API src

Found 319 results.

Untersuchung des Phasenzustands und der photochemischen Alterung von braunem Kohlenstoff und deren Auswirkungen auf die mikrophysikalischen und optischen Eigenschaften von Aerosolen und Wolken

Das Verständnis darüber, wie lichtabsorbierende atmosphärische Aerosole, insbesondere brauner Kohlenstoff (BrC-Aerosole), das Klima beeinflusst, bleibt eine zentrale Unsicherheit in der Atmosphärenforschung. Vorläufige, an einzelnen Tröpfchen von BrC-Aerosolen durchgeführte Experimente haben gezeigt, dass gängige atmosphärische Prozesse wie Aerosolverdunstung und simulierte Sonneneinstrahlung zu einer Änderung des Phasenzustands des Aerosols von flüssigen Tröpfchen zu einer semi-festen Phase führen. Diese Änderung des Phasenzustands wirkt sich auf die Bildung von Wolkentröpfchen und die nachfolgenden optischen Eigenschaften der Wolken aus (z.B. die Absorption und Streuung der Sonnenstrahlung und die Lebensdauer der Wolken). Daher zielt dieser Projektantrag darauf ab, den Einfluss des BrC-Aerosol-Phasenzustands und der photochemischen Alterung auf die mikrophysikalischen und optischen Eigenschaften von Aerosolen und Wolken zu bestimmen. Für die Experimente sollen die Einrichtungen des Instituts für Meteorologie und Klimaforschung - Atmosphärische Aerosolforschung (IMK-AAF) am Karlsruher Institut für Technologie (KIT) genutzt werden, darunter Einzelpartikelexperimente, die mit einer elektrodynamischen Waage (EDB) durchgeführt werden, sowie Aerosol-Ensemble-Messungen, die mit der Aerosol- und Wolkensimulationskammer AIDA durchgeführt werden. Zu den Hauptzielen des Projekts, das Einzelpartikelmessungen beinhaltet, gehören die Untersuchung des Phasenzustands und der Morphologie verschiedener Arten von BrC-Aerosolen über einen Bereich atmosphärisch relevanter Bedingungen; die Bestimmung des Phasenzustands von BrC-Aerosolen, wenn es mit einer anorganischen Komponente gemischt wird; und die Bestimmung des Effekts der photochemischen Alterung auf den Phasenzustand sowie die chemische Zusammensetzung und die optischen Eigenschaften von BrC-Aerosolen. Die Hauptziele des Projekts, das Aerosol-Ensemble-Messungen beinhaltet, sind die Untersuchung des Einflusses des Phasenzustands von BrC-Aerosol und der photochemischen Alterung auf die Bildung von Wolkentröpfchen sowie die Eiskeimbildung und die damit verbundenen optischen Eigenschaften von Aerosol und Wolken. Insgesamt wird dieses Projekt das Verständnis der Rolle von lichtabsorbierenden Aerosolen für das Klima verbessern.

Turbulenzinteraktionen in der atmosphärischen Grenzschicht: Ein skalenübergreifender Ansatz zur Aufklärung oberflächennaher Austauschprozesse

Die Atmosphäre und die Vegetation der Erdoberfläche beeinflussen sich gegenseitig durch bidirektionale Austauschprozesse. Modelle zur Wetter- und Klimavorhersage basieren auf einem mechanistischen Verständnis dieser Interaktionen. Die Vorhersagen und die grundlegenden Theorien funktionieren allerdings nur im Falle einer gut durchmischten (turbulenten) atmosphärischen Grenzschicht. Wenn jedoch stabile atmosphärische Bedingungen vorherrschen, wie typischerweise nachts der Fall, dann sind die bisherigen Theorien nicht ausreichend, um zuverlässige Vorhersagen zu treffen. Um oberflächennahe turbulente Austauschprozesse während stabiler atmosphärischer Schichtung mechanistisch zu verstehen und neue Theorien zu entwickeln, sind zunächst neuartige Mess- und Analyse-Methoden notwendig. Ziel dieses Projekts ist die Beobachtung und Charakterisierung von oberflächennahen Prozessen in der stabilen atmosphärischen Grenzschicht durch eine neuartige Kombination von Mess- und Analysemethoden. Mit einem hochauflösenden in-situ Messkubus (20x20x5m), der sich innerhalb eines größeren mittels Fernerkundung überwachten Raumes (500x500x1000m) befindet, können Bewegung und Strukturen von Temperatur gleichzeitig in Raum und Zeit erfasst werden. Dieser skalenübergreifende Ansatz erlaubt es, nicht-periodische, nicht gut gemischte und räumlich heterogene Bewegungen der Luft nahe der Erdoberfläche zu erfassen. Die gewonnenen Daten werden mittels neuester stochastischer Auswerteverfahren analysiert, um die (nicht-)turbulenten Bedingungen und deren Durchmischung zu charakterisieren. Der wissenschaftliche Gewinn des Projektes liegt in einem wegweisenden innovativen Ansatz, um Modelle in den Bereichen Strömungsmechanik und Erd-System Wissenschaften zu validieren, und so zu einem verbesserten Verständnis unseres Lebensraums, der Schnittstelle zwischen Land und Atmosphäre, zu führen.

Untersuchung von Langzeitvariationen leuchtender Nachtwolken mittels europäischer Nadir-Satelliteninstrumente

Leuchtende Nachtwolken (NLCs, von engl. Noctilucent clouds) sind optisch dünne Wassereiswolken, die nahe der polaren Sommermesopause bei geographischen Breiten polwärts von etwa 50 Grad auftreten. NLCs wurden in den vergangenen Jahrzehnten intensiv untersucht, insbesondere aufgrund ihrer Rolle als Indikatoren der globalen Veränderung. Langzeitsatellitenmessungen der NLCs mit Hilfe der SBUV/2 Instrumente auf Nimbus-7 und der NOAA-Satellitenreihe zeigen eine signifikante Zunahme der NLC Albedo (DeLand et al., 2007) sowie der NLC Häufigkeit (Shettle et al., 2009). Dieser langfristige Trend wurde durch eine Studie von Stevens et al. (2007) in Frage gestellt, in der die Langzeittrends in SBUV/2 NLC Albedo und der NLC Eismasse bei einer konstanten Lokalzeit untersucht wurden. Erstaunlicherweise führte die ausschließliche Berücksichtigung von Messungen bei konstanter Lokalzeit dazu, dass der Langzeittrend in der NLC Albedo praktisch vollständig verschwand. Diese Ergebnisse suggerieren, dass die veränderlichen Lokalzeiten, die mit der langsamen Veränderung der Orbitparameter der NOAA Satelliten verbunden sind, den scheinbaren Langzeittrend in NLC Albedo und NLC Häufigkeiten in früheren Studien verursachen. Dieser Sachverhalt ist noch immer nicht verstanden, obwohl die Frage nach den tatsächlichen Langzeitvariationen in NLCs von entscheidender Bedeutung für das wissenschaftliche Verständnis des Klimawandels in der mittleren Atmosphäre ist. Das wissenschaftliche Hauptziel des hier vorgeschlagenen Projekts ist es die Ursachen für die oben skizzierten Diskrepanzen zwischen den verschiedenen Analysen der SBUV/2 Daten zu untersuchen, und festzustellen, ob NLC-Parameter einer Langzeitvariation unterliegen oder nicht. Zu diesem Zweck sollen Messungen der europäischen Nadir-Beobachtungsinstrumente GOME und SCIAMACHY zur Bestimmung von NLCs verwendet werden. Nadir-Messungen dieser Satelliteninstrumente sind hervorragend geeignet, um diese wissenschaftliche Fragestellung zu untersuchen, weil die Satelliten sich in Sonnen-synchronen Erdumlaufbahnen befinden, und somit Messungen bei einer bestimmten geographischen Breite stets zur selben Lokalzeit durchführt werden. Da die GOME und SCIAMACHY Nadir-Messungen bisher nicht zur Untersuchung von NLCs verwendet wurden, soll im Rahmen dieses Projekts ein NLC Auswertealgorithmus implementiert und auf den gesamten GOME und SCIAMACHY Datensatz angewandt werden. Die zu bestimmenden NLC Parameter umfassen NLC Albedo, NLC Häufigkeit sowie NLC Eismasse. Die abgeleiteten NLC Datenprodukte werden verwendet, und Sonnenzyklusvariationen und Langzeittrends in NLCs zu quantifizieren, sowie zur Untersuchung der Frage, ob die Langzeittrends in SBUV/2 NLC Messungen durch die veränderlichen Lokalzeiten dieser Satellitenmessungen beeinflusst oder gar maßgeblich verursacht werden.

Transportwege von Feuchte und Wasserdampfisotopologe

Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.

Was bestimmt die Konzentration von Aerosolpartikeln in der marinen Grenzschicht über dem atlantischen Ozean?

Aerosolpartikel spielen eine wichtige Rolle für das regionale und globale Klima. Weltweit gibt es deshalb zahlreiche Messstationen, von denen allerdings nur ein kleiner Teil die marine Grenzschicht (MBL) erfasst, obwohl etwa 70% der Erdoberfläche mit Wasser bedeckt sind. Dieses Projekt soll dazu beitragen, das Wissen über Quellen und Austauschprozesse von Aerosolpartikeln in der MBL mithilfe einer Messkampagne über den Azoren im Nordostatlantik, welche nahezu unbeeinflusst von lokalen Quellen sind, zu verbessern.Die zentrale Hypothese ist, dass sowohl Ferntransport aus Nordamerika, als auch Partikelneubildung in der freien Troposphäre (FT) und an Wolkenrändern mit anschließendem Vertikaltransport wesentlich zur Anzahlkonzentration der Aerosolpartikel in der MBL beitragen. Das Verständnis der Partikelquellen und Senken zusammen mit dem vertikalen Partikelaustausch zwischen MBL und FT ist daher eine Grundvoraussetzung für die Vorhersagbarkeit der Partikelanzahlkonzentration in den unteren Schichten der MBL wo sie z.B. für die Wolkenbildung von großer Bedeutung ist. Diese Prozesse sind bisher über dem offenen Ozean nur unzureichend quantifiziert. Zur Verifizierung der Hypothese sollen vertikale Austauschprozesse und Partikelquellen über den Azoren mit hoher räumlicher Auflösung untersucht werden. Dazu werden mit einer am TROPOS entwickelten hubschraubergetragenen Messplattform Partikelanzahlkonzentration und Vertikalwind mit einer zeitlichen Auflösung gemessen, die erstmalig eine direkte Bestimmung des vertikalen turbulenten Partikelflusses in verschiedenen Höhen ermöglicht. Die hierfür notwendigen schnellen Partikelmessungen von mind. 10 Hz werden durch den Einsatz eines schnellen Partikelzählers ermöglicht, welcher am TROPOS im Rahmen eines abgeschlossenen DFG-Projektes entwickelt und erfolgreich eingesetzt wurde. Durch dieses Gerät ist es ebenfalls möglich zu prüfen, ob auch in dieser Region regelmäßig die Neubildung von Aerosolpartikeln an Wolkenrändern stattfindet, wie es an Passatwolken auf Skalen von wenigen Dekametern beobachtet wurde. Weiterhin werden Anzahlgrößenverteilungen von Aerosolpartikeln sowie Absorptionskoeffizienten bei drei Wellenlängen bestimmt. Damit sind Rückschlüsse auf die Herkunft der untersuchten Aerosolpartikel möglich.Da die Hubschrauberflüge zeitlich begrenzt sind und damit nur Momentaufnahmen darstellen, werden zusätzlich kontinuierliche Messungen der Partikelanzahlgrößenverteilung an zwei bodengebundenen Stationen installiert. Eine dieser Stationen ist wenige Meter über Meeresniveau gelegen, die andere auf 2200 m und somit in der FT. Damit wird auf der Basis kontinuierlicher Messungen über einen Zeitraum von einem Monat die Untersuchung der Austauschprozesse zwischen MBL und FT ermöglicht. Mit Hilfe der gewonnen Datensätze können Einflüsse globaler Klimaänderungen auf das lokale Klima und mögliche Rückkopplungseffekte über den Einfluss von Aerosol auf Wolken in dieser Region besser eingeordnet werden.

6-stündige Gezeiten in den mittleren Atmosphäre (QuarTA)

Die Dynamik der Mesosphäre und unteren Thermosphäre wird zu großen Teilen von solaren Gezeiten dominiert. Eine davon ist die 6-stündige Gezeit (quarterdiurnal tide, QDT), die unter anderem in sporadischen E-Schichten und mit Hilfe von Radar- und Satellitenmessungen beobachtet wurde. Während allerdings die ganztägigen, halbtägigen, und auch 8-stündigen Gezeiten vergleichsweise gut dokumentiert und untersucht sind, sind Beobachtungen und Analysen der - weniger starken aber nichtsdestoweniger als ein Bestandteil der dynamischen Prozesse in ihrer Gesamtheit zu sehenden - 6-stündigen Komponente bislang selten. Um diese Lücke zu schließen, werden innerhalb des QuarTA-Projekts die 6-stündigen Gezeiten und ihre Antriebsmechanismen im Detail untersucht. Die Klimatologie der Gezeiten wir mit Hilfe von Meteorradarwindmessungen, vor allem der Langzeitreihe in Collm, ergänzt durch weitere Radarmessungen, erstellt. Die globale Verteilung der Gezeitenamplituden wird mit Hilfe von Ionosonden- und GPS-Radiookkultationsmessungen sporadischer E-Schichten untersucht, und die Beobachtungen in Verbindung mit Windscherungen aus Radarmessungen und numerischen Simulationen interpretiert. Um Einblick in die hauptsächlichen Anregungsmechanismen der 6-stündigen Gezeiten zu erhalten, wird ein nichtlineares mechanistisches Zirkulationsmodell, welches auch die Anregung durch Absorption solarer Strahlung enthält, verwendet. Hierbei wird, einzeln und in Kombination, die Anregung der 6-stündigen Gezeit durch Absorption solarer Strahlung und durch nichtlineare Wechselwirkung von Gezeiten in den Simulationen ausgeschaltet, so dass die Hauptantriebsquelle erkennbar wird. Innerhalb des QuarTA-Projekts wird daher, durch die Kombination von Beobachtungen und Modellsimulationen, ein vertiefter Einblick in die Klimatologie und die Anregung der 6-stündigen Gezeiten ermöglicht, der bislang noch nicht in ausreichendem Maße gegeben ist.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Einfluss von Jet-Front Systemen in der oberen Troposphäre auf die mesoskalige Struktur der Tropopauseninversionsschicht und Stratosphären-Troposphären Austausch (MESO-TIL)

Der vorliegende Antrag ist der HALO Mission WISE zuzuordnen. Ein besonderes Augenmerk liegt dabei auf der Bildung der Tropopauseninversionsschicht (TIL) und deren Einfluss auf Stratosphären-Troposphären Austausch (STE) auf der Mesoskala. Diesem Projekt dienen idealisierte Studien der TIL in baroklinen Lebenszyklen als Grundlage. Die Hauptziele sind dabei die Überprüfung der Ergebnisse der idealisierten Studien zur TIL Bildung genauso wie ein erweitertes Verständnis der Prozesse, die zum STE auf der Mesoskala beitragen. Dabei soll auf drei wissenschaftliche Fragestellungen genauer eingegangen werden: (1) Wie stark schwankt die TIL in ihrem Auftreten über dem Nordatlantik, vor allem im Bereich barokliner Lebenszyklen und im Bereich von STE? (2) Welche Prozesse liefern den größten Beitrag zur TIL auf der Mesoskala und welchen Einfluss hat dies auf STE? (3) Wie groß ist der Beitrag von klein-skaligen Wellen in der unteren Stratosphäre auf die TIL Bildung und die Ausdehnung der extratropischen Mischungsschicht? Eine Kombination von Methoden wird verwendet werden um diese Fragen zu beantworten. Analysedaten des EZMW werden zusammen mit Lagrangeschen Methoden benutzt, um die TIL und STE über dem Nordatlantik zu untersuchen. Der Nordatlantik ist das Gebiet, das auch während WISE untersucht werden soll. Darüber hinaus sollen für WISE hoch aufgelöste Modellsimulationen mit dem neuen numerischen Wettervorhersagemodell ICON durchgeführt werden. Dabei sollen zum einen die Beiträge diverser Prozesse auf die Bildung der TIL am Beispiel von realen Zyklonen und Antizyklonen untersucht werden. Des Weiteren sollen die Modelldaten zusammen mit Beobachtungsdaten verwendet werden um den Einfluss der TIL und von klein-skaligen Wellen auf die vertikale Ausdehnung der extratropischen Mischungsschicht zu bestimmen.

Lokale stochastische Subgitterskalenmodellierung in der effizienten Simulation der geophysikalischen Strömungsdynamik

Es gibt konzeptionelle Gründe, Interesse an effizienten Atmosphärenmodellen zu haben, weil diese tiefere Einblicke in der Atmosphärendynamik erlauben, z.B. in Hinsicht auf Klimavariabilität. Solche Modelle sind aber auch ein nützliches Werkzeug bei Untersuchungen der Klimasensitivität oder des Paläoklimas, wo sehr viele oder sehr lange Integrationen benötigt werden und somit die Recheneffizienz eine wichtige Rolle spielt. Besonders bei diesen Anwendungen muss darauf Wert gelegt werden, dass die unvermeidlichen Subgitterskalenparametrisierungen möglichst viel auf ersten Prinzipien basieren. Die stochastische Modenreduktion (SMR) bietet hier eine Strategie, bei der ein großer Teil der Parametrisierung auf Papier hergeleitet wird, wenn bestimmte Terme, die Wechselwirkungen zwischen nichtaufgelösten Moden beschreiben, durch einen einfachen stochastischen Prozess modelliert werden können. In früheren Anwendungen der SMR wurden die reduzierten Atmosphärenmodelle immer im Spektralraum formuliert. Somit koppelt die dazugehörige globale subgitterskalige Parametrisierung alle aufgelösten Moden miteinander. Letztes begrenzt die Anwendbarkeit der Methode auf niedrigdimensionale Systeme. Um dieses Problem zu umgehen, ist unlängst eine Implementierung der SMR für gitterbasierte Raumdiskretisierungen entwickelt worden, die in einer lokalen Parametrisierung resultiert. Diese Strategie wurde bis jetzt nur im Rahmen der Burgersgleichung getestet. Das vorgeschlagene Projekt soll signifikant dazu beitragen, die lokale SMR auf realistische Modelle der Atmosphärendynamik anzuwenden. Dabei sollen subgitterskalige Parametrisierungen für die barotrope Vorticitygleichung und für die Flachwassergleichungen auf der f-Ebene konstruiert werden. Beide Modelle beinhalten wesentliche Eigenschaften, die berücksichtigt werden müssen, wenn man die lokale SMR auf die allgemeinen Gleichungen für die Beschreibung der Atmosphärendynamik anwenden will. Die neuen subgitterskaligen Parametrisierungen sollen folgende Kriterien erfüllen: i) sie sollen systematisch aus den Modellgleichungen unter einer relativ kleinen Anzahl von Grundannahmen hergeleitet werden ii) sie sollen so konsistent wie möglich mit den Erhaltungseigenschaften der Gleichungen sein und iii) sie sollen eine minimale (falls möglich gar keine) Anpassung an Daten der aufgelösten Skalen verwenden. In der Klimamodellierung existiert ein großer Bedarf an physikalisch basierten und auflösungsunabhängig formulierten stochastischen Parametrisierungen. Die Entwicklung von subgitterskaligen Parametrisierungen mittels der SMR, wie in diesem Projekt vorgeschlagen, wird zu solchen Verfahren beitragen. Die Turbulenzparametrisierung in grob auflösenden Simulationen ist ein anderes Feld, das von einer solchen Entwicklung profitieren kann.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Kopplung der solaren und geomagnetischen Aktivität mit der räumlichen Verteilung von Trends in Treibhausgasen in der oberen Atmosphäre

Die Struktur und Zusammensetzung des Thermosphäre-Ionosphäre Systems (T-I) wird stark durch die solare EUV-Strahlung beeinflusst. Die andere wichtige externe Quelle von Variabilität in dieser Atmosphärenregion ist das geomagnetische Feld, das geladene Teilchen in die Atmosphäre leitet wo sie insbesondere um die Pole herum ihre Energie abgeben. Wie neue Daten zeigen, können auch interne Antriebsprozesse sowohl auf kurzen (Tage) als auch langen (Jahre) Zeitskalen die T-I Variabilität dominieren. Eine wesentliche Rolle wird dabei dem langsamen aber kontinuierlichen Anstieg von CO2 in der Mesosphäre und unteren Thermosphäre (MLT) zugeschrieben, der zu verstärkter Strahlungskühlung und damit einhergehender Kontraktion der Atmosphäre führt. Auch andere Treibhausgase können auf kürzeren Zeitskalen die T-I Variabilität stark modulieren, u.a. O3 und NO. Das Hauptziel dieses Projektes ist zu untersuchen, wie die räumliche Verteilung von Langzeittrends in MLT Treibhausgasen mit der T-I Langzeit Variabilität gekoppelt ist. Dabei sollen sowohl bodengebundene als auch Satellitendaten von CO2, O3, NO, H2O sowie Elektronendichten herangezogen werden. Durch Kombination von Daten der Satelliten CHAMP, GRACE, SWARM, COSMIC, GOMOS, ACE-FTS, MLS, SABER, MIPAS, HALOE und AIM soll eine nahezu globale Abdeckung über einen Zeitraum von 2 Sonnenzyklen erreicht werden. Aus diesen Daten soll eine globale Klimatologie erstellt werden als Grundlage für die Ableitung von Langzeittrends und ihrer Korrelation in Zeit, Raum und T-I Parametern, einschließlich der Untersuchung von möglichen zeitlichen Verzögerungen in der Variabilität. Ferner sollen chemische und dynamische Wirkmechanismen der T-I Reaktion auf diese Variabilität identifiziert sowie zum ersten Mal echte Abkühlungs- und Aufheizraten aus der globalen Klimatologie und ihre Korrelationen in der T-I Region berechnet werden. Diese können direkt in allgemeinen Zirkulationsmodellen anstatt der aus Volumenemissionsraten gewonnenen Abkühlraten verwendet werden.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Entwicklungen zur physikalischen und chemischen Charakterisierung eisnukleierender Aerosolpartikel mit HALO: Hochvolumenstrom-Sammler, automatisiertes 'Freezing Array' und analytische Methoden

Das hier vorgeschlagene Projekt basiert auf und ergänzt Untersuchungen die im Rahmen des DFG-Transregios 172 'Arktische Klimaveränderungen', und hier speziell dem Projekt B04 'Ship-based physical and chemical characteristics and sources of Arctic ice nucleating particles and cloud condensation nuclei', durchgeführt werden. Im Rahmen von TR 172, B04, ist es u.a. das Ziel, über schiffbasierte Messungen detaillierte Informationen hinsichtlich arktischer eisnukleierender Partikel (Anzahlkonzentration; chemische Natur, mineralisch und/oder organisch; Herkunft, lokal oder Ferntransport) zu erlangen. Diese schiffsbasierten Messungen können allerdings nur ein erster Schritt auf dem Weg zu einem besseren Verständnis von Aerosol-Wolken-Wechselwirkungen in der Arktis im allgemeinen, und der Vereisung Arktischer Wolken im Besonderen, sein. Hierzu sind u.a. Informationen aus unterschiedlichen Höhen (innerhalb der planetaren Grenzschicht und in der freien Troposphäre) erforderlich. Daher sollen die in TR 172, B04, geplanten Aktivitäten u.a. durch INP-bezogene Messungen an Bord des Forschungsflugzeuges HALO ergänzt werden. Spezifisch zielen wir auf die Bestimmung von INP-Anzahlkonzentrationen, und über Analyse der chemischen Partikelzusammensetzung auf Hinweise bzgl. der INP Herkunft / Quellen. Im Rahmen des vorliegenden Antrages werden wir uns daher auf die Entwicklung, den Test und die Zulassung eines Hochvolumenstrom-Aerosolpartikelsammlers für sub- und supermikrone Aerosolpartikel für das Forschungsflugzeug HALO konzentrieren. Das Sammlersystem wird im Wesentlichen aus einer adaptierten Version des schon existierenden (aber noch zuzulassenden) 'Micrometre Aerosol Inlet' (MAI) und einem noch zu entwickelnden Hochvolumenstrom-Filtersammler, bestehen. Die Berücksichtigung hoher Volumenströmen (Größenordnung 100 l/min) ist aufgrund der zu erwartenden niedrigen Aerosolpartikel- und INP-Konzentrationen, und dem daraus resultierenden Bedarf nach der Sammlung großer Luftvolumina erforderlich. Der erste wissenschaftliche Einsatz des entwickelten Systems soll im Rahmen der ARCTIC-HALO-Kampagne erfolgen, welche für die zweite Phase des TR 172 (2020-2023) geplant ist. Nach seiner Entwicklung, steht das Sammlersystem (Einlass und/oder Filtersammler) für sub- und supermikrone Aerosolpartikel für weitere HALO-Missionen zur Verfügung. Zur Durchführung der notwendigen Arbeiten beantragen wir Mittel für eine 75 % und eine 50% PostDoc-Stelle für jeweils 3 Jahre. Ferner beantragen wir Mittel für die Adaptierung und die Zulassung des Hochvolumenstrom-Aerosolpartikelsammlers. Alle anderen direkten Kosten werden aus dem Haushalt des TROPOS übernommen.

1 2 3 4 530 31 32