API src

Found 26 results.

Related terms

Mittlere jährliche Sickerwasserrate aus dem Boden in Deutschland (WMS)

Web Map Service (WMS) zur mittleren jährlichen Sickerwasserrate aus dem Boden in Deutschland (SWR1000). Die mittlere jährliche Sickerwasserrate aus dem Boden ist als die Sickerwassermenge definiert, die den Boden unter Berücksichtigung des kapillaren Aufstiegs im langjährigen Mittel abwärts verlässt. Sie wird in mm/a angegeben. Niederschlagswasser, das nach Abzug des Oberflächenabflusses in den Boden infiltriert, steht zuerst für die Wasserversorgung der Vegetation zur Verfügung. Überschreitet der Wassergehalt im Wurzelraum die Feldkapazität, bewegt sich das infiltrierte Wasser der Schwerkraft folgend nach unten und verlässt den Wurzelraum. Dieses Sickerwasser wird sich zum Grundwasserspiegel bewegen und zur Grundwasserneubildung beitragen oder zum Teil auch lateral als Zwischenabfluss abfliessen. Neben der quantitativen Bedeutung der Sickerwasserrate aus dem Boden für die Grundwasserneubildung, und damit für die Trinkwasserversorgung aus dem Grundwasser, bestimmt das Sickerwasser in entscheidender Weise auch die Verlagerung und Auswaschung von Nähr- und Schadstoffen aus dem Boden ins Grundwasser und in Oberflächengewässer. Insbesondere für qualitative Aspekte des Gewässerschutzes ist die Sickerwasserrate deshalb eine entscheidende Eingangsgröße. Die Sickerwasserrate aus dem Boden ergibt sich aus der Differenz von Niederschlag minus Verdunstung und Oberflächenabfluss.

Mittlere jährliche Sickerwasserrate aus dem Boden in Deutschland

Die mittlere jährliche Sickerwasserrate aus dem Boden ist als die Sickerwassermenge definiert, die den Boden unter Berücksichtigung des kapillaren Aufstiegs im langjährigen Mittel abwärts verlässt. Sie wird in mm/a angegeben. Niederschlagswasser, das nach Abzug des Oberflächenabflusses in den Boden infiltriert, steht zuerst für die Wasserversorgung der Vegetation zur Verfügung. Überschreitet der Wassergehalt im Wurzelraum die Feldkapazität, bewegt sich das infiltrierte Wasser der Schwerkraft folgend nach unten und verlässt den Wurzelraum. Dieses Sickerwasser wird sich zum Grundwasserspiegel bewegen und zur Grundwasserneubildung beitragen oder zum Teil auch lateral als Zwischenabfluss abfliessen. Neben der quantitativen Bedeutung der Sickerwasserrate aus dem Boden für die Grundwasserneubildung, und damit für die Trinkwasserversorgung aus dem Grundwasser, bestimmt das Sickerwasser in entscheidender Weise auch die Verlagerung und Auswaschung von Nähr- und Schadstoffen aus dem Boden ins Grundwasser und in Oberflächengewässer. Insbesondere für qualitative Aspekte des Gewässerschutzes ist die Sickerwasserrate deshalb eine entscheidende Eingangsgröße. Die Sickerwasserrate aus dem Boden ergibt sich aus der Differenz von Niederschlag minus Verdunstung und Oberflächenabfluss und wurde mit dem neuen TUB-BGR-Verfahren (WESSOLEK et al., 2003) landnutzungsabhängig (Acker, Grünland, Wald) berechnet. Die Version 1.0 mit einer Rasterweite von 250 Metern basiert auf den topographischen Grundlagen des Digitalen Landschaftsmodells 1:1.000.000 (DLM 1000) des Bundesamtes für Kartographie und Geodäsie.

Modellierung und Kartierung atmosphärischer Stoffeinträge und kritischer Belastungs-schwellen zur kontinuierlichen Bewertung der ökosystem-spezifischen Gefährdung der Biodiversität in Deutschland - PINETI (Pollutant INput and EcosysTem Impact). Teil 2

Das Teilprojekt dient der Weiterentwicklung der Modellierung der nassen ⁠ Deposition ⁠ im Chemie Transport Model REM-Calgrid (RCG). Die operationelle Version von RCG berücksichtigt bei der Berechnung der nassen Deposition nur die Auswaschung von Schadstoffen unterhalb der Wolke. Bereits innerhalb des Vorgängerprojektes MAPESI wurde die Modellierung durch die Einführung der Auswaschung innerhalb der Wolke weiterentwickelt. Die Modellentwicklungen wurden innerhalb des PINETI Projektes daher zunächst im RCG fortgeführt. Veröffentlicht in Texte | 61/2014.

Markt für Kaolin

technologyComment of kaolin production (RER, RoW): There exist two different processes for the production of market kaolin - a dry and a wet process. The first one - the dry process - is relatively simple but yields therefore also a lower quality product, reflecting the quality found in the crude kaolin. The wet process on the other hand side is used to produce filler and coating grades. It is this process that is modeled in this dataset. The most important four steps of the wet process are the following: - Mining: Nowadays most of kaolin mining is done in open pit mining. Depending on the composi-tion, either mining with shovels, draglines, motorized scrapers and front-end loaders is done (e.g. Georgia, USA) or mining with high-pressure hydraulic monitors (e.g. Cornwall, UK) is done. In the second case, a stream of water is washing out the fine particle kaolin and is leaving the coarse quartz and mica residues within the soil. - Mineral separation (degritting): Kaolin beeing a mineral, it is obvious that there are always also other minerals (the grit) in the kaolin deposits, which have to be separated. To separate two miner-als, either physical or chemical differences between the two substances are taken as base. In gen-eral, the mined kaolin is mixed therefore with water and a dispersing chemical to form a slurry that is then degritted (by e.g. rake classifiers, hydrocyclones or screens). - Kaolin benefication: When the separated kaolin fullfills not the specification asked a benefication process is added to improve e.g. the brightness (either by magnetic separation or by bleaching with ozone or hydrogen peroxide), the rheology (by blending different kaolins), the purity (either by blending or by magnetic separation) or the grain size distribution (again blending as a possibility). In this step, the producer is also deciding the form of delivery (bulk, powder, slurry). - Storage & transport: The storage is done either in silos (bulk and powder) or in tanks (slurries). Due to the fact that customers more and more apply for the 'just in time' principle, the storage ca-pacities of the producers are increasing and the transports are done more and more by lorry to the customer (more flexible than other means of transport). References: Hischier R. (2007) Life Cycle Inventories of Packagings & Graphical Papers. ecoinvent report No. 11. Swiss Centre for Life Cycle Inventories, Dübendorf, 2007.

Modellierung und Kartierung atmosphärischer Stoffeinträge und kritischer Belastungsschwellen zur kontinuierlichen Bewertung der ökosystemspezifischen Gefährdung der Biodiversität in Deutschland - PINETI (Pollutant INput and EcosysTem Impact)

Das Teilprojekt dient der Weiterentwicklung der Modellierung der nassen Deposition im Chemie Transport Model REM-Calgrid (RCG). Die operationelle Version von RCG berücksichtigt bei der Berechnung der nassen Deposition nur die Auswaschung von Schadstoffen unterhalb der Wolke. Bereits innerhalb des Vorgängerprojektes MAPESI wurde die Modellierung durch die Einführung der Auswaschung innerhalb der Wolke weiterentwickelt. Die Modellentwicklungen wurden innerhalb des PINETI Projektes daher zunächst im RCG fortgeführt.<BR>Quelle: www.umweltbundesamt.de<BR>

Modellierung und Kartierung atmosphärischer Stoffeinträge und kritischer Belastungsschwellen zur kontinuierlichen Bewertung der ökosystemspezifischen Gefährdung der Biodiversität in Deutschland - PINETI (Pollutant INput and EcosysTem Impact)

Das Teilprojekt dient der Weiterentwicklung der Modellierung der nassen Deposition im Chemie Transport Model REM-Calgrid (RCG). Die operationelle Version von RCG berücksichtigt bei der Berechnung der nassen Deposition nur die Auswaschung von Schadstoffen unterhalb der Wolke. Bereits innerhalb des Vorgängerprojektes MAPESI wurde die Modellierung durch die Einführung der Auswaschung innerhalb der Wolke weiterentwickelt. Die Modellentwicklungen wurden innerhalb des PINETI Projektes daher zunächst im RCG fortgeführt.<BR>Quelle: www.umweltbundesamt.de<BR>

Schadstoffe in Böden

Ein bedeutendes Themenfeld des Bodenschutzes ist der Umgang mit Schadstoffen in Böden. Schadstoffe sind giftig (akut toxisch, chronisch toxisch und/oder krebserregend) und können auf verschiedene Weise schädlich für die Umwelt wirken. So können sie neben der direkten Schädigung der Bodenlebewesen in Gewässer gelangen und die dortigen Lebewesen schädigen oder in das für die Trinkwassergewinnung verwendete Rohwasser gelangen. Sie können direkt auf Menschen einwirken über die Luft (gasförmig oder staubgebunden) oder über die orale Aufnahme z.B. durch das spielende Kind. Indirekt können Schadstoffe auch von Pflanzen aufgenommen und in den verzehrfähigen Pflanzenteilen angereichert werden oder zu einer Belastung von Futtermitteln führen, die wiederum eine Belastung tierischer Lebensmittel zur Folge haben, siehe LANUV-Info 13 über "Ursachen – Wirkungen – Bewertung – Handlungsempfehlungen". Mögliche Wirkungspfade einer Schadstoffbelastung im Boden, Abbildung: LANUV NRW In den Boden gelangen Schadstoffe auf unterschiedlichem Wege: Unfälle oder zurückliegende aus heutiger Sicht unsachgemäße industrielle/gewerbliche Praxis haben vielerorts zum Eintrag von bodengefährdenden Stoffen geführt. Schadstoffe aus der Luft kommen über Deposition (Staub, Regen) auf die Bodenoberfläche. Schadstoffe in Gewässern und deren Sedimenten gelangen bei Hochwasserereignissen auf Überschwemmungsflächen. Schadstoffe in Klärschlämmen, Komposten, Dünge- und Pflanzenschutzmitteln werden in landwirtschaftlich genutzte Böden eingetragen. Natürliche Gesteine mit hohen Schwermetallgehalten können in Einzelfällen direkt an der Erdoberfläche vorkommen und dort flächenhaft schädliche Bodenveränderungen bedingen. Schadstoffe und deren Herkunft Giftige Wirkungen sind für eine Vielzahl von Stoffen bekannt. Organische Schadstoffe Persistente organische Schadstoffe („Persistent Organic Pollutants“ = POPs) sind aufgrund ihrer Langlebigkeit, Giftigkeit und ihrer weltweiten Verbreitung sehr umweltrelevant. POPs sind chemische Verbindungen, die in der Umwelt nur langsam abgebaut werden. Sie verbleiben nach ihrer Freisetzung in der Umwelt und reichern sich in der Nahrungskette an. Damit können sie ihre schädigende Wirkung auf Ökosysteme und Mensch langfristig entfalten. Einige POPs weisen eine hohe Toxizität (=Giftigkeit) auf. Da sie auch weiträumig transportiert werden, können sie selbst in entlegenen Gebieten zu einer Belastung führen. Zu den POPs gehören Chemikalien, die zum Zwecke einer bestimmten Anwendung hergestellt wurden (z. B. PCB) aber auch solche, die unbeabsichtigt bei Verbrennungs- oder anderen thermischen Prozessen entstehen (z. B. Dioxine und Furane).  Die wichtigsten Verbindungen sind: PAK (Polyzyclische Aromatische Kohlenwasserstoffe; insgesamt über 100 Verbindungen) stammen vor allem aus unvollständiger Verbrennung z.B. in Kraftwerken, Kokereien, im Verkehr aber auch beim Kaminfeuer. Außerdem kommen PAK in Stein- und Braunkohle vor. PCB (Polychlorierte Biphenyle) wie auch PCDD/PCDF (Dioxine und Furane) entstehen bei jeder nicht vollständigen Verbrennung in Gegenwart von Chlorverbindungen. Größte Quelle war noch in den 90er Jahren die Energiewirtschaft, deren Emission aber heutzutage vernachlässigbar ist, da Filteranlagen für die Einhaltung der Emissionsgrenzwerte sorgen. PFAS (per- und polyfluorierte Alkylsubstanzen; mehr als 1.000 Verbindungen) sind künstlich hergestellte Substanzen, die seit den 70er Jahren in einer Vielzahl von Produkten v.a. zur Oberflächenbeschichtung (Dächer, Textilien, Verpackungen) sowie als Schaummittel für Feuerlöschschäume eingesetzt wurden. Weitergehende Informatioen erhalten Sie unter Gefahrstoff PFAS . Arzneimittel können auch in Böden gelangen und im Boden unerwünschte Wirkungen wie z.B. die Bildung von Resistenzen entfalten. Zum Eintrag von Arzneimitteln und deren Verhalten und Verbleib in der Umwelt ist 2007 der LANUV-Fachbericht 2 erschienen. Anorganische Schadstoffe Unter Anorganischen Schadstoffen versteht man vor allem Schwermetalle wie Arsen, Cadmium, Blei, Chrom, Kupfer, Nickel, Quecksilber, Thallium, Zink. Sie sind natürliche Bestandteile der Erdkruste, werden aber auch durch Aktivitäten des Menschen in die Umwelt eingetragen. So werden Metalle insbesondere bei der Verbrennung fossiler Brennstoffe sowie bei ihrer Herstellung (Verhüttung) und Verarbeitung in großen Mengen freigesetzt. Weitere wichtige Emissionsquellen sind Müllverbrennungsanlagen, die Zementindustrie, die Glasindustrie und der Kraftfahrzeugverkehr. Metalle sind in der Umwelt langlebig und werden ständig weiterverbreitet. Sie wirken in bestimmten Konzentrationen toxisch (= giftig) und können die Bodenfunktionen und die Qualität der darauf wachsenden Pflanzen beeinträchtigen. So können sie sich auch in Nahrungs- und Futterpflanzen anreichern und gelangen damit in die Nahrung des Menschen. Bewertung Von schadstoffbelasteten Böden können Wirkungen auf andere Umweltmedien und die Gesundheit von Menschen, Tieren und Pflanzen ausgehen. Die Bewertung einer gemessenen Schadstoffkonzentration im Boden hängt von der Nutzung der Böden und dem damit verbundenen Aufnahmepfad ab. Es werden folgende Aufnahmepfade unterschieden: der Direktpfad (Boden zu Mensch), z.B. direkter Bodenkontakt von spielenden Kindern, der Pflanzenpfad (Boden zu Nutzpflanze), z.B. bei der Erzeugung pflanzlicher Lebensmittel oder von Tierfutter auf belasteten Böden, der Grundwasserpfad (Boden zu Grundwasser), durch Auswaschung von Schadstoffen aus dem Boden. Für alle drei Pfade und für eine Vielzahl von Schadstoffen formuliert die BBodSchV Beurteilungswerte (Vorsorgewerte, Prüfwerte, Maßnahmenwerte) bei deren Überschreitung die Gefahr der Entstehung einer schädlichen Bodenveränderung nicht mehr als ausgeräumt gelten kann. Vorsorgewerte zeigen an, ab welchen Bodenkonzentrationen die Besorgnis besteht, dass bei fortgesetzten Stoffeinträgen zukünftig Bodenkonzentrationen erreicht werden könnten, die nicht mehr unbedenklich sind. Werden Prüfwerte überschritten, ist mit hinreichender Wahrscheinlichkeit von einer Gefahr für das jeweilige Schutzgut auszugehen. Es sind weitere Untersuchungen erforderlich, um die Gefahren eindeutig festzustellen (und Maßnahmen zu ergreifen) oder auszuräumen (Detailuntersuchung). Prüfwerte sollen einen ausreichenden Abstand zu Vorsorgewerten (bzw. Hintergrundwerten) und einen eindeutigen Gefahrenbezug aufweisen. Die Überschreitung von Maßnahmenwerten „überspringt“ alle weiteren Prüfschritte und es sind unmittelbar Maßnahmen erforderlich. Prüf- und Maßnahmenwerte werden nach einheitlichen Ableitungsmethoden mit Bezug zur Toxikologie eines Stoffes festgelegt. Ob überhaupt gegenüber dem „Normalzustand“ erhöhte Werte vorliegen, kann mit Hilfe der statistisch abgeleiteten Hintergrundwerte überprüft werden. In der Detailuntersuchung werden neben der Abgrenzung der Belastung auch weitere Parameter berücksichtigt. So kann die Mobilität von Schadstoffen im Boden sehr unterschiedlich sein (z.B. sind Cadmium, Blei und Zink bei hohen pH-Werten fast immobil), was insbesondere für die Aufnahme durch Pflanzen relevant ist. Die Resorptionsverfügbarkeit eines Schadstoffes (Wie viel des Schadstoffes wird bei oraler Aufnahme im Verdauungstrakt überhaupt vom Körper aufgenommen?) ist bei der Betrachtung des Pfades Boden zu Mensch (Direktpfad) von Bedeutung. Eine umfassende Übersicht über die in der Detailuntersuchung abzuprüfenden Expositionsbedingungen gibt die entsprechende LABO-Arbeitshilfe . Maßnahmen Liegen in einem Boden Schadstoffkonzentrationen vor, die auch nach der Detailuntersuchung negative Wirkungen auf Bodenfunktionen erwarten lassen, liegt bodenschutzrechtlich eine "schädliche Bodenveränderung" vor. Welches die dabei relevanten Wirkungen und Gefahren sind und welches wirksame Maßnahmen zur Gefahrenabwehr sind, ist im Einzelfall hängt vor allem von der Bodennutzung ab. Auf Spielflächen (Pfad Boden > Mensch) sind vorrangig Maßnahmen zur Verringerung des direkten Bodenkontaktes von Kleinkindern erforderlich, wie z.B. Begrünung oder Abdeckung vegetationsfreier Flächen.  Oft wird hier aber bei Prüfwertüberschreitungen unmittelbar ein Bodenaustausch vorgenommen. Auf Industrieflächen (Pfad Boden > Mensch) kommen als Maßnahmen auch ein Betretungsverbot oder die Begrünung zur Verhinderung von Verwehungen in Betracht. In Nutzgärten (Pfad Boden > Pflanze) sind vor allem Maßnahmen zur Verringerung des Schadstoffüberganges vom Boden in angebaute Nahrungspflanzen wichtig, wie z.B. Kalkung zur Verringerung der Pflanzenverfügbarkeit von Schwermetallen oder Mulchabdeckung zur Vermeidung von Verschmutzungen. Oft kann aber auch die Reduktion der Nutzfläche als einfach zu vollziehende Maßnahme ausreichen. Auf Ackerflächen (Pfad Boden > Pflanze) kann eine Anpassung der Bewirtschaftung eine sinnvolle Maßnahme darstellen wie z.B. eine Kalkung zur Anhebung des pH-Wertes, der Verzicht auf stark anreichernde Pflanzenarten (Weizen bei Cadmium) oder eine verschmutzungsarme Futterwerbung. Hierzu wurden mit dem LUA-Merkblatt 55 Handlungsempfehlungen zu Maßnahmen der Gefahrenabwehr bei schädlichen stofflichen Bodenveränderungen in der Landwirtschaft  veröffentlicht. Bei Gefährdung von Grundwasser (Pfad Boden à Grundwasser) kommen auch Einschließungsverfahren (Oberflächenabdichtung, Abdeckung, Versiegelung, vertikale Abdichtung), Immobilisierungsverfahren oder Bodenwäsche als Sicherungsmaßnahmen zum Einsatz. In der Regel werden aber sogennannte pump-and-treat Verfahren nötig, die das belastete Wasser fördern und über Filter abreinigen. Flächenhafte Belastungen erfordern großflächige Vorgaben, welche entweder durch Allgemeinverfügungen oder durch Bodenschutzgebietsverordnungen erlassen werden können.

Boden

Als die alten Rieselfeldstrukturen zur Vorbereitung der Aufforstung eingeebnet wurden, vermischten sich die schadstoffbelasteten Klärschlammschichten mit dem anstehenden Mineralboden. Bei Bodenuntersuchungen Ende der 1990er Jahre wurden großflächig hohe Konzentrationen an verschiedenen organischen und anorganischen Schadstoffen, darunter auch verschiedene Schwermetalle, festgestellt. Vergleichbar hohe Werte werden sonst nur auf intensiv genutzten Industriestandorten gemessen. Die Schwermetalle befanden sich überwiegend im Oberboden. So entstand für die Rieselfelder um Hobrechtsfelde die Idee, den im Rahmen von Großbaumaßnahmen im Norden Berlins anfallenden Mergel in den Boden einzuarbeiten. 1996 startete das fortan sogenannte „Bucher Verfahren“ und auf mehr als 120 Hektar wurde so das Schadstoffbindungsvermögen verbessert. Es konnten verschiedene Ziele erreicht werden: Schwermetalle wurden im Boden gebunden und ihre Verlagerung im Boden durch die Zuführung von Kalk verhindert. Außerdem wurde die Nährstoffspeicherfähigkeit langfristig erhöht und die Wasserspeicherkapazität durch Erhöhung des Tonmineralanteils im Boden erhöht. Durch die Anwendung des Bucher Verfahrens wurden die Bodenverhältnisse und die Wasserverfügbarkeit soweit verbessert, dass auch die Pflanzung anspruchsvollerer Gehölze möglich war. Diese neue Vegetationsvielfalt begünstigte auch eine rasche Wiederbesiedelung durch die typische Bodenfauna aus umliegenden Flächen. Darüber hinaus entstand neuer Lebensraum für eine Vielzahl an Vögeln und Säugetieren. Problematisch hingegen sind nicht heimische sowie ausbreitungsstarke Arten wie beispielsweise der Eschenahorn aus Nordamerika, die auf den überlehmten Flächen besonders gut wachsen und oftmals andere Arten und offene Lebensräume verdrängen. Die positiven und begünstigenden Wirkungen werden bislang nur auf jenen Flächen erreicht, die mit dem Bucher Verfahren saniert wurden. Auf den unbearbeiteten Flächen ist die Situation auch heute noch nahezu unverändert. Flächen mit hoher Schadstoffkonzentrationen führen weiterhin zur Auswaschung von Schwermetallen ins Grundwasser und die Aufnahme von Schadstoffen durch Pflanzen.

19 Sonstiges >> (Erd-)Aufschüttungen

Zum Projekttyp gehören Dämme und Wälle sowie Halden. Zu den möglichen anlagebedingten Vorhabensbestandteilen gehören insbesondere die jeweiligen Schüttungskörper. Zu den möglichen baubedingten Vorhabensbestandteilen zählen u. a. Zufahrten, Baustraßen, Baustelle bzw. Baufeld, Materiallagerplätze, Maschinenabstellplätze, Baumaschinen und Baubetrieb, Baustellenverkehr und Baustellenbeleuchtung. Die betrieblichen Verfahrensabläufe bestehen bei Halden aus Transportfahrten und Schüttvorgängen. Ansonsten sind mit dem Projekttyp nur geringe betriebsbedingte Beeinträchtigungen verbunden, insbesondere sind hier durch Auswaschung hervorgerufene stoffliche Emissionen (Nähr- und Schadstoffe) möglich.

Auswaschung von Holzschutzmitteln aus behandelten Produkten und der Eintrag ihrer bioziden Wirkstoffe in die Umwelt

Das Projekt "Auswaschung von Holzschutzmitteln aus behandelten Produkten und der Eintrag ihrer bioziden Wirkstoffe in die Umwelt" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft, Ordinariat für Holzbiologie und Institut für Holzbiologie und Holzschutz der Bundesforschungsanstalt für Forst- und Holzwirtschaft durchgeführt. Fuer Holzschutzmittel (HSM) und ihre bioziden Wirkstoffe gibt es kein gesetzlich geregeltes Zulassungsverfahren. Eine Beurteilung von HSM hinsichtlich moeglicher Umweltgefaehrdungen erfolgt durch das UBA im Rahmen der Holzschutzmittelkommission des BGA. Das Vorhaben soll hierzu Grundlagen erarbeiten, indem durch Literaturauswertung und spezielle Versuche fuer Hoelzer, die der Witterung bzw. dem staendigen Kontakt mit Erde oder Wasser ausgesetzt sind, - nach HSM, Holzart, Behandlungstechnik und Einsatzbereich getrennt - Rahmenrichtwerte fuer die Auswaschung von HSMn aus behandeltem Holz erfasst werden. Das Verhaeltnis von ausgewaschenen zu verbleibenden HSMn soll auch Aufschluss geben ueber den direkten bzw. indirekten Eintrag der bioziden Wirkstoffe in die Umwelt bei der Verwendung bzw. der Entsorgung impraegnierter Hoelzer.

1 2 3