API src

Found 48 results.

Related terms

Öffentliche Fachkonferenz zu World Nuclear Industry Status Report – BASE ist Co-Host

Öffentliche Fachkonferenz zu World Nuclear Industry Status Report – BASE ist Co-Host Anfang 26.03.2024 10:00 Uhr Ende 26.03.2024 17:00 Uhr Der „World Nuclear Industry Status Report” (WNISR) berichtet seit 2007 jährlich über den aktuellen Stand der weltweiten Atomindustrie: aktuelle Reaktorneubauprojekte, der Fortschritt beim Rückbau von Kernkraftwerken oder neue Entwicklungen im Betrieb werden vorgestellt. Ein besonderer Fokus des aktuellen Reports liegt auf einer umfassenden Analyse wirtschaftlicher Aspekte der Atomkraftnutzung. Der Report wurde u.a. aus Mitteln des Bundesministeriums für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz gefördert. Autoren der TU Berlin waren an der Erstellung des Reports maßgeblich beteiligt. Zeit: Dienstag, 26.03.2024, 10:00 – 12:00 Uhr Ort: TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Hauptgebäude, Raum H3143 Am Nachmittag des gleichen Tages findet eine öffentliche Fachkonferenz von 15:00 – 17:00 Uhr im Hörsaal H0107 des Hauptgebäudes statt. Im Pressegespräch am Vormittag werden die zentralen Ergebnisse des WNISR2023 plus Updates vorgestellt und diskutiert von: Jochen Ahlswede Abteilungsleiter Forschung und Internationales des Bundesamtes für die Sicherheit der nuklearen Entsorgung Mycle Schneider Unabhängiger Energie- und Atompolitik-Analyst, Paris, Frankreich, Projektleiter des WNISR Antony Froggatt Stellvertretender Leiter des Environment and Society Programs, Chatham House, London, Großbritannien, WNISR2023 Co -Lead Doug Koplow Gründer-Direktor von Earth Track, Cambridge, USA , WNISR2023 Co -Autor Alexander Wimmers Wissenschaftlicher Mitarbeiter im Fachgebiet Wirtschafts- und Infrastrukturpolitik, Technische Universität Berlin, WNISR2023 Co -Autor Kurzbiografien der Autor:innen Kann ein neuerlichen Ausbau der Atomkraft den Kampf gegen die Klimakrise unterstützen, wie jüngste Beschlüsse auf der UN -Klimakonferenz in Dubai im Dezember 2023 (COP28) suggerierten? Fünf Tage nach dem geplanten „Nuclear Energy Summit“ der Internationalen Atomenergie-Organisation IAEA am 21. März 2024 in Brüssel besteht bei der Vorstellung des World Nuclear Industry Status Report in Berlin die Möglichkeit, dies mit führenden unabhängigen Experten zu diskutieren. Der WNISR2023 liefert dazu die Fakten: Im Jahr 2022 wurde der größte Rückgang des nuklearen Anteils an der weltweiten Stromerzeugung seit der Reaktorkatastrophe von Fukushima festgestellt. Er sank um 0,6 Prozentpunkte gegenüber 2021 auf einen Anteil von 9,2 Prozent. Zum Vergleich: Das historische Maximum lag 1996 bei 17,5 Prozent, der Anteil von Wind und Solar lag 2022 bei 11,7 Prozent. 2023 gingen fünf neue Atomkraftwerke ( AKW ) ans Netz, fünf wurden endgültig abgeschaltet. Daraus resultiert eine Nettoreduktion von einem Gigawatt elektrischer Leistung. Zum Vergleich: Die Leistung von Solaranlagen stieg im Jahr 2023 um 440 Gigawatt. Anfang 2024 sind 213 Reaktoren weltweit offiziell abgeschaltet – zurückgebaut sind aber nur 22 Reaktoren in Deutschland, Japan und den USA . Unabhängige Meta-Analysen, die unter anderem auch an der TU Berlin durchgeführt wurden, gehen von regelmäßig unterschätzten Kosten für die Atomenergie aus. So kann nach Ergebnissen des WNISR2023 Strom aus Atomkraftwerken bis zu viermal so teuer sein bei Betrachtung aller Kosten wie Strom aus Off-Shore-Windkraftanlagen. Hinweis: Der WNISR2023 wurde erstmals am 06.12.2023 in Brüssel vorgestellt. Nach diesem internationalen Launch diskutieren maßgebliche Autor*innen in Länderkonferenzen mit Stakeholdern vor Ort die Ergebnisse und erste Erkenntnisse zum Jahresende. Eine Vorstellung fand bereits am 6. März 2024 an der „Sciences Po“ in Paris statt. Neben den Events in Berlin wird es zudem Konferenzen in Dänemark und an vier Universitäten in Schweden geben (8. – 12. April 2024) sowie mit der Princeton University in Washington D.C. in den USA (2. Mai 2024). Adresse TU Berlin Hauptgebäude, Raum H3143 Straße des 17. Juni 135 10623 Berlin Der WNISR-Report 2023 zum Download World Nuclear Industry Status Report 2023 Kurzbiografien der Autor:innen World Nuclear Industry Status Report - Who We Are

Unterstützung des World Nuclear Industry Status Report 2023

Das Projekt "Unterstützung des World Nuclear Industry Status Report 2023" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit , Bundesamt für die Sicherheit der nuklearen Entsorgung (BMU,BASE). Es wird/wurde ausgeführt durch: Mycle Schneider Consulting.

Glossar

Abklingbecken Ein mit Wasser befülltes Becken, in dem Brennelemente nach dem Reaktoreinsatz so lange lagern, bis die Aktivität und Wärmeentwicklung auf einen gewünschten Wert gesunken ist, so dass eine Handhabung, u.a. zum Abtransport möglich wird. Ableitung radioaktiver Stoffe Ist die Abgabe flüssiger, an Schwebstoffe gebundener oder gasförmiger radioaktiver Stoffe auf hierfür vorgesehenen Wegen. (§ 1 Abs. 1 StrlSchV ). Ein Beispiel ist die geordnete und überwachte Abgabe von Fortluft aus Anlagengebäuden. Ableitungswerte Sind Angaben über die Aktivität (also Menge) radioaktiver Stoffe als auch über die hervorgerufene Dosis (also Wirkung) von Ableitungen. Für die durch Ableitung freigesetzten radioaktiven Stoffe hat der Gesetzgeber Grenzwerte festgesetzt (§§ 99 ff. StrlSchV ). Die in Genehmigungen festgelegten Werte (nach § 102 StrlSchV ) liegen in Berlin deutlich unterhalb dieser Grenzwerte. Die tatsächlich freigesetzten radioaktiven Stoffe unterschreiten wiederum in der Regel die genehmigten Werte deutlich. Äquivalentdosis Äquivalentdosis ist die mit einem Qualitätsfaktor gewichtete (multiplizierte) Energiedosis . Der Qualitätsfaktor berücksichtigt die relative biologische Wirksamkeit (die Wirkung ist bei verschiedenen Geweben nicht gleich) der unterschiedlichen Strahlenarten. Die Äquivalentdosis ist deshalb die Messgröße für die biologische Wirkung ionisierender Strahlung auf den Menschen. Ihre Einheit ist J/kg mit dem speziellen Namen Sievert (Sv). Aktivität Aktivität ist die Anzahl von Atomkernen eines radioaktiven Stoffes , die in einem bestimmten Zeitintervall zerfallen. Die Aktivität wird in Becquerel (Einheit im Internationalen Einheitssystem) gemessen und beschreibt die Anzahl der Kernzerfälle eines radioaktiven Stoffes in einer Sekunde. Siehe auch Erläuterung unter Dosis . Anlage, kerntechnische siehe „ kerntechnische Anlage Becquerel Das Becquerel (Kurzzeichen: Bq) ist die Maßeinheit der Aktivität eines “radioaktiven Stoffes”/sen/uvk/umwelt/strahlenmessstelle/glossar/#radioaktiver: und gibt an, wie viele Kernzerfälle pro Sekunde stattfinden. Betreiber/in Der Inhaber einer Genehmigung gemäß § 7 Atomgesetz zum Betrieb einer kerntechnischen Anlage . Brennelemente Brennelemente enthalten Kernbrennstoff . Sie bestehen meist aus einer Vielzahl von Brennstäben und sind wesentlicher Bestandteil des Reaktorkerns einer kerntechnischen Anlage . Dekontamination Alle Maßnahmen und Verfahren zur Beseitigung einer möglichen radioaktiven Verunreinigung einer Person oder eines Objekts (z.B. Geräte, Kleidung, Körperteile). Dialoggruppe Gesprächskreis durch ein Vorhaben direkt oder indirekt berührter Bürgerinnen und Bürger aus der Umgebung, Vertreterinnen und Vertreter von Parteien, Initiativen und Umweltorganisationen sowie sonstige interessierte Personen aus der Öffentlichkeit. Ziel ist es, das Vorhaben aktiv mit dem Vorhabenträger zusammen zu diskutieren und evtl. mitzugestalten. Darüber hinaus treffen sich die am Dialogverfahren des BER II Beteiligten ohne Vertreter des HZB im Rahmen der sogenannten Begleitgruppe. Dosimetrie Lehre von den Verfahren zur Messung der Dosis bzw. der Dosisleistung bei der Wechselwirkung von ionisierender Strahlung mit Materie. Dosis Die Dosis ist ein Maß für die Strahlenwirkung. Siehe auch die Erläuterungen zu Energiedosis , Organdosis , Effektive Dosis . Dosisleistung Dosis, die in einem bestimmten Zeitintervall erzeugt wird. Die Einheit ist Sievert oder Gray pro Zeitintervall. Effektive Dosis Die Effektive Dosis berücksichtigt die unterschiedliche Empfindlichkeit der Organe und Gewebe bezüglich stochastischer (zufallsgesteuert auftretender) Strahlenwirkungen. Dazu werden die spezifizierten Organdosen mit einem Gewebe-Wichtungsfaktor multipliziert. Die Effektive Dosis erhält man durch Summation der gewichteten Organdosen aller spezifizierten Organe und Gewebe, wobei die Summe der Gewebe-Wichtungsfaktoren 1 ergibt. Die Gewebe-Wichtungsfaktoren bestimmen sich aus den relativen Beiträgen der einzelnen Organe und Gewebe zum gesamten stochastischen Strahlenschaden (Detriment) des Menschen bei gleichmäßiger Ganzkörperbestrahlung. Die Einheit der Effektiven Dosis ist J/kg mit dem speziellen Namen Sievert (Sv). In der Praxis des Strahlenschutzes werden in der Regel Bruchteile der Dosiseinheit verwendet, zum Beispiel Millisievert oder Mikrosievert Elektromagnetische Strahlung Elektromagnetische Strahlung ist nicht an Materie gebundene Strahlung (kein “Teilchenstrom”), die sich mit Lichtgeschwindigkeit ausbreitet und je nach Energieinhalt (charakterisiert durch die Frequenz oder die Wellenlänge) unterschiedliche Eigenschaften hat. Von den langen zu den kurzen Wellen unterscheidet man Ultralangwelle, Langwelle, Mittelwelle, Kurzwelle, Mikrowelle, Wärmestrahlung (Infrarot), sichtbares Licht, Ultraviolett, Röntgenstrahlung, Gammastrahlung. Für Infrarot und für sichtbares Licht besitzen wir Sinnesorgane, die anderen Strahlungsarten können nur über ihre Wirkung oder mit Messgeräten wahrgenommen werden. Im Ultraviolettbereich liegt die Grenze der ionisierenden Strahlung : kürzerwellige Strahlung ionisiert, längerwellige nicht. Gammastrahlung ist die kürzestwellige und energiereichste dieser Strahlungsarten, sie tritt bei Vorgängen in Atomkernen auf. Energiedosis Die Energiedosis beschreibt die Energie, die einem Material mit einer bestimmten Masse durch ionisierende Strahlung zugeführt wird, dividiert durch diese Masse. Die Einheit der Energiedosis ist J/kg mit dem speziellen Namen Gray (Kurzzeichen: Gy). Entlassung aus dem Atomgesetz Mit der Entlassung aus dem Atomgesetz liegt keine kerntechnische Anlage nach § 2 Abs. 3a Atomgesetz mehr vor. EURATOM-Vertrag Der EURATOM-Vertrag ist einer der Römischen Verträge und damit Bestandteil der Gründungsvereinbarung der Europäischen Union. Das Ziel ist nach Artikel 1 die Schaffung der für die rasche Bildung und Entwicklung von Kernindustrien erforderlichen Voraussetzungen zur Hebung der Lebenshaltung in den Mitgliedstaaten und zur Entwicklung der Beziehungen mit den anderen Ländern. Kapitel 3 regelt Maßnahmen zur Sicherung der Gesundheit der Bevölkerung. Fernüberwachungssystem (Reaktorfernüberwachungssystem – RFÜ) Für die deutschen Kernkraftwerke existieren komplexe Messsysteme zur Erfassung von Anlagendaten und Werten der Umweltradioaktivität (KFÜ). Im Falle des Berliner Forschungsreaktors ist ein der KFÜ analog aufgebautes Reaktorfernüberwachungssystem (RFÜ) vorhanden. Das RFÜ erfasst und überwacht vollautomatisch rund um die Uhr Messwerte zum aktuellen Betriebszustand des Forschungsreaktors BER II einschließlich der Abgaben (Emissionen) in die Luft sowie den Radioaktivitätseintrag in die Umgebung (Immission). Freigabe Die Freigabe ist ein Verwaltungsakt (§ 33 Abs. 2 StrlSchV), der die Entlassung von u.a. beweglichen Gegenständen, Gebäuden, Räumen oder Anlagenteilen aus dem Regelungsbereich des Strahlenschutzgesetzes (und auf diesem beruhender Rechtsverordnungen) bewirkt. Er kann Vorgaben zum weiteren Umgang oder zur Verwendung, Verwertung oder Beseitigung der freigegebenen und damit rechtlich als nicht radioaktiv anzusehenden Stoffe enthalten. Freigabeverfahren Nach §§ 31 ff. Strahlenschutzverordnung (StrlSchV) kann die Entlassung von u.a. beweglichen Gegenständen, Gebäuden, Räumen oder Anlagenteilen aus dem Regelungsbereich des “Strahlenschutzgesetzes“https://www.gesetze-im-internet.de/strlschg/: (und auf diesem beruhenden Rechtsverordnungen) auf Antrag bewirkt werden. Voraussetzung hierfür ist, dass die zuständige Behörde einen Freigabebescheid erteilt. Dieser wird erst dann erteilt, wenn festgestellt worden ist, dass die Materialien oder Objekte nicht so stark strahlen, dass durch sie ein Mitglied der Bevölkerung gefährdet werden könnte. Hierfür müssen bestimmte Anforderungen erfüllt werden, die (z. B. durch Messung) überprüft werden. Der Freigabebescheid kann zusätzliche Festsetzungen enthalten, wonach die freigegebenen Objekte nur dann als nicht radioaktive Objekte gelten, wenn mit ihnen in bestimmter Weise weiter umgegangen wird. Durch die freigegebenen Stoffe darf für Einzelpersonen der Bevölkerung nur eine effektive Dosis bis zu 10 Mikrosievert im Kalenderjahr auftreten (10-Mikrosievert-Konzept). Formelles Verfahren Ist ein auf Antrag erfolgendes behördliches Prüfungsverfahren mit dem Ziel einer Bescheidung durch die zuständige Behörde. Je nach Thematik können sich formelle Genehmigungsverfahren über Jahre erstrecken. Fortluft Der Begriff Fortluft stammt aus der Lüftungs- und Klimatechnik und bezeichnet den Teil der geführten Abluft, welcher nicht weitergenutzt und in die Atmosphäre abgegeben wird. Halbwertszeit Die Zeit, in der die Hälfte der Menge der Atomkerne eines bestimmten radioaktiven Stoffes zerfallen ist. Nach zwei Halbwertszeiten liegt demnach noch ein Viertel der Anfangsmenge vor, nach drei Halbwertszeiten ein Achtel usw. Nach zehn Halbwertszeiten ist die Menge und die Aktivität eines radioaktiven Stoffes auf 1/1024 oder rund ein Promille des Anfangswertes gesunken usw. Die Halbwertszeit ist charakteristisch für eine bestimmte radioaktive Atomkernsorte („Nuklid“). Herausgabeverfahren Nicht jeder Stoff oder Gegenstand in einer kerntechnischen Anlage , der von einer Genehmigung nach § 7 Atomgesetz umfasst ist, ist zwingend radioaktiv kontaminiert oder aktiviert . Stoffe, Gegenstände, Gebäude oder Bodenflächen, die nachweislich von Vornherein weder radioaktiv kontaminiert noch aktiviert sind, fallen nicht unter das in der Strahlenschutzverordnung geregelte Freigabeverfahren . Ein klassisches Beispiel ist ein Anlagenzaun, der in der Genehmigung gefordert wird (also zum genehmigten Bereich gehört), aber nie mit Strahlung oder radioaktiven Stoffen in Verbindung stand. Das Herausgabeverfahren stellt daher ergänzend sicher, dass die Entlassung auch dieser Materialien aus dem atomrechtlichen Genehmigungsbereich überwacht wird. Das Verfahren wird behördlich begleitet. Das Herausgabeverfahren wird grundsätzlich in der Genehmigung zu Stilllegung und Abbau einer kerntechnischen Anlage festgelegt und im atomrechtlichen Aufsichtsverfahren, d.h. bei der nachfolgenden Stilllegung und dem Abbau der kerntechnischen Anlage, angewendet. IAEA Internationale Atomenergie-Organisation IMIS Das Integrierte Mess- und Informationssystem zur Überwachung der Radioaktivität in der Umwelt ( IMIS ) dient dazu, die Radioaktivität in der Umwelt zum Schutz der Bevölkerung zu überwachen, und ist im Strahlenschutzgesetz verankert. Die Überwachungsaufgaben werden zwischen Bund und Ländern aufgeteilt. INES INES steht für International Nuclear and Radiological Event Scale und ist eine Internationale Bewertungsskala für nukleare Ereignisse in kerntechnischen Anlagen (Kernkraftwerken, Zwischenlager etc.), aber auch allgemein bei sämtlichen Ereignissen im Zusammenhang mit radioaktiven Stoffen . Informelles Verfahren Das informelle Verfahren ist vom formellen Genehmigungsverfahren zu unterscheiden. Es dient zunächst ausschließlich der frühzeitigen Information aller potentiell Betroffenen eines bestimmten Vorhabens und steht in der alleinigen Verantwortung des Vorhabenträgers. Das informelle Verfahren umfasst z.B. Informationsveranstaltungen oder eine erweiterte Medienpräsenz. Es steht dem Vorhabenträger weiterhin zu, bei Bedarf eine Dialoggruppe einzurichten, der eine aktive Mitwirkung vorbehalten sein kann. Iodblockade Bei einem Unfall in einer kerntechnischen Anlage kann unter anderem auch radioaktives Iod freigesetzt werden. Durch die rechtzeitige Einnahme von hochdosierten Iodid-Tabletten kann die – Iod speichernde – Schilddrüse mit nicht radioaktivem Iod gesättigt und so die Aufnahme radioaktiven Iods verhindert werden. Siehe auch: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit ionisierende Strahlung Strahlung, die so energiereich ist, dass sie beim Auftreffen auf Luftmoleküle aus diesen Elektronen herausschlagen, also sie ionisieren kann. Dabei wird üblicherweise bei dem Begriff “Strahlung” nicht zwischen lichtartiger Strahlung (Röntgenstrahlung oder Gammastrahlung) und Strömen energiereicher Teilchen (Alphastrahlung, Betastrahlung, Neutronenstrahlung usw.) unterschieden – für die Naturwissenschaft ist ein Scheinwerferstrahl ein “Strahl”, ein Wasserstrahl aber auch (diese beiden sind aber nicht ionisierend). Mehr zu ionisierender Strahlung und deren Wirkung beim Bundesamt für Strahlenschutz . Katastrophenschutzplan Er beschreibt Maßnahmen zum Schutz der Bevölkerung in der Umgebung des Forschungsreaktors BER II und dient dem Zweck, die Zeit zwischen einem Schadensereignis und den zu treffenden Einsatzmaßnahmen optimal zu nutzen und damit die Schäden in der Umgebung zu begrenzen, die bei einem schweren Unfall entstehen können. Dabei beschreibt der Katastrophenschutzplan die der Planung zugrundeliegende Ausgangslage, das gefährdete Gebiet, die Aufgaben der Gefahrenabwehr und die Zusammenarbeit der zuständigen Behörden und Einrichtungen. Kerntechnische Anlage Kerntechnische Anlagen sind ortsfeste Anlagen, die eine Genehmigung nach Atomgesetz benötigen. Hierunter fallen im eigentlichen Sinn Anlagen zur Erzeugung, Bearbeitung, Verarbeitung, Spaltung oder Aufbewahrung von Kernbrennstoffen oder zur Aufarbeitung bestrahlter Kernbrennstoffe, die alle eine Genehmigung nach § 7 des Atomgesetzes benötigen. Gemäß § 2 Abs. 3a des Atomgesetzes gelten außerdem folgende Einrichtungen als „kerntechnische Anlagen“: Anlagen zur Aufbewahrung von bestrahlten Kernbrennstoffen nach § 6 Abs. 1 oder Abs. 3 Atomgesetz, Anlagen zur Zwischenlagerung für radioaktive Abfälle, wenn die Zwischenlagerung direkt mit einer vorstehend bezeichneten kerntechnischen Anlage in Zusammenhang steht und sich auf dem Gelände der Anlage befindet. Einrichtungen, in denen mit Kernbrennstoffen sonst umgegangen wird (nach § 9 des Atomgesetzes), werden gelegentlich als „kerntechnische Einrichtung im weiteren Sinn“ in die Definition einbezogen. Kernbrennstoffe Was unter den Begriff „Kernbrennstoff“ zu verstehen ist, wird in § 2 Abs. 1 des Atomgesetzes genauer definiert. Danach sind Kernbrennstoffe eine Teilgruppe der radioaktiven Stoffe , und zwar “besondere spaltbare Stoffe“ u.a. in Form von Plutonium 239, Plutonium 241 oder mit den Isotopen 235 oder 233 angereichertem Uran. Mehr zu Kernbrennstoffen wird hier angeboten. Kerntechnisches Regelwerk Die Nutzung der Kernenergie ist in Deutschland durch verschiedene Gesetze, Verordnungen, Regelungen, Leit- und Richtlinien geregelt. Unterhalb der Gesetzes- und Verordnungsebene werden die Anforderungen durch das kerntechnische Regelwerk weiter konkretisiert. Weitere Informationen, u.a. auch zur Regelwerkspyramide, finden sich auf den Internetseiten des Bundesamtes für die Sicherheit der nuklearen Entsorgung (BASE) . Kontamination Gemäß § 3 Abs. 2 Nr. 19 der Strahlenschutzverordnung eine Verunreinigung von Arbeitsflächen, Geräten, Räumen, Wasser, Luft usw. durch radioaktiven Stoffe . Unter Oberflächenkontamination versteht man die Verunreinigung einer Oberfläche mit radioaktiven Stoffen. Für Zwecke des Strahlenschutzes wird bei der Oberflächenkontamination zwischen festhaftender und nicht festhaftender (ablösbarer) Kontamination unterschieden. Bei nicht festhaftender Oberflächenkontamination kann nicht ausgeschlossen werden, dass sich radioaktive Stoffe ablösen und verbreitet werden.“ Kontrollbereich siehe Strahlenschutzbereich Landessammelstelle Berlin (ZRA) Der Gesetzgeber verpflichtet jedes Bundesland eine Landessammelstelle für radioaktive Abfälle einzurichten. Diese nimmt Abfälle aus Medizin, Industrie und Forschung an, jedoch Betriebs- oder Stilllegungsabfälle von Kernkraftwerken oder anderen kerntechnischen Anlagen nur in speziell gelagerten Fällen mit besonderer Erlaubnis. Das Land Berlin hat dem Helmholtz-Zentrum Berlin den gesetzlichen Auftrag zum Betrieb der Berliner Landessammelstelle für radioaktive Abfälle, genannt „Zentralstelle für radioaktive Abfälle“, ZRA , übertragen. Die ZRA übernimmt folglich als Berliner Landessammelstelle schwach- und mittelradioaktive Abfälle , die z.B. bei Anwendern radioaktiver Stoffe in der Industrie, in der Medizin sowie in Forschung und Lehre des Landes Berlin anfallen. Mediator*in Der Begriff stammt aus dem Lateinischen und bedeutet “Vermittler“. Umgangssprachlich wird ein Mediator*in auch als Streitschlichter*in bezeichnet, da die Aufgabe darin besteht, einen Konflikt zwischen mehreren Parteien friedlich zu lösen. Meist gestaltet sich die Lösung in Form eines Kompromisses oder eines Vergleichs. Megawatt (MW) siehe Watt . Meldekategorien (siehe auch meldepflichtiges Ereignis ) Gemäß der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung werden meldepflichtige Ereignisse nach der Frist, in der die Aufsichtsbehörden unterrichtet werden müssen, in unterschiedliche Meldekategorien unterteilt. Sie werden im Einzelnen in den Anlagen 1 bis 5 der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung aufgeführt. Meldepflichtiges Ereignis Vorkommnis, das nach der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung der zuständigen Aufsichtsbehörde zu melden ist. Es handelt sich dabei bei weitem nicht nur um Unfälle oder Störfälle; diese machen erfahrungsgemäß nur einen sehr kleinen Bruchteil der meldepflichtigen Ereignisse aus. Zu melden sind (als „Normalmeldung“) unter anderem alle Abweichungen vom Normalzustand, die eine sicherheitswichtige Einrichtung beeinträchtigen könnten, auch wenn selbst deren Ausfall noch keine Gefahr darstellen würde. Ein Beispiel für eine Normalmeldung bei einem Forschungsreaktor (Bericht Seite 3 und 7) finden Sie hier . Wesentlichere Befunde sind als Eilmeldung oder gar als Sofortmeldung in das Meldesystem einzubringen. Meldepflichtige Ereignisse werden entsprechend in verschiedene Meldekategorien unterteilt. Weitere Informationen stellt das Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) hier . Mikrosievert Sievert ist die Maßeinheit der effektiven Dosis , benannt nach dem schwedischen Mediziner und Physiker Rolf Sievert. 1 Mikrosievert (µSv) sind 0,000 0001 Sievert (Sv). Bsp.: Eine Zahnaufnahme erzeugt pro Anwendung eine Dosis von weniger als 10 µSv. Millisievert 1 Millisievert (mSv) sind 1000 Mikrosievert (µSv) oder 0,001 Sievert (Sv). Bsp.: Die Dosis einer Ganzkörper-Computertomographie eines Erwachsenen beträgt pro Anwendung ca. 10 mSv. Mittelradioaktive Abfälle siehe Radioaktiver Abfall Neutronen Neutronen sind ungeladene Elementarteilchen. Sie werden insbesondere bei der Kernspaltung freigesetzt. Die Kernspaltung ist nur für schwere Atomkerne (z.B. vom Element Uran) charakteristisch. Die Neutronenstrahlung besitzt wie die Gammastrahlung ein hohes Durchdringungsvermögen und erfordert zur Abschirmung ebenfalls einen stärkeren Einsatz von Abschirmmaterialien. Mehr zu Neutronen und Neutronenstrahlung finden Sie hier . Organdosis Die Organdosis berücksichtigt die unterschiedliche biologische Wirksamkeit verschiedener Arten ionisierender Strahlung (bei gleicher Energiedosis). Sie ist das Produkt aus der Organ-Energiedosis und dem Strahlungs-Wichtungsfaktor. Beim Vorliegen mehrerer Strahlungsarten ist die gesamte Organdosis die Summe der ermittelten Einzelbeiträge. Die Einheit der Organdosis ist J/kg mit dem speziellen Namen Sievert (Sv). Ortsdosis Ortsdosis ist eine operative Messgröße zur Abschätzung der Strahlenmenge an einem Ort und ist definiert als die Äquivalentdosis für Weichteilgewebe (z.B. Fettgewebe und Muskelgewebe), gemessen an einem bestimmten Ort. Ortsdosisleistung (ODL) Die Ortsdosisleistung ist die pro Zeitintervall erzeugte Ortsdosis. Die Ortsdosis ist die Äquivalentdosis für Weichteilgewebe (z.B. Muskelgewebe oder Fettgewebe), gemessen an einem bestimmten Ort. Personendosis Personendosis ist eine operative Messgröße zur Abschätzung der von einer Person erhaltenen Dosis und ist definiert als die Äquivalentdosis gemessen an einer repräsentativen Stelle der Körperoberfläche. Personendosimeter Messgeräte zur Bestimmung der Personendosis als Schätzwert für die Körperdosis einer Person durch externe Bestrahlung (§§ 66 und 172 StrlSchV ). Radioaktiver Stoff Radioaktive Stoffe ( Kernbrennstoffe und sonstige radioaktive Stoffe) im Sinne von § 2 Abs. 1 des Atomgesetzes sind alle Stoffe, die folgende Bedingungen erfüllen: Sie enthalten ein oder mehrere Radionuklide und ihre Aktivität oder spezifische Aktivität kann im Zusammenhang mit der Kernenergie oder dem Strahlenschutz nicht außer Acht gelassen werden. Wann die Aktivität oder spezifische Aktivität eines Stoffes nicht außer Acht gelassen werden kann ist in den Regelungen des Atomgesetzes (§ 2 Absatz 2 AtG) oder der Strahlenschutzverordnung festgeschrieben. In der Bundesrepublik sind Stoffe mit zerfallenden Atomkernen daher kein „radioaktiver Stoff“, wenn in der Strahlenschutzverordnung festgelegt ist, festgelegt ist, dass die entstehende Strahlung unwesentlich ist. Solche Festlegungen findet man z.B. in § 5 der Strahlenschutzverordnung (StrlSchV). Das neue Strahlenschutzgesetz greift in seinem § 3 diese Definition aus dem Atomgesetz auf. Mehr zu Grenzwerten im Strahlenschutz finden Sie hier . Radioaktivität Radioaktivität ist die Eigenschaft bestimmter Stoffe, sich spontan (ohne äußere Wirkung) umzuwandeln (zu „zerfallen“) und dabei charakteristische Strahlung (ionisierende Strahlung) auszusenden. Die Radioaktivität wurde 1896 von Antoine Henri Becquerel an Uran entdeckt. Wenn die Stoffe, genauer gesagt, die Radionuklide, in der Natur vorkommen, spricht man von natürlicher Radioaktivität; sind sie ein Produkt von Kernumwandlungen in Kernreaktoren oder Beschleunigern, so spricht man von künstlicher Radioaktivität. Mehr über die Wirkung ionisierender Strahlung finden Sie hier . Röntgenstrahlung Durchdringende elektromagnetische Strahlung mit einem Frequenzspektrum (und Energie) zwischen Ultraviolettstrahlung und Gammastrahlung. Mehr zum Thema „Wie wirkt Röntgenstrahlung?“ finden Sie hier . Auch bei Röntgenstrahlung gelten die Grundsätze des Strahlenschutzes. Mehr dazu wird hier angeboten. Rückbauverfahren Der Abbauprozess einer kerntechnischen Anlage , welcher typischerweise aus verschiedenen Verfahrensschritten besteht, z.B. Dekontamination, Demontage, Gebäudeabriss. Sicherheitsbericht Der Sicherheitsbericht ist Teil der einzureichenden Antragsunterlagen zu Stilllegung und Rückbau einer kerntechnischen Anlage . Er legt die relevanten Auswirkungen des Vorhabens im Hinblick auf die kerntechnische Sicherheit und den Strahlenschutz dar. Er soll außerdem Dritten die Beurteilung ermöglichen, ob die mit der Stilllegung und dem Abbau verbundenen Auswirkungen sie in ihren Rechten verletzen könnten. Sperrbereich siehe Strahlenschutzbereich Stilllegung Die Stilllegung einer kerntechnischen Anlage besteht hauptsächlich aus dem Rückbau (siehe Rückbauverfahren ) des nuklearen Teils und der Entsorgung des radioaktiven Inventars „(Gesamtheit der in einer kerntechnischen Anlage enthaltenen radioaktiven Stoffe). Zielsetzung ist die Beseitigung der Anlage und Verwertung der Reststoffe so weit wie möglich. Stilllegungsverfahren Der Begriff „Stilllegungsverfahren“ bezeichnet den Gesamtprozess von der Einreichung des Grundantrages bis zur endgültigen Entlassung der kerntechnischen Anlage aus dem Atomgesetz. Strahlendosis siehe Dosis Strahlenexposition Ist ein Synonym für Strahlenbelastung. Bezeichnung für die Einwirkung ionisierender Strahlung auf Lebewesen oder Materie. Strahlenschutz (nur bezogen auf die schädigende Wirkung ionisierender Strahlung) Strahlenschutz dient dem Schutz von Menschen und Umwelt vor den schädigenden Wirkungen ionisierender Strahlung aus natürlichen oder künstlichen Strahlenquellen. Strahlenschutzbeauftragter Nach § 43 bis 44 der Strahlenschutzverordnung ( StrlSchV ) die Person, die neben dem Strahlenschutzverantwortlichen (Genehmigungsinhaber) in einem Betrieb für die Einhaltung der Strahlenschutzvorschriften im Rahmen seiner Befugnisse verantwortlich ist. Strahlenschutzbereich Strahlenschutzbereiche sind räumlich abgrenzbare Bereiche, die aus Strahlenschutzaspekten besonders überwacht und kontrolliert werden. Sie unterteilen sich in Überwachungsbereich, Kontrollbereich und Sperrbereich. Überwachungsbereich Nicht zum Kontrollbereich (und nicht zum Sperrbereich) gehörende betriebliche Bereiche, in denen Personen im Kalenderjahr eine effektive Dosis von mehr als 1 Millisievert oder eine Organ-Äquivalentdosis von mehr als 50 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 50 Millisievert: erhalten können. Der Zutritt zu einem Überwachungsbereich darf aus gesundheitlichen Gründen nur erlaubt werden, wenn Personen eine dem Betrieb dienende Aufgabe wahrnehmen oder ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs-, Begleit- oder Tierbegleitperson erforderlich ist, sie Auszubildende oder Studierende sind und der Aufenthalt in diesem Bereich zur Erreichung ihres Ausbildungszieles erforderlich ist oder sie Besucher sind. Kontrollbereich Sind Strahlenschutzbereiche, die aus Strahlenschutzaspekten besonders überwacht und kontrolliert werden und in denen Personen im Kalenderjahr eine effektive Dosis von mehr als 6 Millisievert oder eine Organ-Äquivalentdosis von mehr als 15 Millisievert für die Augenlinse oder 150 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 150 Millisievert erhalten können. Der Zutritt zu einem Kontrollbereich darf aus gesundheitlichen Gründen Personen nur erlaubt werden, wenn sie zur Durchführung oder Aufrechterhaltung der in diesem Bereich vorgesehenen Betriebsvorgänge tätig werden müssen, ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs-, Begleit- oder Tierbegleitperson erforderlich ist und eine zur Ausübung des ärztlichen, zahnärztlichen oder tierärztlichen Berufs berechtigte Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, zugestimmt hat oder bei Auszubildenden oder Studierenden dies zur Erreichung ihres Ausbildungszieles erforderlich ist. Sperrbereich Bereiche des Kontrollbereichs, in denen die Ortsdosisleistung höher als 3 Millisievert (mSv) durch Stunde sein kann. Der Zutritt zu einem Sperrbereich darf aus gesundheitlichen Gründen nur erlaubt werden, wenn sie zur Durchführung der in diesem Bereich vorgesehenen Betriebsvorgänge oder aus zwingenden Gründen tätig werden müssen und sie unter der Kontrolle eines Strahlenschutzbeauftragten oder einer von ihm beauftragten Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, stehen oder ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs- oder Begleitperson erforderlich ist und eine zur Ausübung des ärztlichen oder zahnärztlichen Berufs berechtigte Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, schriftlich zugestimmt hat. Es gelten spezielle Reglungen für Schwangere. Umweltverträglichkeitsprüfung (UVP) Umweltverträglichkeitsprüfung im Stilllegungsgenehmigungsverfahren des Forschungsreaktors BER II: Die Durchführung einer UVP dient der frühzeitigen Feststellung, Erkennung und Bewertung der möglichen Auswirkungen des Rückbaus des Reaktors für Menschen, Tiere, Pflanzen sowie auf die Qualität der Böden, Luft, Gewässer, Klima, Landschaft, Kulturgüter und sonstige Schutzgüter. Die Durchführung der UVP ist bei der Stilllegung von Reaktoranlagen ab 1 kW thermischer Dauerleistung gesetzlich vorgeschrieben (vgl. der Forschungsreaktor BER II hat eine thermische Dauerleistung von 10 Megawatt ). Überwachungsbereich siehe Strahlenschutzbereich Watt Maßeinheit für Leistung. Der Forschungsreaktor BER II hat eine Nennleistung von 10 MW. Zum Vergleich: Ein mittleres Kernkraftwerk hat eine Nennleistung von ca. 1.400 MW. 1 Megawatt (MW) = 1.000.000 Watt (W) > 1 Gigawatt (GW) = 1.000 Megawatt (MW) = 1.000.000 Kilowatt (kW) = 1.000.000.000 Watt (W) Wetterparameter Ist eine Größe wie Temperatur, Windstärke oder Niederschlagsmenge, mit deren Hilfe eine Aussage über die Wetterverhältnisse gewonnen werden kann. Das spielt eine Rolle zum Beispiel bei der Vorhersage der Ausbreitung radioaktiver Stoffe nach einer Freisetzung. ZRA Die Zentralstelle für radioaktive Abfälle (ZRA) betreibt als Institution der Helmholtz-Zentrum Berlin GmbH die Landessammelstelle Berlin. Das Atomgesetz verpflichtet jedes Bundesland, eine Landessammelstelle zur Zwischenlagerung der in seinem Gebiet angefallenen radioaktiven Abfälle einzurichten. Zwischenlager Lagerort für radioaktive Abfälle, die aufbewahrt werden müssen, bis man sie an ein Endlager abgeben kann. Es werden Zwischenlager für hochradioaktive Abfälle ( Brennelemente und Wiederaufarbeitungsabfälle) und Zwischenlager für schwach- und mittelradioaktive Abfälle unterschieden.

Radon im Uranbergbau: Noch Jahrzehnte Krebsrisiko für ehemalige Beschäftigte

Radon im Uranbergbau: Noch Jahrzehnte Krebsrisiko für ehemalige Beschäftigte Neue Daten der Wismut -Studie zu Arbeitern beim Uranabbau ausgewertet Bergarbeiter unter Tage beim Bohren im Wasser stehend Von Mitte der 1940er Jahre bis 1990 wurde in Sachsen und Thüringen Uran für die sowjetische Atomindustrie produziert – insgesamt 216.350 Tonnen. Die Arbeiter, die das Uran für das staatliche Unternehmen Wismut förderten, waren unter Tage zum Teil erheblichen Mengen des radioaktiven Gases Radon ausgesetzt. Viele starben deswegen an Lungenkrebs, und noch immer kommen neue Fälle hinzu. Laut einer aktuellen Auswertung der Todesursachen von Uranbergarbeitern der Wismut durch das Bundesamt für Strahlenschutz ( BfS ) sind auch im dritten Jahrzehnt nach Ende des Abbaus noch ehemalige Beschäftigte an den Folgen der Radon -Belastung gestorben. Wismut-Studie erforscht Auswirkungen von Radon im Uranbergbau Radon entsteht beim radioaktiven Zerfall von Uran und kann auch an anderen Arbeitsplätzen und in Wohngebäuden auftreten – dort allerdings in deutlich geringeren Mengen als im Uranbergbau. Das BfS untersucht das Gesundheitsrisiko durch Radon bereits seit den 1990er Jahren. Im Rahmen der sogenannten Wismut-Studie lässt es für fast 60.000 zwischen 1946 und 1989 im Uranbergbaubetrieb der Wismut Beschäftigte alle fünf Jahre feststellen, ob und an welcher Ursache sie verstorben sind. Wismut-Beschäftigte unter Tage Quelle: Wismut GmbH Auch in 2010er Jahren noch Todesfälle durch Radon Zu Beginn des Uranbergbaus waren die Wismut -Arbeiter unter Tage sehr hohen Radon -Konzentrationen ausgesetzt. In den 1960er Jahren wurde die Radon -Konzentration deutlich reduziert und der Strahlenschutz verbessert. Damit verringerte sich auch das Risiko, an Lungenkrebs zu erkranken. Der Beobachtungszeitraum der aktuellen Auswertung umfasst die Jahre 1946 bis 2018. In diesem Zeitraum starben insgesamt 4.329 Personen der Studiengruppe an Lungenkrebs. Knapp die Hälfte dieser Todesfälle sind den Berechnungen des BfS zufolge auf Radon zurückzuführen. Betrachtet man nur die Lungenkrebstodesfälle im Zeitabschnitt von 2010 bis 2018 – also grob das dritte Jahrzehnt nach Ende des Uranbergbaus – gehen etwa 25 Prozent auf Radon zurück. Beschränkt man die Analysen auf die Gruppe der Bergarbeiter, die ihre Tätigkeit ab 1960 aufnahmen und deutlich weniger Radon ausgesetzt waren, sind insgesamt etwa ein Drittel der bisher aufgetretenen Lungenkrebstodesfälle dem radioaktiven Gas zuzuschreiben. Für die im Zeitabschnitt von 2010 bis 2018 aufgetretenen Fälle liegt dieser Anteil bei 19 Prozent. BfS-Präsidentin Dr. Inge Paulini Radon birgt langfristiges Gesundheitsrisiko " Dass Radon in der Atemluft zu Lungenkrebs führen kann und dass das Risiko mit der Höhe der Radon-Konzentration und der Aufenthaltsdauer steigt, ist zweifelsfrei erwiesen ", sagt BfS -Präsidentin Inge Paulini. Mit der aktuellen Auswertung liefere die Wismut -Studie der Wissenschaft einen weiteren Baustein, um den Zusammenhang zwischen Radon -Belastung und Lungenkrebsrisiko genauer zu beziffern. Aus der Wismut -Studie und anderen Untersuchungen sei ebenfalls bekannt, dass das Erkrankungsrisiko auch wieder zurückgehen könne. Je länger die berufliche Radonbelastung zurückliege, desto niedriger werde das Risiko. " Die Auswertung zeigt deutlich, dass das Risiko aber selbst nach langer Zeit nicht wieder auf null sinkt. Das unterstreicht: Radon ist ein ernstzunehmendes Gesundheitsrisiko, gegen das man sich schützen sollte. Das gilt nicht nur im Uranbergbau, sondern überall, wo Menschen erhöhten Radon-Mengen ausgesetzt sind. Das können sowohl Wohnräume als auch Arbeitsplätze sein ", betont Paulini. Erhöhte Radon -Werte in der Atemluft können in allen Innenräumen auftreten. Unter www.bfs.de/radon informiert das BfS darüber, welche Regionen und Gebäude besonders gefährdet sind, wie man Radon an Arbeitsplätzen und in Wohnräumen nachweisen und wie man sich dagegen schützen kann. Stand: 15.09.2023

Urteil des Bundesverfassungsgerichts über die Klagen der Atomkonzerne gegen das Atomausstiegsgesetz von 2011

Am 6. Dezember 2016 entschied das Bundesverfassungsgericht in Karlsruhe, dass das "Dreizehnte Gesetz zur Änderung des Atomgesetzes vom 31. Juli 2011" zum endgültigen Ausstieg aus der Atomkraft für die Atomindustrie weitgehend zumutbar ist. Jedoch stehe den Energiekonzernen wegen des beschleunigten Atomausstiegs nach der Katastrophe von Fukushima eine "angemessene" Entschädigung zu. Dem Urteil zufolge muss der Gesetzgeber bis Ende Juni 2018 eine entsprechende Regelung schaffen. Mit der Entscheidung des Verfassungsgerichtes wird den Unternehmen Eon, RWE und Vattenfall noch kein Geld zugesprochen. Sie schafft aber die Grundlage dafür, um Ansprüche außergerichtlich oder in weiteren Prozessen durchzusetzen.

IKT for E-Mobility II: Smart Car - Smart Grid - Smart Traffic (IKT EM II), Vorhaben: Systemische Integration Elektromobilität - Anwendungsfall- und User-Story-Analyse

Das Projekt "IKT for E-Mobility II: Smart Car - Smart Grid - Smart Traffic (IKT EM II), Vorhaben: Systemische Integration Elektromobilität - Anwendungsfall- und User-Story-Analyse" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: VDE Verband der Elektrotechnik Informationstechnik e.V., DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE, SUF Ausschuss Sicherheits- und Unfallforschung.Elektromobilität bringt als disruptive Innovation einen weitreichenden Umbruch etablierter Wertschöpfungsnetzwerke und Industriestrukturen mit sich. Die zentrale industriepolitische Aufgabe ist es, diesen Umbruch so zu gestalten, dass die Wettbewerbsfähigkeit Deutschlands in den Kernindustrien Automobil, Energie und Kommunikation gesichert und ausgebaut wird. Daher müssen verschiedene Branchen miteinander vernetzt werden, um einen effizienten und übergreifenden Wissensaustausch zu ermöglichen. Dieses Ziel wird mit Anwendungsfällen (en: Use Cases) erreicht, da mit dieser Methodik eine gemeinsame Semantik und allgemeine Beschreibung der Anforderungen an ein System entwickelt werden. Zusammen mit den Teilprojekten der Förderinitiative IKT für Elektromobilität II und der interessierten Fachöffentlichkeit wird ein initialer Satz an Anwendungsfällen zusammengestellt. Darauf aufbauend werden generische Anwendungsfälle erarbeitet und in einem Use Case Management Repository (UCMR) abgelegt. Auf Basis dieser Anwendungsfälle wird eine funktionale Architektur entwickelt mit Hilfe derer systematisch Normungsbedarf und Innovationshürden, sowie projektübergreifende Zusammenarbeiten ermittelt werden können. Anhand der Use-Case-Sammlung lassen sich individuelle User Stories und herstellerspezifische Geschäftsmodelle durch die interessierten Kreise entwickeln ohne Preisgabe von Interna.

H2020-EU.3.5. - Societal Challenges - Climate action, Environment, Resource Efficiency and Raw Materials - (H2020-EU.3.5. - Gesellschaftliche Herausforderungen - Klimaschutz, Umwelt, Ressourceneffizienz und Rohstoffe), Hybrid cooling system for semiconductor detectors of X- and Gamma- Rays (SEMICOOL-H)

Das Projekt "H2020-EU.3.5. - Societal Challenges - Climate action, Environment, Resource Efficiency and Raw Materials - (H2020-EU.3.5. - Gesellschaftliche Herausforderungen - Klimaschutz, Umwelt, Ressourceneffizienz und Rohstoffe), Hybrid cooling system for semiconductor detectors of X- and Gamma- Rays (SEMICOOL-H)" wird/wurde ausgeführt durch: Baltic Scientific Instruments Sia.

Greenpeace-Studie: Lessons from Fukushima

Die Umweltschutzorganisation Greenpeace veröffentlichte am 28. Februar 2012 in Tokio den wissenschaftlichen Bericht "Lessons from Fukushima", der die Geschehnisse nach der Reaktorkatastrophe am 11. März 2011 nachvollzieht und aufzeigt, dass nicht die Naturkatastrophe für das Ausmaß des Unglücks verantwortlich war, sondern das institutionelle Versagen der japanischen Regierung, der Aufsichtsbehörden und der Atomindustrie.

USA planen Neubau von Atomkraftwerken

Am 16. Februar 2010 hat Präsident Barack Obama der Atomwirtschaft staatliche Millionenkredite zugesagt. Mit den Krediten sollen erstmals seit 30 Jahren zwei Reaktoren im Bundesstaat Georgia gebaut werden.

Erste Bank für Atombrennstoffe gegründet

Russland und die Internationale Atomenergiebehörde (IAEA) haben die weltweit erste Bank für Atombrennstoffe ins Leben gerufen. Die neue Bank wird allen Mitgliedsstaaten der IAEA schwach angereichertes Uran zur Verfügung stellen. Voraussetzung ist, dass die jeweiligen Interessenten die Verpflichtungen des Atomwaffensperrvertrages erfüllen und das Brennmaterial lediglich in Atomkraftwerken verwenden. Zudem soll die Bank nur als Reserve dienen, falls ein Land aus irgendeinem Grund nicht am freien Markt Uran kaufen kann.

1 2 3 4 5