Nitrogen deposition in tropical areas is projected to increase rapidly in the next decades due to increase in N fertilizer use, fossil fuel consumption and biomass burning. As tropical forest ecosystems cover about 17 percent of the land surface and are responsible for about 40 percent of net primary production, even small changes in N (and consequently C) cycling can have global consequences. Until now studies an consequences of enhanced N input in tropical forest ecosystems have been very limited and even very rarely addressed its deleterious effects to the environment. There is undoubtedly a huge discrepancy between the expected increase in N deposition in the tropics and the present knowledge an how tropical forest ecosystems will react to this extra input of reactive N. Our research aims at quantifying the changes in processes of N retention (plant growth, biotic and abiotic N immobilization in the soil) and losses (gaseous N losses, nitrification, denitrification, leaching of different forms of dissolved N). Implementation of policy and management tools, like the international trading of carbon credits under the Kyoto Protocol, need researches that allow us to better understand the consequences of environmental change (N deposition) an forest productivity. Our research will have important implications for predicting future responses of forest C cycle to changes in N deposition, and for the role of N deposition in tropical forests to affect potential feedback mechanisms of CO2 fertilization and climate change.
P ist für alle Lebewesen ein lebensnotwendiges Nährelement. In terrestrischen Ökosystemen ist P häufig ein limitierender Nährstoff. Der P-Gehalt im Oberboden beeinflusst die Pflanzenartenvielfalt im Dauergrünland. P ist für die Eutrophierung von Oberflächengewässern hauptverantwortlich. Außerdem gehört P zu den knappen Rohstoffen. Die Preise für mineralische P-Dünger werden deshalb in Zukunft vermutlich weiter steigen. Ein effizienter Einsatz mineralischer P-Dünger ist daher sowohl aus Gründen des Natur- und Umweltschutzes als auch aus Kostengründen notwendig. Von einer ressourcenschonenden und umweltverträglichen Grünlandbewirtschaftung wird erwartet, dass die Düngung den P-Bedarf der Pflanzen deckt, gleichzeitig aber die P-Verluste durch Erosion, Abschwemmung und Auswaschung so gering wie möglich gehalten werden. Daher ist es notwendig, die Düngung an den zeitlichen und mengenmäßigen Nährstoffbedarf der Vegetation anzupassen. Um dieses Ziel zu erreichen, muss einerseits der saisonabhängige P-Bedarf der Pflanzen bekannt sein und andererseits die P-Dynamik im Boden berücksichtigt werden. Die P-Dynamik im Boden ist von vielen Bodeneigenschaften abhängig. Entscheidend sind vor allem pH-Wert, Bodenwasserhaushalt (Redoxpotential), Bodentemperatur und mikrobielle Aktivität (Phosphataseaktivität) im Boden. Für die Optimierung von P-Düngemaßnahmen sind daher Kenntnisse über die P-Dynamik im Boden und die verschiedenen P-Pools im Boden notwendig. Davon hängt die Ausnutzbarkeit und Ertragswirksamkeit der P-Dünger und somit die bedarfsgerechte Menge und der optimale Zeitpunkt der P-Düngung ab. Über die P-Dynamik im Boden in Abhängigkeit vom Bodenwasserhaushalt und die verschiedenen P-Pools in österreichischen Grünlandböden ist bisher noch wenig bekannt. Die Thematik ist aber von großer praktischer Relevanz, weil P ein knapper Rohstoff mit großer Umweltwirkung ist. Sowohl aus landwirtschaftlicher als auch aus wasserwirtschaftlicher Sicht stellen sich folgende Fragen: - Werden die verschiedenen P-Pools im Boden durch langjährige Düngung unterschiedlich angereichert? - Welchen Einfluss hat die Höhe der jährlich ausgebrachten P-Düngermenge? - Bestehen Unterschiede zwischen mineralischer und organischer Düngung? - Welche P-Pools im Boden werden bei fehlender Düngung bevorzugt abgereichert? - Bestehen hinsichtlich P-Pools Unterschiede zwischen verschiedenen Tiefenstufen im Boden? - Welchen Einfluss haben Grundwasserspiegelschwankungen und Veränderungen des Bodenwassergehaltes auf die P-Dynamik und P-Mobilität im Boden? - Haben feuchte und nasse Grünlandstandorte einen geringeren P-Düngerbedarf als wechselfeuchte oder frische Standorte? Für die Beantwortung dieser Fragen bieten sich Langzeitfeldversuche an. Langzeitfeldversuche wurden in Gumpenstein 1960 und in Admont 1946 angelegt. Die Düngungs- und Nutzungsgeschichte auf den einzelnen Versuchsparzellen ist bestens dokumentiert. (Text gekürzt)
This work has the aim to develop suitable technologies for processes able to recover heavy metals from contaminated fly-ashes and to evaluate their potential as well as the ecological and the economic side-constraints. The one topic of this project is to utilize the heavy metals concentrated in filter fly-ashes by separating them following the principles of heavy metal sublimation / condensation that will be gained from the project mentioned above. The biochemical part of the project investigates the potential of biochemical heavy metal separation from fly-ashes by dissolving them in organic acids. In a second step these dissolved heavy metals will be taken up by special bacteria strains that are able to upgrade them extra- or intracellular. These experiments will be carried out in collaboration with the Institute for Biotechnology at the Technical University of Graz.
Mit den erhobenen Messdaten wurde es möglich die Nährstoffeinträge in den Mondsee für 2 große Zubringer auch für vergangene Jahre zu berechnen. Die Messungen an 98 Punkten im Einzugsgebiet geben Aufschluss darüber wie sich die Phosphorkonzentration verhält und wie sich der Längsverlauf der drei großen Zubringer darstellt. Aus diesen Ergebnissen konnte man die durchschnittliche Nährstofffracht in den Mondsee abschätzen. Mit Hilfe dieses Parameters wurde der kritische Nährstoffeintrag für den Mondsee, der als oligotroph eingestuft wird, berechnet. Die Berechnungen haben ergeben, dass der Nährstoffeintrag in den Mondsee ziemlich genau dem kritischen Flächenaustrag entspricht. Die gemessenen Phosphorwerte im Seewasser ergeben ein ähnliches Bild in den letzten Jahren. Es tritt kaum eine Veränderung in der Phosphorkonzentration im Freiwasser auf, allerdings kann man den Trend nach dem Hochwasserjahr 2002 und dem trockenen Jahr 2003 gut erkennen, was bestätigt, dass bei gleich bleibendem Phosphoreintrag keine Verbesserung im See zu erwarten ist. Mit den erhobenen Zeitreihen konnte man einen Einblick gewinnen, wie sich die Phosphorkonzentration bei der Schneeschmelze verhält. Wassergesättigte Böden nach der Winterruhe, kein Niederschlag und trotzdem hohe Nährstoffkonzentrationen lassen den Schluss zu, dass besonders im Frühjahr Phosphor mobiler und leichter verfügbar ist als im restlichen Jahreskreis. Das bedeutet, dass das Ökosystem besonders im Frühling sehr sensibel reagiert. Die Nährstoffe nach Abklingen der Schneeschmelze aufzubringen, die natürliche Auswaschung abzuwarten, bringt weniger Auswaschung ins Gewässer und die später gedüngten Nährstoffe stehen vor Ort für das Pflanzenwachstum, besonders für den ersten Aufwuchs, zur Verfügung. Der Anteil an gelöstem Phosphor ist mit über 50 Prozent bei 70 Prozent der erhobenen Messwerte sehr hoch. Zu erwarten war, dass partikulär transportierter Phosphor den Hauptanteil an der Phosphorfracht hat. Dass ein großer Teil des Phosphors gelöst in den See gelangt macht ihn im aquatischen System schneller verfügbar und begünstigt das Algenwachstum. Die erhobenen Messwerte über das Abflussverhalten und die Phosphorkonzentration im Einzugsgebiet dienten als Basis für die Kalibrierung eines Modells zur Berechnung des mittleren jährlichen Nährstoffeintrags. Phosphorkonzentration, Phosphorfracht und Flächenaustrag wurden für die einzelnen Punkte im Einzugsgebiet für verschiedene Zeitpunkte berechnet. Um einen Teilaspekt des Wasserkreislaufs, die potentielle Evapotranspiration, in ihrer Größenordnung abschätzen zu können, wurden unterschiedliche Verdunstungsmodelle herangezogen. Mit der Bedingung, räumliche Unterschiede mit den Eingangsparametern erfassen zu können, um eine sinnvolle Anwendung in einem Geographischen Informationssystem zu ermöglichen, wurden die Berechnungen mit den vorhandenen klimatologischen Daten durchgeführt und ein Modell (WENDLING, 1984) als das beste ausgewählt.
To understand impacts of climate and land use changes on biodiversity and accompanying ecosystem stability and services at the Mt. Kilimanjaro, detailed understanding and description of the current biotic and abiotic controls on ecosystem C and nutrient fluxes are needed. Therefore, cycles of main nutrients and typomorph elements (C, N, P, K, Ca, Mg, S, Si) will be quantitatively described on pedon and stand level scale depending on climate (altitude gradient) and land use (natural vs. agricultural ecosystems). Total and available pools of the elements will be quantified in litter and soils for 6 dominant (agro)ecosystems and related to soil greenhouse gas emissions (CO2, N2O, CH4). 13C and 15N tracers will be used at small plots for exact quantification of C and N fluxes by decomposition of plant residues (SP7), mineralization, nitrification, denitrification and incorporation into soil organic matter pools with various stability. 13C compound-specific isotope analyses in microbial biomarkers (13C-PLFA) will evaluate the changes of key biota as dependent on climate and land use. Greenhouse gas (GHG) emissions and leaching losses of nutrients from the (agro)ecosystems and the increase of the losses by conversion of natural ecosystems to agriculture will be evaluated and linked with changing vegetation diversity (SP4), vegetation biomass (SP2), decomposers community (SP7) and plant functional traits (SP5). Nutrient pools, turnover and fluxes will be linked with water cycle (SP2), CO2 and H2O vegetation exchange (SP2) allowing to describe ecosystem specific nutrient and water characteristics including the derivation of full GHG balances. Based on 60 plots screening stand level scale biogeochemical models will be tested, adapted and applied for simulation of key ecosystem processes along climate (SP1) and land use gradients.
Dissolved organic matter (DOM) is one major source of subsoil organic matter (OM). P5 aims at quantifying the impact of DOM input, transport, and transformation to the OC storage in the subsoil environment. The central hypotheses of this proposal are that in matric soil the increasing 14C age of organic carbon (OC) with soil depth is due to a cascade effect, thus, leading to old OC in young subsoil, whereas within preferential flowpaths sorptive stabilization is weak, and young and bioa-vailable DOM is translocated to the subsoil at high quantities. These hypotheses will be tested by a combination of DOC flux measurements with the comparative analysis of the composition and the turnover of DOM and mineral-associated OM. The work programme utilizes a DOM monitoring at the Grinderwald subsoil observatory, supplemented by defined experiments under field and labora-tory conditions, and laboratory DOM leaching experiments on soils of regional variability. A central aspect of the experiments is the link of a 13C-leaf litter labelling experiment to the 14C age of DOM and OM. With that P5 contributes to the grand goal of the research unit and addresses the general hypotheses that subsoil OM largely consists of displaced and old OM from overlying horizons, the sorption capacity of DOM and the pool size of mineral-associated OM are controlled by interaction with minerals, and that preferential flowpaths represent 'hot spots' of high substrate availability.
Subproject 3 will investigate the effect of shifting from continuously flooded rice cropping to crop rotation (including non-flooded systems) and diversified crops on the soil fauna communities and associated ecosystem functions. In both flooded and non-flooded systems, functional groups with a major impact on soil functions will be identified and their response to changing management regimes as well as their re-colonization capability after crop rotation will be quantified. Soil functions corresponding to specific functional groups, i.e. biogenic structural damage of the puddle layer, water loss and nutrient leaching, will be determined by correlating soil fauna data with soil service data of SP4, SP5 and SP7 and with data collected within this subproject (SP3). In addition to the field data acquired directly at the IRRI, microcosm experiments covering the broader range of environmental conditions expected under future climate conditions will be set up to determine the compositional and functional robustness of major components of the local soil fauna. Food webs will be modeled based on the soil animal data available to gain a thorough understanding of i) the factors shaping biological communities in rice cropping systems, and ii) C- and N-flow mediated by soil communities in rice fields. Advanced statistical modeling for quantification of species - environment relationships integrating all data subsets will specify the impact of crop diversification in rice agro-ecosystems on soil biota and on the related ecosystem services.
Chromium (Cr) is introduced into the environment by several anthropogenic activities. A striking ex-ample is the area around Kanpur in the Indian state of Uttar Pradesh, where large amounts of Cr-containing wastes have been recently illegally deposited. Hexavalent Cr, a highly toxic and mobile contaminant, is present in significant amounts in these wastes, severely affecting the quality of sur-roundings soils, sediments, and ground waters. The first major goal of this study is to clarify the solid phase speciation of Cr in these wastes and to examine its leaching behavior. X-ray diffraction and synchrotron-based X-ray absorption spectroscopy techniques will be employed for quantitative solid phase speciation of Cr. Its leaching behavior will be studied in column experiments performed at un-saturated moisture conditions with flow interruptions simulating monsoon rain events. Combined with geochemical modeling, the results will allow the evaluation of the leaching potential and release kinetics of Cr from the waste materials. The second major goal is to investigate the spatial distribution, speciation, and solubility of Cr in the rooting zone of chromate-contaminated soils surrounding the landfills, and to study the suitability of biochar as novel soil amendment for mitigating the deleterious effects of chromate pollution. Detailed field samplings and laboratory soil incubation studies will be carried out with two agricultural soils and biochar from the Kanpur region.
Im Projekt erfolgt eine Langzeitbeobachtung des Eintrages von Nitrat, Nitrit und Ammonium in das sich unter landwirtschaftlichen Nutzflächen befindliche Grundwasser. Dazu werden im Landkreis Gifhorn seit 1989 ausgewählte Beregnungsbrunnen beprobt. Diese Erhebungen werden ergänzt durch eine Auswertung der beim Gesundheitsamt des Landkreises Gifhorn vorliegenden Daten zur Trinkwasserüberwachung. Herangezogen werden auch die Grundwasser-Überwachungsdaten aus den im Landkreis Gifhorn verbreitet anzutreffenden Trinkwasserschutzgebieten. Mit dem Projekt soll insbesondere der Fragestellung nachgegangen werden, in wieweit bei Böden mit hohem Nährstoffauswaschungspotential Stickstoffeinträge langfristig in immer tiefere Grundwasserbereiche verlagert werden. Da aus tieferen Grundwasserleitern in der Regel auch die öffentliche Trinkwasserversorgung gespeist wird, ist diese Fragestellung von besonderer Relevanz. Wegen des Vorhandenseins vielfach sandiger Böden in Kombination mit verbreitet intensiver Landwirtschaft und mit einer i.d.R. auf den landwirtschaftlichen Nutzflächen gegebenen Grundwasserneubildung, kann im Landkreis Gifhorn von einem insgesamt hohem Nährstoffauswaschungspotential ausgegangen werden. Das Untersuchungsgebiet Landkreis Gifhorn eignet sich daher gut als 'worst case'.
Ökotoxische und mutagene Wirkungen von Bauprodukten können bereits zuverlässig anhand harmonisierter Testmethodik (CEN/TS 17459) beurteilt werden. Diese Methodik wird bereits erfolgreich bei der Vergabe des Blauen Engels eingesetzt (bisher in den Produktgruppen Pflastersteine, Dachbahnen und Dachsteine). Aktuell fehlt die Möglichkeit, die endokrinen Wirkungen von Bauprodukten gleichzeitig mit den ökotoxischen und mutagenen Wirkungen zu bewerten. Dieser Aspekt sollte mit Hilfe eines Projekts anhand experimenteller Untersuchungen in die Methodik ergänzt werden. Die bereits vorhandenen YES- und YAS-Tests (ggf. weitere vorhandene Tests) für endokrine Wirkungen sollten auf ihre Eignung und Aussagefähigkeit bei Bauprodukteluaten getestet werden. Bei den Untersuchungen sind sowohl Kurzzeiteluate (24 h) als auch Langzeiteluate (64 d) gemäß harmonisierter Auslaugtests CEN/TS 16637-2 / CEN/TS 16637-3 zu untersuchen. Um einen Überblick zu gewinnen, sind diverse Bauproduktgruppen mit Regen- oder Sickerwasserkontakt in der Anwendung vom Interesse. Basierend auf bisherige Ergebnisse zur Ökotoxizität (UBA-Veröffentlichung Texte 151/2022) sind drei Produktgruppen auszuwählen (z.B. Dachbahnen, Fugenmörtel und Kunstrasensysteme). Zusätzlich zu Screening-Tests und Produktprüfungen sollte ein Ringversuch durchgeführt werden mit dem Ziel, qualifizierte Labore für den Blauen Engel für die Durchführung von Ökotox-Tests inklusive des YES- und YAS-Tests zu identifizieren. Als Ergebnis werden zusätzlich zum Abschlussbericht eine peer reviewed -Veröffentlichung, eine veröffentlichte Prüfanleitung und eine Liste von geeigneten Prüfinstituten erwartet.
Origin | Count |
---|---|
Bund | 479 |
Land | 4 |
Wissenschaft | 2 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Daten und Messstellen | 2 |
Förderprogramm | 460 |
Text | 6 |
unbekannt | 15 |
License | Count |
---|---|
geschlossen | 17 |
offen | 464 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 415 |
Englisch | 110 |
Resource type | Count |
---|---|
Archiv | 2 |
Datei | 2 |
Dokument | 3 |
Keine | 386 |
Webdienst | 2 |
Webseite | 91 |
Topic | Count |
---|---|
Boden | 425 |
Lebewesen und Lebensräume | 423 |
Luft | 349 |
Mensch und Umwelt | 483 |
Wasser | 386 |
Weitere | 483 |