die erweiterte Parameterisierung wird für unterschiedliche Wetterlagen mit Augenmerk auf die Charakteristika des Fehlerwachstums, die Wechselwirkung mit der großskaligen Strömung und der Güte von Ensemble-Vorhersage getestet. Die relative Bedeutung einzelner Prozesse und deren Wechselwirkung wird untersucht.

Wie prägen kohärente Luftströmungen den Einfluss des Golfstroms auf die großskalige atmosphärische Zirkulation der mittleren Breiten?

Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.

oWLK-GCM objective weather types derived from General Circulation Models (Reanalysis data and Global Climate Model Simulations)

Objective weather types of Deutscher Wetterdienst derived from different Reanalysis and Global Climate Model simulations for the control run (1951-2000) and the projection period (2000-2100). On the one hand, the dataset is useful for evaluation of representative circulation statistics in Central Europe, on the other hand, for the analysis of future weather types due to climate change. Added temperature and precipitation data allow to study the weather type effectiveness for these important climate parameters.

1 2 3 4 521 22 23