API src

Found 367 results.

Related terms

Quantifizierung der Rate der CaCO3-Rekristallisation im Boden und Bildung pedogener Karbonate unter verschiedenen Bedingungen: Experimente, Modell und Überprüfung

Rekristallisation des geogenen Kalks mit dem CO2 aus der Atmung von Wurzel und Mikroorganismen führt zur Bildung pedogener Karbonate, die einer der wichtigsten Schlüssel zur Bestimmung des Alters der Bodenbildung (Radiokarbondatierung) und der Rekonstruktion der Paläou-welt (d13C, d18O) unter semiariden und ariden Klimatenbedingungen sind. Deswegen war ein erhöhtes Interesse für pedogene Karbonate seitens der Geowissenschaften in den vergangenen zwei Jahrzehnten zu verzeichnen. Bis jetzt ist die Geschwindigkeit der Bildung pedogener Karbonate völlig unbekannt, obwohl davon die Präzision der Altersbestimmung und der Paläoumweltrekonstruktionen wesentlich abhängt. In diesem Vorhaben wird die Geschwindigkeit der Bildung der pedogenen Karbonate durch den Isotopenaustausch bei der Rekristallisation des geogenen Kalks mit dem 14CO2 aus der Rhizosphärenatmung der in der 14CO2-Atmosphäre markierten Pflanzen bestimmt. Mit dieser sehr sensitiven und bereits erprobten Methode wird der Einfluss der Pflanzenarten, Dauer des Pflanzenwachstums, Temperatur, Feuchte, CaCO3-Gehalte und CaCO3-Verlagerung auf die CaCO3-Rekristallisationsrate bestimmt. Aus den experimentell ermittelten Abhängigkeiten der Rekristallisation von den Umweltvariablen wird ein Modell zur Bildung der pedogenen Karbonate erstellt und anhand der Radiokarbondatierung der unter verschiedenen Bedingungen entnommen pedogenen Karbonate geprüft. Das Forschungsvorhaben ermöglicht erstmalig die Präzision der Bestimmung des Alters der Bodenbildung und der Rekonstruktion der Paläoumwelt anhand der pedogenen Karbonate experimentell zu quantifizieren.

Schwerpunktprogramm (SPP) 1315: Biogeochemische Grenzflächen in Böden; Biogeochemical Interfaces in Soil, Highly-resolved imaging in artificial and natural soils to yield dynamics and structure of interfaces from oxygen, pH and water content

In soils and sediments there is a strong coupling between local biogeochemical processes and the distribution of water, electron acceptors, acids, nutrients and pollutants. Both sides are closely related and affect each other from small scale to larger scale. Soil structures such as aggregates, roots, layers, macropores and wettability differences occurring in natural soils enhance the patchiness of these distributions. At the same time the spatial distribution and temporal dynamics of these important parameters is difficult to access. By applying non-destructive measurements it is possible to overcome these limitations. Our non-invasive fluorescence imaging technique can directly quantity distribution and changes of oxygen and pH. Similarly, the water content distribution can be visualized in situ also by optical imaging, but more precisely by neutron radiography. By applying a combined approach we will clarify the formation and architecture of interfaces induces by oxygen consumption, pH changes and water distribution. We will map and model the effects of microbial and plant root respiration for restricted oxygen supply due to locally high water saturation, in natural as well as artificial soils. Further aspects will be biologically induced pH changes, influence on fate of chemicals, and oxygen delivery from trapped gas phase.

Skalenübergreifende Analyse von Dürreeffekten auf ökohydrologische Prozessdynamiken im Grünland durch stabile Isotopenanalyse

Hydrologische Extremereignisse wie von Klimawandelprognosen vorhergesagte Dürreperioden beeinflussen ökologische Prozesse, Struktur und Resistenz terrestrischer Pflanzengemeinschaften. Davon sind insbesondere flachwurzelnde Gemeinschaften wie Grünland betroffen. Die Interaktionen zwischen strukturellen Änderungen dieser Pflanzengemeinschaften und zugrundeliegenden mechanistischen ökohydrologischen Reaktionen hinsichtlich Wassernutzung oder Kohlenstoffaufnahme auf solche Dürreereignisse sind jedoch lückenhaft und schwer quantifizierbar. Eine Vielzahl von stark dynamischen Prozessen spielt hierbei eine Rolle, welche sich auf den verschiedenen Ebenen, von der Einzelpflanze bis zu ganzen Pflanzengemeinschaften, auswirken. Die Pflanzentranspiration, beispielsweise, wird durch Bodenwasserverfügbarkeit und der stomatären Regulation des Transpirationsverlustes kontrolliert; dabei sind beide Prozesse, die Nutzung verschiedener Bodenwasserquellen und die stomatäre Empfindlichkeit gegenüber Dürre, stark Art abhängig. Stabile H2O und CO2 Isotope sind dabei aufschlussreiche Indikatoren für die Prozesse des Boden-Vegetation-Atmosphäre-Kontinuums, insbesondere durch neuartige technische Entwicklungen, welche nahezu kontinuierliche Beobachtungen ermöglichen. Das Ziel dieses Projektes ist die ganzheitliche mechanistische Analyse ökohydrologischer Reaktionen auf ausgedehnte Dürreperioden anhand H2O und CO2 Fluss- und Isotopenmessungen. Dabei wird eine Verknüpfung dieser Prozesse mit Reaktionen der Artengemeinschaften hinsichtlich Struktur und Biomasseproduktion angestrebt. In drei zusammengreifenden Arbeitspaketen (AP) werden diese Aspekte skalenübergreifend von der Einzelpflanzen- bis zur Bestandes-Ebene untersucht. Der Fokus von AP1 liegt dabei auf plastischen Reaktionen der Einzelpflanze hinsichtlich Wurzelwasseraufnahme (WWA) sowie Verschiebungen des Pflanzen-Pflanzen-Interaktionsgleichgewichts unter Laborbedingungen. In AP2 werden die Rückkopplungen struktureller Veränderungen auf Gemeinschaftsebene und WWA Profilen und Nettoökosystemflüssen von H2O und CO2 (aufgeteilt in Transpiration und Bodenverdunstung und Kohlenstoffaufnahme und Atmung) untersucht. Dies erfolgt innerhalb eines 2-jährigen Niederschlagsmanipulations-experimentes im Freiland. AP3 fokussiert sich auf die Integration der in AP1 und 2 gewonnenen Informationen mittels Modellierung. Die in AP1 gewonnenen Informationen werden zur Validierung des dreidimensionalen Boden-Wurzel-Models (R-SWMS) genutzt, welches neue Module für Wurzelwachstum, WWA, und Transpiration für das Boden-Vegetations-Atmosphären-Transfer Model SiSPAT-Isotope generieren wird. Simulationen mit SiSPAT-Isotope basierend auf den in AP2 gewonnenen Daten dienen zur quantitativen Abschätzung der hydrologischen Antwort auf Dürreperioden, welches bei der Entwicklung von Nachhaltigkeitsvorhersagen für die Einflüsse des Klimawandels auf Grünlandgemeinschaften helfen wird.

Regulation der durch Phosphatmangel induzierten Citratabgabe aus Proteoidwurzeln der Weißlupine (Lupinus albus L.)

Die Ergebnisse eines vorangegangenen DFG-Projektes lieferten Hinweise darauf, dass die verstärkte Abgabe von Citrat und Protonen unter P-Mangelbedingungen auf einer erhöhten Akkumulation von Citronensäure im Wurzelgewebe beruht. Diese verstärkte Citratakkumulation ist einerseits die Folge einer erhöhten Biosyntheserate, beruht andererseits aber wahrscheinlich auch auf einem durch P-Limitierung der Atmungskette verminderten Citratumsatz im Citratcyklus. Zur Prüfung dieser Hypothese sollen P-Mangel induzierte Veränderungen der am Citratumsatz beteiligten Stoffwechselwege untersucht werden, um so Hinweise auf die an der Regulation beteiligten Schlüsselreaktionen zu erhalten. Im einzelnen sind Messungen der Wurzelatmung, des Pools an Adeninnukleotiden, des Redoxstatus (NADH/NAD-Verhältnis), 14C markierter Intermediärprodukte des Citratstoffwechsels und der an den Umsetzungen beteiligten Enzymaktivitäten, sowie Untersuchungen zur Citratakkumulation nach gezielter Applikation von Respirationshemmstoffen (KCN, SHAM) geplant. Die Wirksamkeit verschiedener Anionenkanalinhibitoren lieferte erste Hinweise, dass die Citratabgabe durch einen Anionenkanal im Plasmalemma erfolgt. Nach Isolierung von Protoplasten aus dem Proteoidwurzelgewebe soll über Patch-Clamp Messungen versucht werden, die Beteiligung eines Anionenkanals direkt nachzuweisen.

Prozessbasierte Quantifizierung von CO2-Flüssen verschieden strukturierter Waldökosysteme in unterschiedlichen Raumskalen

Water parameters of three different experimental temperature and salinity treatments

Temperature of three different experimental temperature and salinity treatments

Poly extension rates of Desmophyllum dianthus in response to changes in salinity and temperature

Growth rates of Desmophyllum dianthus during acclimation and experimental phases in response to changes in salinity and temperature

Nutrients of three different experimental temperature and salinity treatments

1 2 3 4 535 36 37