API src

Found 138 results.

Similar terms

s/ausstieg/Aufstieg/gi

Related terms

Niedersächsischer Bodenfeuchteinformationsdienst - Tagesaktueller Wassergehalt der Böden in Niedersachsen in % der nutzbaren Feldkapazität (%nFK) (WMS Dienst)

Der Niedersächsische Bodenfeuchteinformationsdienst (NIBOFID) des LBEG zeigt den tagesaktuellen Wassergehalt für alle Böden in Niedersachsen. Darüber hinaus lässt sich der Verlauf des Bodenwassergehalts für die letzten 10 Tage abrufen. Die Bodenfeuchte wird in % der nutzbaren Feldkapazität (%nFK) angegeben. Die nFK beschreibt die Wassermenge, die ein Boden maximal pflanzenverfügbar speichern kann. Die Werte des Bodenfeuchtemonitors sind berechnet und nicht gemessen. Die Berechnung erfolgt mit dem Bodenwasserhaushaltsmodell BOWAB und wird täglich mit Klimakennwerten (Niederschlag, Temperatur, Wind, Globalstrahlung und relative Luftfeuchte) des Vortages durchgeführt. Es werden für die jeweilige Landnutzung (Acker, Grünland, Laubwald, Nadelwald, Sonstiges) und den Boden spezifisch Parametern abgeleitet. BOWAB nutzt die hochaufgelösten Bodendaten der Bodenkarte 1:50.000 (BK50) von Niedersachsen und leitetet bodenwasserhaushaltliche Kennwerte, wie nFK, FK etc. ab. Die Berechnung erfolgt für die Flächen der BK50. Der Einfluss des Grundwassers wird in Form von kapillarem Aufstieg und durch den Grundwasserstand aus der BK50 berücksichtigt. Eine Bodenfeuchte von 100 %nFK zeigt an, dass der Bodenwasserspeicher gefüllt ist. Bei Werten oberhalb von 100 % entsteht Sickerwasser oder es steht Grundwasser innerhalb der betrachteten Bodenschicht. Werte kleiner als 100 %nFK zeigen an, dass die Pflanzen Bodenwasser entnommen haben und der Boden allmählich austrocknet. Ab Bodenfeuchtewerten unterhalb von 40 - 50 %nFK reagieren Pflanzen auf die Trockenheit und verringern ihre Verdunstung. Bei Werten von < 30 % nFK kann von Trockenstress ausgegangen werden. Im Kartenbild ist die Bodenfeuchte für den Boden von 0 – 60 cm Tiefe dargestellt, der dem Hauptwurzelraum bei den meisten Böden und Nutzungsformen entspricht. Standortbezogene Informationen liefert ein Maptip. Durch das Klicken auf einen Standort wird der aktuelle Bodenwassergehalt für den Hauptwurzelraum in %nFK angezeigt. Zusätzlich können auf der Detailseite weiterführende Informationen abgerufen werden. Als Grafik wird der Verlauf der mittleren Bodenfeuchte für die vergangenen 10 Tage für die Tiefenbereiche 0 - 30 cm (Oberboden), 0 - 60 cm (Hauptwurzelraum) und, sofern der Boden mächtiger ist, 0 - 90 cm (gesamte Betrachtungstiefe) dargestellt. Zudem wird die Sickerwassermenge unterhalb von 90 cm Tiefe für den betrachteten Standort angegeben. Falls Sie noch genauere Informationen zum Wassergehalt für Ihren Boden mit einer bestimmten Anbaukultur (Weizen, Mais, Grünland) benötigen, nutzen Sie gerne die Fachanwendung „Bodenwasserhaushalt“ im NIBIS® Kartenserver. Sie bietet die Möglichkeit den Verlauf der Bodenfeuchte für einzelne oder mehrere Flächen über einen längeren Zeitraum mit verschiedenen Fruchtfolgen (z.B. 1 Jahr oder länger) zu ermitteln.

Grundwasserneubildung (netto) 1991 - 2020

Mittlere jährliche Netto-Grundwasserneubildung (1991-2020) für Schleswig-Holstein mit einer Auflösung von 100 m x 100 m. In der Berechnung der Netto-Grundwasserneubildung wird der kapillare Aufstieg und die direkte Evapotranspiration aus dem Grundwasser auf grundwasserbeeinflussten Standorten einbezogen. Es wurde keine Modellierung der Grundwasserneubildungsdaten für Rasterzellen, die Gewässern entsprechen, durchgeführt.

From architecture to function: Elucidating the formation and structure of soil microaggregates - a key to understand organic carbon turnover in soils? - Archfunk; Elucidating the role of surface topography and properties for the formation and stability of soil nano- and micro-aggregates by atomic force microscopy

Das Projekt "From architecture to function: Elucidating the formation and structure of soil microaggregates - a key to understand organic carbon turnover in soils? - Archfunk; Elucidating the role of surface topography and properties for the formation and stability of soil nano- and micro-aggregates by atomic force microscopy" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften.Formation and stability of soil micro-aggregates depend on the forces which are acting between the individual building blocks and in consequence on type, size and properties of the respective adjacent surfaces. While the interaction forces are the result of the superposition of short-range chemical forces and long-range van-der-Waals, electrostatic, magnetic dipole and capillary forces, the total contact surface is a function of the size, primary shape, roughness and larger-scale irregularities. By employ-ing atomic force microscopy (AFM), we will explore the role of topography, adhesion, elasticity and hardness for the formation of soil micro-aggregates and their stability against external stress. Special consideration will be put on the role of extracellular polymeric substances as glue between mineral particles and as a substance causing significant surface alteration. The objectives are to (i) identify and quantify the surface properties which control the stability of aggregates, (ii) to explain their for-mation and stability by the analysis of the interaction forces and contacting surface topography, and (iii) to link these results to the chemical information obtained by the bundle partners. Due to the spatial resolution available by AFM, we will provide information on the nano- to the (sub-)micron scale on tip-surface interactions as well as 'chemical' forces employing functionalized tips. Our mapping strategy is based on a hierarchic image acquisition approach which comprises the analysis of regions-of-interest of progressively smaller scales. Using classical and spatial statistics, the surface properties will be evaluated and the spatial patterns will be achieved. Spatial correlation will be used to match the AFM data with the chemical data obtained by the consortium. Upscaling is intended based on mathe-matical coarse graining approaches.

Dreidimensionale Analyse der Porenraumgeometrie strukturierter Böden in Bezug auf die Verteilung von Wasser und Luft mit Hilfe der hochauflösenden myCT

Das Projekt "Dreidimensionale Analyse der Porenraumgeometrie strukturierter Böden in Bezug auf die Verteilung von Wasser und Luft mit Hilfe der hochauflösenden myCT" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Zentrum für Umweltforschung und nachhaltige Technologien, Institut für Bodenkunde.Die Prozesse der Wasser- und Stoffbewegung sowie des Gasaustausches in Böden werdenmaßgeblich durch das an die Bodenstruktur gebundene Porensystem gesteuert. Die Funktionalität des Porensystems beruht hierbei sowohl auf den Anteilen unterschiedlicher Porengrößen als auch auf der Geometrie des Porenraumes. Während die Porengrößenverteilung mit bodenphysikalischen Standardmethoden unter der Annahme von Kapillarität quantifizierbar ist, lassen sich die realen Porenformen in ihrer räumlichen Anordnung (u.a. Kontinuität, Bottlenecks, Konnektivität, Tortuosität) nur durch optische Verfahren erschließen. Die präferentiellen Fließwege der Makro- und Grobporen (größer als 50 mym) wurden bereits in zahlreichen Studien in 2D und 3D analysiert. Für die mittleren Porengrößen (0,2 - 50 mym) mit hoher ökologischer Wirksamkeit in ungesättigten Böden liegen jedoch kaum morphologische Informationen vor. In diesem Projekt sollen die Verfahren der Kunstharzeinbettung und der Mikrofokus- Computertomographie (myCT) für eine qualitative und quantitative räumliche Analyse des Porensystems in verbesserter hoher Auflösung (bis zu 1 mym) eingesetzt werden. Die Darstellung der mittleren Porengrößen wird mit der neuesten hochauflösenden Technik der myCT bei gleichzeitiger Differenzierung von Matrix, Wasser und Luft realisiert. Die zu analysierenden Geometrieparameter unterschiedlicher Porengrößen werden mit den Funktionen der Wasser- und Luftleitfähigkeit korreliert. Die Darstellung der Wasserverteilung in realen Poren bei unterschiedlichem Entwässerungsgrad ermöglicht zudem eine Überprüfung der Kapillartheorie, die als allgemeine Grundlage für Wasserverteilung und Wasserfluss vorausgesetzt wird.

Systemleistungen von Oberflaechenabdichtungen nach dem Prinzip der Kapillarsperre

Das Projekt "Systemleistungen von Oberflaechenabdichtungen nach dem Prinzip der Kapillarsperre" wird/wurde ausgeführt durch: Technische Universität Darmstadt, Institut für Wasserbau und Wasserwirtschaft, Fachgebiet Wasserbau und Hydraulik.Eine Kapillarsperre besteht aus zwei Materialschichten, die unter Neigung eingebaut werden. Als Kapillarschicht wird ein Feinsand verwendet, der auf einer feinkiesigen Schicht (Kapillarblock) liegt. Die Abschirmwirkung der Kapillarsperre beruht auf dem deutlichen Porensprung in der Kontaktflaeche von feinem und grobem Material. Infolge Kapillaritaet bildet einsickerndes Niederschlagswasser an der Kontaktflaeche mit den groeberen Poren des Kapillarblocks einen Kapillarsaum. Es bewegt sich im feinem Material lateral hangwaerts und dringt nicht in den Muellkoerper ein. In Laboruntersuchungen werden geeignete Materialkombinationen ermittelt sowie Systemleistungen und Entwurfskriterien bestimmt.

Forschergruppe (FOR) 2630: Understanding the global freshwater system by combining geodetic and remote sensing information with modelling using a calibration/data assimilation approach (GlobalCDA), Verbesserung der globalskaligen hydrologischen Modellierung und des Verständnisses des globalen Süßwassersystems durch Modellentwicklung und Kalibrierung/Datenassimilierun

Das Projekt "Forschergruppe (FOR) 2630: Understanding the global freshwater system by combining geodetic and remote sensing information with modelling using a calibration/data assimilation approach (GlobalCDA), Verbesserung der globalskaligen hydrologischen Modellierung und des Verständnisses des globalen Süßwassersystems durch Modellentwicklung und Kalibrierung/Datenassimilierun" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Physische Geographie, Arbeitsgruppe Hydrologie.Ziel des Teilprojekts P2 ist es, zur Entwicklung eines flexiblen Ansatzes zur Kalibrierung und Datenassimilierung (C/DA) für das globale hydrologische Modell WaterGAP beizutragen, der es ermöglicht, dass WaterGAP Wasserflüsse und -speicherung dadurch realitätsnäher simulieren kann, dass multiple Beobachtungsdaten für Modellausgabevariablen bestmöglich genutzt werden. P2 wird zum Design und zur Evaluierung des C/DA-Ansatzes beitragen, Modellvarianten zur Verfügung stellen, C/DA-Ergebnisse validieren und die Unsicherheiten der Modellergebnisse evaluieren. Zusätzliches Ziel ist es, die Simulation hydrologischer Prozesse durch neue WaterGAP-Modellkomponenten zu verbessern, mit Fokus auf die Entwicklung und Integration eines globalen gradienten-basierten Grundwassermodells, das die Simulation der Grundwasser-Oberflächenwasser-Interaktionen verbessern und die Quantifizierung des kapillaren Aufstiegs ermöglichen soll. Daneben sollen ein Algorithmus für die Überflutung von Feuchtgebieten sowie Gletscherwasserbilanzen integriert werden. Bezüglich der Analyse von Wasserflüssen und -speicherung in großen kritischen Regionen wird P2 die Studie zur Region Tigris-Euphrates-Western Iran leiten.

Genese und Ökofunktionen von Paläo- und rezenten Böden der westlichen Inneren Mongolei, NW-Chinas

Das Projekt "Genese und Ökofunktionen von Paläo- und rezenten Böden der westlichen Inneren Mongolei, NW-Chinas" wird/wurde ausgeführt durch: Technische Universität Berlin, Fakultät VII, Architektur Umwelt Gesellschaft, Institut für Ökologie, Fachgebiet Bodenkunde.Es sollen Paläo- und rezente Böden in den Becken- und Schwemmfächerbereichen des Gaxun Nur-Systems (Abb. 1) untersucht werden. Die Ziele dieser Untersuchungen sind: 1. Das Paläoklima zu rekonstruieren, 2. die Entwicklung und 3. die Ökofunktionen der Böden zu erfassen. Zur Rekonstruktion des Paläoklimas werden relikte sowie fossile Böden untersucht, die datierbar sind bzw. bekanntes Alter haben. Dabei werden vor allem Paläoböden von Wadi- und Strandterrassen bevorzugt untersucht. Die Verwitterungsart und Verwitterungsintensität dieser Böden sollen durch Geländearbeit, mineralogische und geochemische Untersuchungen sowie über Stoffbilanzen erfaßt werden. Ziel dieser Untersuchungen ist die Ableitung pedogener Klimaindikatoren.An rezenten Böden sollen 1. der Einfluß der hohen Kontinentalität auf bodenbildende Prozesse (Bioturbation, kryoklastische und chemische Verwitterung) und 2. Wichtige Ökofunktionen (z.B. Verdunstung, Grundwasserneubildung, Kapillarer Aufstieg, Versalzung) bestimmt werden. Mit Hilfe von Satellitenaufnahmen und geophysikalischen Methoden soll eine Regionalisierung der Daten erfolgen, so daß es möglich wird, für bestimmte Teilgebiete Boden. und Landeignungskarten sowie Karten über den Wasserhaushalt (z.B. Grundwasserneubildung, Kapillarer Aufstieg) und die Versalzungs- sowie Erosionsgefährdung zu erstellen.

Charakterisierung, Transport und Deposition von Silica-Polymeren in ausgewählten monocotyledonen und dicotyledonen Holzgewächsen

Das Projekt "Charakterisierung, Transport und Deposition von Silica-Polymeren in ausgewählten monocotyledonen und dicotyledonen Holzgewächsen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft, Ordinariat für Holzbiologie und Institut für Holzbiologie und Holzschutz der Bundesforschungsanstalt für Forst- und Holzwirtschaft.Si-Einschlüsse in holzbildenden Pflanzen sind vielfach beschrieben und dienen für verschiedene chemische und biologische Fragestellungen als wichtiges Merkmal. Über Aufnahme, Transport und Deposition liegen jedoch nur lückenhafte Kenntnisse vor. Im Vorhaben sollen folgende Themenkomplexe bearbeitet werden: i) Aufnahme und Ferntransport, ii) Primärausscheidung, iii) Struktur und chemische Komposition. Als Objekte sind Bambus (Monocotyledone) sowie tropische Laubbaumarten (Dicotyledone) vorgesehen. Chemische Analysen (IR und Raman, simultane Thermoanalyse/STA, Thermogravimetrie/TG, Differential Thermoanalyse/DTA, Massenspektrometrie/MS, Si K-XANES-Spektroskopie) werden zur Identifizierung der Aufnahme- und Ferntransportform an Wurzelgewebe und Kapillarsaft durchgeführt sowie an Geweben der Deposition. Mit Licht- und Elektronenmikroskopie werden Si-Verbindungen in den Zielzellen lokalisiert, Kompartimenten zugeordnet (intrazellulärer Transport) und mit TEM/EDX und TEM/EELS charakterisiert. Für Bambus wird beispielhaft die extrazelluläre Deposition in der Zellwand untersucht, um Befunde zu Wechselwirkungen zwischen organischer Matrix und Si-Einlagerung zu erhalten. Folgende Ergebnisse werden erwartet: i) Identifizierung der Si-Transportform in Wurzel und Kapillarsaft, ii) Lokalisierung und Identifizierung deponierter Si-Verbindungen, iii) feinstrukturelle Charakterisierung Si-deponierender Zellen und nicht-deponierender Nachbarzellen.

Monitoring und Modellierung der Wasserdynamik auf der Hangskala unter Berücksichtigung von hydraulischem Ungleichgewicht und lateralen Flüssen

Das Projekt "Monitoring und Modellierung der Wasserdynamik auf der Hangskala unter Berücksichtigung von hydraulischem Ungleichgewicht und lateralen Flüssen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ - Department Bodensystemforschung.Die Wasserströmung in ungesättigten Böden erfolgt hauptsächlich vertikal entlang der abwärts oder aufwärts gerichteten Gradienten im Wasserpotenzial. Laterale Flüsse treten nur nahe Wassersättigung auf, wo die Kapillarkräfte an Bedeutung verlieren. Laterale Flüsse entlang stauender Bodenhorizonte und anderer Strukturen auf der Hangskala können auch mit hochaufgelösten, dreidimensionalen numerischen Modellen nicht realistisch beschrieben werden, da geeignete Modellkonzepte für eine prozessbasierte Beschreibung fehlen. Wesentliche Schwierigkeiten bereiten Phänomene wie das hydraulische Ungleichgewicht und die Hysterese der hydraulischen Bodeneigenschaften. Ursache für beides sind strukturelle Heterogenitäten des Bodens, die dazu führen, dass das Wasserpotenzial gegen Null geht, bevor eine vollständige Wassersättigung des Porenraums erreicht wird. Eine weitere Schwierigkeit ist der hohe Daten- und Rechenaufwand für eine 2- oder 3-dimensionale Parametrisierung zur Darstellung der hydraulisch relevanten Heterogenitäten von Bodentextur und -struktur. In diesem Projekt entwickeln wir einen neuen konzeptionellen Rahmen, um hydraulisches Ungleichgewicht einschließlich der Hysterese für die 1D vertikale Wasserdynamik physikalisch konsistent zu beschreiben. Dabei stützen wir uns auf die einzigartigen Datensätze aus dem Monitoring-System VAMOS und dem TERENO Lysimeternetzwerk SoilCan. Mit VAMOS werden seit 2013 die Wassergehalte und -potenziale in verschiedenen Böden kontinuierlich gemessen, und zwar sowohl in Lysimetern (1D) als auch im Feld (3D). Das Upscaling auf die Hangskala soll durch eine dynamische Kopplung von parallelen 1D Säulen realisiert werden, wobei die Kopplung durch die lokale Wassersättigung (Wasserpotenzial =0) gesteuert wird. Damit können Lateralflüsse auf größerer Skala mit erheblich reduzierter Modellkomplexität und geringerem Rechenaufwand beschrieben werden. Das Projekt ist in drei gekoppelte Pakete gegliedert: (1) die Entwicklung eines vereinheitlichten Konzepts zur Beschreibung von hydraulischem Ungleichgewicht und Hysterese (H.-J. Vogel), (2) die Analyse der Dynamik von Lateralflüssen (H.H. Gerke) und (3) die Implementierung und Bewertung eines dynamischen 1D-3D Modells für die Hangskala (T. Wöhling). Zur Validierung der Modellkonzepte werden Experimente im Feld und im Labor gemeinsam konzipiert und durchgeführt. Wir erwarten, dass mit den vorgeschlagenen Modellkonzepten die Lateralflüsse in überwiegend wasser-ungesättigten Böden realistisch beschrieben werden können. Damit wird eine Grundlage geschaffen, um die zeitlich variierenden Fließpfade und Transportzeiten auch auf größeren Skalen zu erfassen, was ein ungelöstes Problem für das Verständnis und die Vorhersage von Transportprozessen im Boden darstellt.

Einfluss von Gefüge- und Grenzflächeneffekten auf die Stabilisierung der organischen Bodensubstanz

Das Projekt "Einfluss von Gefüge- und Grenzflächeneffekten auf die Stabilisierung der organischen Bodensubstanz" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Bodenkunde.Bereits geringe Anteile an organischer Substanz können die Benetzungseigenschaften eines Bodens drastisch verändern. Benetzungshemmungen haben erhebliche Konsequenzen für die im Boden ablaufenden physikalischen, chemischen und biologischen Prozesse. Begründet durch verschiedene Befunde wird angenommen, daß Hydrophobie die Stabilisierung der organischen Substanz mindestens über zwei unterschiedliche Wirkungen beeinflußt. Einerseits kann Hydrophobie als Indikator für die Abbaubarkeit der organischen Substanz bewertet werden, andererseits reduzieren benetzungsgehemmte Oberflächen die Kapillarkräfte, was Auswirkungen auf die Stabilität von Aggregaten und auf die Ausbildung hoher Feuchteunterschiede im Boden hat. In dem beantragten Vorhaben sollen durch die kombinierte Messung von Kontaktwinkel und Oberflächenladung eine umfassende und quantitative Charakterisierung der Oberfläche von Bodenpartikeln und Aggregatoberflächen der Böden aller Untersuchungsgebiete des Schwerpunktprogramms erfolgen. In weiteren Versuchen soll die Wirkung fraktionierter wasserlöslicher organischer Substanz auf die Benetzbarkeit auf die kapillare Wasseraufnahme der Böden untersucht werden. Durch die Kooperation mit anderen Projektteilnehmern können auf molekularer Ebene strukturchemische Daten mit fundamentalen physikalischen Oberlächenparametern verglichen werden und es können Bezüge zu makroskopischen Stabilisierungsprozessen hergestellt werden.

1 2 3 4 512 13 14