API src

Found 956 results.

Related terms

Atmosphaerische Chemie

Das Projekt "Atmosphaerische Chemie" wird/wurde gefördert durch: Bundesministerium für Forschung und Technologie / Kernforschungsanlage Jülich GmbH. Es wird/wurde ausgeführt durch: Kernforschungsanlage Jülich GmbH, Institut für Chemie.Untersuchungen ueber die Verteilung von Spurenstoffen in der Atmosphaere werden im Institut fuer Chemie (ICH3) durchgefuehrt. Es erfolgt die Aufklaerung der Produktions- und Abbauprozesse und Modellrechnung zur Voraussage von Auswirkungen anthropogener Stoerungen. Folgende Themen werden schwerpunktmaessig bearbeitet: a) Entwicklung von Messverfahren fuer Radikale und Messungen in der Troposphaere und Stratosphaere mit folgenden Methoden: Laserresonanzfluoreszenz (fuer OH), vergleichende Absorptionsspektroskopie auf langen optischen Wegen (fuer OH), Matrix-Isolation und Elektronenspinresonanzspektroskopie (fuer HO2, NO2, RO2). b) Messung von langlebigen Spurengasen in der Atmosphaere mit gaschromatischen Methoden (z.B. CO, CH4, H2, N2O, CFCl3, CF2Cl2, CO2). c) Erarbeitung von chemischen und physikalisch-optischen Methoden zur Messung von kurzlebigen Spurengasen wie SO2, HNO3, NH4, CH2O, NO2 und Bestimmung ihrer Depositionsrate auf natuerliche bewachsene Boeden. d) Untersuchungen zum Isotopengehalt verschiedener Spurengase zur Aufklaerung ihres atmosphaerischen Kreislaufs (z.B. D in H2 und CH4, 13C in CO, CH4). Besondere Bedeutung hat die Messung von 14C im atmosphaerischen CO, weil sie Daten zur mitteleren globalen OH-Radikalkonzentration liefert. e) Entwicklung eines ein- und zweidimensionalen Modells zur Interpretation der Radikalmessungen, zur Untersuchung von Abbauprozessen in der Troposphaere und zur Voraussage der anthropogenen Stoerung der Ozonschicht.

Messung des bodennahen Ozons

Das Projekt "Messung des bodennahen Ozons" wird/wurde gefördert durch: Universität Köln. Es wird/wurde ausgeführt durch: Universität Köln, Institut für Geophysik und Meteorologie.Die laufende Messung des bodennahen Ozons ist in einer Grossstadt von grosser Bedeutung fuer Umweltfragen. Die Konzentration des bodennahen Ozons ist ein empfindlicher Modikator fuer stagnierende Luft. Ozonwerte, die wesentlich ueber dem Durchschnitt liegen, weisen auf eine Smoglage hin.

Einfluss der Großflughäfen auf zeitliche und räumliche Verteilungen von Ultrafeinstaub kleiner als 100 nm im Großraum Berlin

Das Projekt "Einfluss der Großflughäfen auf zeitliche und räumliche Verteilungen von Ultrafeinstaub kleiner als 100 nm im Großraum Berlin" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Leibniz-Institut für Troposphärenforschung e.V..Großflughäfen sind eine relevante Quelle kurzlebiger Luftschadstoffe. Ihr quantitativer Beitrag zur gesundheitlichen Belastung der Anwohner ist besonders dort mit Unsicherheiten behaftet, wo auch andere Verursacher existieren, bspw. in Großstädten. Feldmessungen und Modellierungen sollen den Einfluss der Emissionen des Großflughafens Berlin Tegel (TXL) und BER auf die räumliche Verteilung folgender Schadstoffe vor und nach Schließung im Herbst 2020 untersuchen: Ultrafeinstaub (UFP) und Black Carbon (Ruß) sowie PM10, PM2,5 und NO2. Es werden drei stationäre Messstationen über ca. 2 Jahre im Umfeld von BER betrieben. In Bezug auf UFP (Partikelanzahlkonzentration und -verteilung) werden der Gesamtanteil und der nichtflüchtige Anteil gemessen. Zusätzlich werden mobile Messsysteme in mehrwöchigen Messkampagnen die räumliche Verteilung der Schadstoffe in der Abluftfahne von BER bestimmen. Die Ausbreitungsmodellierung wird mit einem Raster von 500 m für den Großraum Berlin sowie feiner aufgelöst (ca. 200 m) im Umfeld TXL und zum Teil für Schönefeld (SXF) bzw. den geplanten Berliner Großflughafen BER durchgeführt werden. Bereits entwickelte modulare Modellansätze (u.a. mittels LASPORT) sollen genutzt werden: Ausbreitung von nichtflüchtigen UFP im Umfeld von Flughäfen aufgrund Straßenverkehrs- und Flughafenaktivitätsdaten mit Lagrange Modellen. Hintergrundbelastung: Chemietransportmodelle inkl. Partikelklassen bzw. -moden. Für jedes Rasterquadrat wird ein Jahresmittelwert (1 h Basis) erstellt inkl. Herkunftsanteile. Für die Standorte der Messstationen und für Messorte der Kohorten in der BEAR-Studie werden 1h-Zeitreihen bereitgestellt. Zur Validierung des Hintergrundes werden Daten der UBA Station Neuglobsow herangezogen. Außerdem beteiligt: Senatsverwaltung für Umwelt, Verkehr und Klimaschutz: für Umgebung Flughafen, Flughafen Berlin Brandenburg (FBB) für SXF Ein Begleitkreis wird gebildet.

Experimentelle Erfassung der Vorgaenge in der atmosphaerischen Grenzschicht ueber Land

Das Projekt "Experimentelle Erfassung der Vorgaenge in der atmosphaerischen Grenzschicht ueber Land" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Meteorologisches Institut.Die Struktur des unteren Teils der Atmosphaere, der Grenzschicht (unser Hauptlebensraum) wird durch wetterbedingte Aenderungen, Untergrundeigenschaften, einen ausgepraegten Tagesgang und durch zusaetzliche menschliche Taetigkeit hervorgerufene Einfluesse bestimmt. Die Veraenderung der Schichtung, des Turbulenzzustands und der vertikalen turbulenten Transporte, Waerme und Bewegungsgroesse sowie ihre gegenseitige Abhaengigkeit werden - neben speziellen Erscheinungen (z.B. interne Schwerewellen) mit der meteorologischen Messanlage an dem 300 m hohen Sendemast des NDR in Hamburg-Billwerder mit Schallradargeraeten und mit einem Barovariographennetz untersucht. Dabei werden auch wichtige Parameter fuer Simulationsmodelle zur Ausbreitung von Schadstoffen in der Atmosphaere - insbesondere im Stadtgebiet - gewonnen.

Bestimmung der Ausbreitungsverhaeltnisse fuer ein Kernkraftwerk

Das Projekt "Bestimmung der Ausbreitungsverhaeltnisse fuer ein Kernkraftwerk" wird/wurde gefördert durch: Ministerium für Arbeit und Soziales Baden-Württemberg. Es wird/wurde ausgeführt durch: Landesanstalt für Umweltschutz Baden-Württemberg.Bestimmung der meteorologischen Parameter des Kernkraftwerks Obrigheim.

Modellierung der Ausbreitung von Mikroorganismen aus Abfallbehandlungsanlagen

Das Projekt "Modellierung der Ausbreitung von Mikroorganismen aus Abfallbehandlungsanlagen" wird/wurde gefördert durch: GEO CONSULT. Es wird/wurde ausgeführt durch: Universität Gießen, Institut für Pflanzenbau und Pflanzenzüchtung II, Professur für Biometrie und Populationsgenetik.Abfallbehandlungsanlagen sind Emitenten von Schadstoffen, Geruchsstoffen aber auch von Mikroorganismen, die entweder schaedlich oder doch zumindest laestig sind. In der aktuellen Diskussion um die Unbedenklichkeit von Kompost- oder Muelltrennungsanlagen spielt die Frage eine Rolle, inwieweit Anwohner durch eine Mikroorganismenausbreitung von entsprechenden Anlagen betroffen sind. Bei der Erstellung von Gutachten zu dieser Frage zeigte sich, dass neben einer Verbesserung der Messmethodik auch die Prognose der Mikroorganismenimmission noch optimiert werden kann. Aus diesem Grund wurden erste Modellanpassungen vorgenommen. Zeitgleich wurde eine ausfuehrliche Literaturrecherche als Diplomarbeit durchgefuehrt, mit der gezeigt werden konnte, dass der gesamte Bereich der Mikroorganismenemission weiter erforscht werden muss. Ein Vergleich verschiedener Modellvarianten ist vorgesehen und soll im Rahmen eines Verbundprojekts (mit Herrn Prof. Kaempfer - Uni Giessen, Herrn Dr. Martins - GEO Consult) beim Umweltbundesamt beantragt werden.

Gutachterliche Stellungnahme zur Emissions- und Immissionssituation in der Umgebung der geplanten Deponie Greiling

Das Projekt "Gutachterliche Stellungnahme zur Emissions- und Immissionssituation in der Umgebung der geplanten Deponie Greiling" wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..Die vorliegende Stellungnahme befasst sich mit der planfestgestellten Hausmuelldeponie bei Greiling in Oberbayern (Bad Toelz). Wegen der Naehe zur umliegenden Wohnbebauung (ca. 250m) wurden die Geruchsemissionen und -immissionen in der Umgebung der geplanten Deponie untersucht. Eine Abschaetzung und Beurteilung der in einem bereits existierenden Gutachten vorgenommenen Annahmen und Berechnungen fuehrte teilweise zu unterschiedlichen Ergebnissen. Dies betrifft insbesondere die Bedeutung von kleineren Stoerungen an der abgeschlossenen Deponie, die Emissionen aus dem Deponiebetrieb sowie die zugrundegelegten Ausbreitungsverhaeltnisse von Schadstoffen und deren Abbildung mit Ausbreitungsmodellen. Insgesamt laesst sich eine positive Eignung des planfestgestellten und in erster Gerichtsinstanz bestaetigten Standortes aus den vorliegenden und vom Deutschen Wetterdienst zu erhaltenden Ergebnissen nicht ableiten.

Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Räumlich-zeitliche Variabilität von Schwerewellen-Quellen (SV)

Das Projekt "Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Räumlich-zeitliche Variabilität von Schwerewellen-Quellen (SV)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt.Das Projekt Quellvariabilität (Source Variability; SV) hat das Ziel zu verstehen wie Schwerewellenquellen zur globalen Verteilung von Schwerewellen beitragen. Hierfür kombinieren wir Beobachtungen und Modellierung: Beobachtungen bilden den Bezug zur Wirklichkeit. Um Verständnis zu erzielen, benötigen wir Theorie, und für quantitatives Verständnis, ein Prozessmodell das gegen die Daten getestet wird. Daher werden globale Verteilungen aus drei Datenquellen verglichen: 1.) Eine Kombination von dedizierten Modellen für Schwerewellenquellen mit Modellen für die Ausbreitung von Schwerewellen, 2.) Schwerewellen, die in UA-ICON explizit aufgelöst werden und 3.) Fernerkundungsdaten verschiedener Satelliten. Modellergebnisse von Quellen und Ausbreitung werden Messungen gegenübergestellt und so freie Parameter der Modelle bestimmt. Umgekehrt lässt sich anhand der Modelldaten bestimmen, in welchen Regionen und Höhenbereichen, bzw. zu welchen Jahreszeiten Schwerewellen aus welchen Quellen für den Impulsfluss und für die Beschleunigung des Hintergrundwindes überwiegen. Je feiner das Modellgitter wird, desto größer wird der Teil des Wellenspektrums, der von ICON aufgelöst wird. Ob die aufgelösten Schwerewellen tatsächlich realistisch sind, wird durch Vergleich mit Satellitendaten überprüft. Quellen in ICON lassen sich identifizieren, indem die Wellen anhand von Strahlverfolgung zu potentiellen Quellprozessen zurückverfolgt werden oder indem man mit Modellierung von Wellenquellen vergleicht. Mögliche Abweichungen der in ICON aufgelösten Schwerewellen von den Beobachtungen lassen sich so diagnostizieren und Ansätze für eine verbesserte Repräsentation entwickeln. Ein besonderer Schwerpunkt soll auf die Interaktion von Orographie und spontaner Imbalanz gelegt werden: Während der GW-LCycle Kampagne wurden einzigartige 3D Messungen mit dem GLORIA Instrument aufgenommen. In mehreren Forschungsflügen haben wir Anzeichen für das Zusammenwirken beider Quellen. Alle Vergleiche zwischen Modellierung und Messung im Projekt SV berücksichtigen den Beobachtungsfilter: insbesondere globale Messungen liefern eine Unterschätzung des Impulsflusses. Verglichen werden sowohl Mittelwerte des Impulsflusses und deren zeitliche Variation (z.B. Jahresgang), aber auch die Intermittenz, d.h. die Verteilung der Schwerewellen bzgl. Häufigkeit und Größe des Impulsflusses der einzelnen Wellen. Unser Ziel ist, für jede Auflösung von ICON die Effekte von Schwerewellen möglichst korrekt zu beschreiben, entweder durch die direkt vom Modell aufgelösten Wellen oder durch eine Parametrisierung von hier entwickelten und angepassten Wellenquellen in Kombination mit dem Ausbreitungsmodell MS-GWAM. MS-GWaM wird im Projekt 3DMSD entwickelt und in ICON integriert. Eine Besonderheit von MS-GWaM ist, dass direkte transiente Wechselwirkung mit dem Hintergrund berücksichtigt wird.

Bedeutung der stabilen Bodenluftschichten fuer die Ausbreitung gasfoermiger Schadstoffe

Das Projekt "Bedeutung der stabilen Bodenluftschichten fuer die Ausbreitung gasfoermiger Schadstoffe" wird/wurde gefördert durch: Freie und Hansestadt Hamburg, Senat. Es wird/wurde ausgeführt durch: Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Meteorologisches Institut.Untersuchung der Hoehenabhaengigkeit gefaehrlicher Schadstoffmaximalkonzentrationen (Schwefeldioxid); Einfluss der Inversionswetterlagen auf die Hoehenlage (100-300 Meter) der Maximalkonzentration; begrenzte Repraesentanz von Bodenwerten; Wirkung auf Hochhaeuser und Fernwirkung auf Randgebiete; physikalisch-mathematische Modelle; Methode: gleichzeitige Messungen der atmosphaerischen Schichtung der Turbulenzparameter und des Schwefeldioxidgehalts an einem 300 Meter hohen Mast.

Entwicklung einer numerischen Pollenflugvorhersage

Das Projekt "Entwicklung einer numerischen Pollenflugvorhersage" wird/wurde ausgeführt durch: Deutscher Wetterdienst (DWD) - Zentrum für Medizin-Meteorologie Forschung Freiburg.Die Zahl der von Pollenallergien Betroffenen ist in den letzten Jahren gestiegen. Nach Angaben des Deutschen Allergie- und Asthmabundes e. V. leiden 16 % der deutschen Bevölkerung unter einer Pollenallergie, Tendenz steigend. Vor allem die Pollen der Frühblüher (Hasel, Erle, Birke) sowie Gräser- und Kräuterpollen (Beifuß, Ambrosia) gehören zu den Hauptauslösern einer Pollenallergie. Allergische Reaktionen können unbehandelt zu chronischen Beschwerden und Erkrankungen führen (allergische Rhinitis, Asthma bronchiale). Damit verbunden sind steigende medizinische Kosten, Verringerung der Leistungsfähigkeit und Einschränkungen in der Lebensqualität. Eine gezielte Medikation kann dabei helfen, die allergischen Beschwerden zu begrenzen. Dazu sind Informationen über den zu erwartenden Pollenflug notwendig. Räumlich höher aufgelöste Pollenflugvorhersagen sowie die Vorhersage von Ferntransport (z.B. Ambrosia) können mit dem Ausbreitungsmodell COSMO-ART bzw. ICON-ART gerechnet werden. COSMO-ART und ICON-ART sind online gekoppelte Modelle, die für die Ausbreitung von Aerosolpartikeln und reaktiven Gasen am KIT entwickelt wurden. Die Pollenflugmodellierung umfasst pflanzenbiologische Prozesse (z.B. Blühbeginn) sowie atmosphärische Prozesse (z.B. Transport, Sedimentation).

1 2 3 4 594 95 96