Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität Projektleitung: Dr.-Ing. Gernot Schmid, Seibersdorf Labor GmbH Beginn: 18.03.2021 Ende: 11.11.2025 Finanzierung: 449.025 Euro Hintergrund Elektromobilität gilt als Schlüssel für eine klimafreundliche Mobilität. Elektroantriebe arbeiten weitgehend schadstoffemissionsfrei. Betriebsbedingt entstehen allerdings Magnetfelder, die von dem elektrifizierten Antriebsstrang eines Elektrofahrzeugs ausgehen und auf Fahrer*in und Passagier*innen einwirken. Expositionen ( d.h. Situationen, in denen Personen solchen Feldern ausgesetzt sind) in relevanten Größenordnungen können dabei nicht von Vornherein ausgeschlossen werden. Gründe sind der geringe Abstand der Sitze zu den Komponenten, die Magnetfelder erzeugen, und die hohen Stromstärken in leistungsstarken Fahrzeugen. Darüber hinaus können bei rein batterieelektrischen Fahrzeugen (BEV) und bei Plug-In-Hybriden (PHEV) Expositionen bei Fahrzeugstillstand während des Ladevorgangs auftreten. Magnetfeldquellen sind dann zum Beispiel die Ladeeinrichtung selbst, das Ladekabel im Fall konduktiven Ladens, als Gleichrichter arbeitende Leistungselektronik sowie die Leitungen im Fahrzeug und die Fahrzeugbatterie. Magnetfeldquellen nur in Elektroautos und Hybriden Zielsetzung In dem Vorhaben wurde die Exposition von Personen gegenüber elektromagnetischen Feldern der Elektromobilität bestimmt. Einbezogen wurden Expositionsbeiträge durch den Fahrzeugfahrbetrieb und durch Batterieladevorgänge bei Fahrzeugstillstand. Die Studie ist aussagekräftig für Elektroautos und Elektro-Zweiräder ( d.h. ein- und zweispurige Personenkraftfahrzeuge). Als Fahrräder eingestufte Elektrofahrzeuge ( sog. E-Bikes) waren ausgenommen. Die Ergebnisse können mit Werten einer im Jahr 2009 abgeschlossenen Studie des BfS und mit in der Literatur veröffentlichten Werten verglichen werden. Zudem geben die Ergebnisse Hinweise für die Standardisierung. Durchführung Untersucht wurden gemessen an den Zulassungszahlen besonders beliebte E-Auto-Modelle und zusätzlich auch leistungsstarke E-Auto-Modelle von verschiedenen Herstellern. Dazu wurden Magnetfeldmessungen an mehreren Stellen im Fahrgastraum der Elektroautos und an den Sitzpositionen der Elektro-Zweiräder ( d.h. Elektroroller bzw. -motorräder) durchgeführt, während sich die Fahrzeuge auf einem Rollenprüfstand und in vorab festgelegten Betriebszuständen befanden. Die Betriebszustände umfassten das Beschleunigen, das Bremsen sowie das Fahren mit konstanten Geschwindigkeiten gegen verschiedene Lastmomente, um Luftwiderstände, Streckensteigungen und -gefälle zu simulieren. Anschließend wurden Magnetfeldmessdaten während eines Worldwide Harmonized Light Vehicle Test Cycle (WLTC) aufgezeichnet. Dabei handelt es sich um einen ca. 30-minütigen genormten Fahrzyklus, der ursprünglich für vergleichbare Abgas- und Verbrauchsmessungen festgelegt wurde. Daten für Zweiräder wurden während eines World Motorcycle Test Cycle (WMTC) aufgezeichnet. Die auf dem Prüfstand ermittelten Daten wurden mit Messungen bei Fahrten auf einer abgesperrten, ebenen Teststrecke und bei einer etwa 90-minütigen Fahrt im öffentlichen Straßenverkehr validiert. Anschließend wurden die im Zeitbereich aufgezeichneten Messdaten entsprechend der spektralen Zusammensetzung analysiert und bewertet. Situationen, die basierend auf den Messungen die höchsten Expositionen erwarten ließen, wurden zusätzlich dosimetrisch analysiert. Die betreffenden Expositionssituationen wurden dazu in einer Simulationssoftware nachgebildet. Ziel war die rechentechnische Bestimmung, der im Körper einer exponierten Person hervorgerufenen elektrischen Feldstärken. Hierfür musste vorab die lokale Verteilung der Magnetfeldstärken in der Fahrgastzelle bzw. im Bereich der Sitze der Elektro-Zweiräder bekannt sein. Stellvertretend für die exponierten Personen wurden hochaufgelöste, digitale Menschmodelle eingesetzt, die anatomisch möglichst korrekt waren und Gewebetypen mit verschiedenen elektrischen Eigenschaften unterschieden. Die Untersuchungen zum Aufladen bei Fahrzeugstillstand berücksichtigten Positionen in und außerhalb der Fahrzeuge. Ebenso wurden die Untersuchungen an Normal- und Schnellladepunkten durchgeführt. Hartschaum-Dummy mit zehn Messsonden im Fond eines Elektroautos Ergebnisse Die Studie stellt nach Kenntnis des BfS die bislang detaillierteste Untersuchung zu Magnetfeldexpositionen in Elektrofahrzeugen dar. Die Messungen wurden in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugen unter realen Bedingungen im öffentlichen Straßenverkehr sowie auf Teststrecken und Prüfständen durchgeführt. Erstmals wurden auch Zweiräder einbezogen. Die Fahrzeughersteller waren nicht an den Untersuchungen beteiligt. Die Magnetfeldexposition innerhalb der Fahrzeuge war räumlich sehr ungleichmäßig. Hohe Werte traten im Fahrberieb vorrangig im Bereich der Beine auf, während der Oberkörper und der Kopf deutlich weniger exponiert waren. Die Exposition variierte je nach Fahrmanöver: Beim Beschleunigen und Bremsen waren die Werte höher als bei konstantem Fahren. Die maximale Motorleistung der Fahrzeuge hing nicht systematisch mit der Magnetfeldexposition zusammen. Langzeit-Effektivwerte aus Messungen während Fahrten im realen Straßenverkehr zeigten höhere Werte als die Daten, die während genormter Fahrzyklen auf einem Fahrzeugprüfstand ermittelt wurden. Alle Magnetfeldexpositionen wurde mit den Referenzwerten der EU -Ratsempfehlung und den ICNIRP -2010-Leitlinien verglichen. Bei sanfter Fahrweise lagen die Ausschöpfungen der EU -Referenzwerte meist im niedrigen zweistelligen Prozentbereich. Eine sportliche Fahrweise führte in mehreren Elektrofahrzeugen sowie in einem zu Vergleichszwecken untersuchten Fahrzeug mit Verbrennungsmotor zu Überschreitungen der EU -Referenzwerte. Bei Anwendung der moderneren ICNIRP -2010-Leitlinien ergab sich nur in einem Fall eine Überschreitung. Trotz der kurzfristigen Überschreitungen der Referenzwerte wurden keine Überschreitungen der empfohlenen Höchstwerte für im Körper induzierte elektrische Felder festgestellt. Die während des Ladens innerhalb der Fahrzeuge gemessenen magnetischen Flussdichten waren überwiegend niedriger als die während des Fahrens gemessenen Werte. Gleichstrom-Laden ( DC -Laden) führte, trotz höherer Ladeleistungen, zu geringeren Expositionen als Wechselstrom-Laden ( AC -Laden). Magnetische Flussdichten oberhalb der ICNIRP -Referenzwerte traten nur in unmittelbarer Nähe des Ladekabelsteckers bzw. der Fahrzeugbuchse ( bzw. beim induktiven Laden nahe dem Straßenniveau) unmittelbar neben dem Fahrzeug auf. Neben dem Antriebssystem erzeugen weitere Fahrzeugkomponenten Magnetfelder, z.B. die Sitzheizungen, Fensterheber oder Fahrzeugeinschaltung. In einigen Fällen waren diese Expositionen höher als die durch das Antriebssystem verursachten Felder. In vielen Fahrzeugen traten die höchsten Werte beim Einschalten oder Starten auf. Die mittleren Langzeitwerte in Elektroautos (0,5 bis 2,5 Mikrotesla/ µT ) entsprachen weitgehend denen in etablierten elektrisch angetriebenen Verkehrsmitteln wie Straßenbahnen oder U-Bahnen (2 bis 3 µT ). In doppelstöckigen Zügen wurden auf der oberen Fahrgastebene Werte bis zu 13 µT gemessen, also potenziell höhere Expositionen als in Elektroautos. Stand: 24.11.2025
<p>Seit 1990 gehen die Kohlendioxid-Emissionen in Deutschland nahezu kontinuierlich zurück. Ursachen waren in den ersten Jahren vor allem die wirtschaftliche Umstrukturierung in den neuen Ländern. Seitdem ist es die aktive Klimaschutzpolitik der Bundesregierung, die in Einzeljahren jedoch auch von witterungsbedingten Effekten überlagert werden kann.</p><p>Kohlendioxid-Emissionen im Vergleich zu anderen Treibhausgasen</p><p>Kohlendioxid ist das bei weitem bedeutendste <a href="https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen/die-treibhausgase">Klimagas</a>. Laut einer ersten Berechnung des Umweltbundesamtes betrug 2024 der Kohlendioxid-Anteil an den gesamten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen 88,2 % (siehe Abb. „Anteile der Treibhausgase an den Emissionen“). Der Anteil hat gegenüber 1990 um über 4 Prozentpunkte zugenommen. Der Grund: Die Emissionen von Methan und Distickstoffoxid wurden im Vergleich zu Kohlendioxid erheblich stärker gemindert.</p><p>___<br> Umweltbundesamt, Nationale Treibhausgas-Inventare 1990 bis 2023 (Stand 03/2025), für 2024 vorläufige Daten (Stand 15.03.2025)</p><p>Herkunft und Minderung von Kohlendioxid-Emissionen</p><p>Kohlendioxid entsteht fast ausschließlich bei den Verbrennungsvorgängen in Anlagen und Motoren. Weitere Emissionen entstehen im Bereich Steine und Erden, wenn Kalk zur Zement- und Baustoffherstellung gebrannt wird. Bezogen auf die Einheit der eingesetzten Energie sind die Emissionen für feste Brennstoffe, die überwiegend aus Kohlenstoff bestehen, am höchsten. Für gasförmige Brennstoffe sind sie wegen ihres beträchtlichen Gehalts an Wasserstoff am niedrigsten. Eine Zwischenstellung nehmen die flüssigen Brennstoffe ein.</p><p>Seit 1990 gehen die Kohlendioxid-Emissionen nahezu kontinuierlich zurück. Zwischen 1990 und 1995 ist dies vor allem auf den verminderten Braunkohleeinsatz in den neuen Ländern zurückzuführen. Ab Mitte der 90er-Jahre wirkt sich insbesondere die aktive Klimaschutzpolitik der Bundesregierung emissionsmindernd aus. Durch kalte Winter and durch konjunkturelle Aufschwünge stiegen die Emissionen zwischenzeitlich immer wieder leicht an, zum Beispiel in den Jahren 1996, 2001, 2008, 2010, 2013 und 2015, 2021 (siehe Abb. „Emissionen von Kohlendioxid nach Kategorien“ und Tab. „Emissionen ausgewählter Treibhausgase nach Kategorien“). Im Jahr 2009 wirkte die ökonomische Krise emissionsmindernd. 2010 stiegen die Emissionen hauptsächlich durch die konjunkturelle Erholung der Wirtschaft und die kühle <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a> wieder an. In den Folgejahren hatte die Witterung den größten Einfluss auf die Emissionsentwicklung, zusätzlich drückt der stetige Rückgang der Emissionen aus der Energiewirtschaft das Emissionsniveau ab dem Jahr 2014 deutlich. Im Jahr 2020 dominieren die komplexen Sondereffekte der Corona-Pandemie das Emissionsgeschehen, während 2021 von Wiederanstiegen dominiert wird. Der Russische Angriffskrieg gegen die Ukraine wirkte sich in unterschiedlicher Weise auf die Entwicklung der Emissionen im Jahr 2022 aus (vgl. <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/uba-prognose-treibhausgasemissionen-sanken-2022-um">UBA/BMWK: Gemeinsame Pressemitteilung 11/2023</a>).</p><p>Kohlendioxid-Emissionen 2024</p><p>2024 sanken die Kohlendioxid-Emissionen gegenüber 2023 um 21,3 Millionen Tonnen bzw. rund 3,6 % auf 572 Millionen Tonnen Kohlendioxid. Gegenüber 1990 sind die Kohlendioxid-Emissionen demnach um 48,2 % gesunken. Die größten Rückgänge gab es in der Energiewirtschaft. Weitere Nennenswerte Rückgänge der Emissionen gab es im Straßenverkehr, und bei den Haushalten und Kleinverbrauchern.</p><p>Den größten Anteil an den Kohlendioxid-Emissionen hatte 2024, wie in den letzten Jahren, die Kategorie Energiewirtschaft mit 30,8 %. Aus diesem Bereich wurden im Jahr 2024 rund 177 Millionen Tonnen Kohlendioxid freigesetzt. Die Kategorien Haushalte/Kleinverbraucher (18,6 %) und Straßenverkehr/übriger Verkehr (24,9 %) sowie Verarbeitendes Gewerbe/Industrieprozesse (zusammen 24,8 %) besitzen hinsichtlich der Kohlendioxid-Emissionen derzeit eine etwas geringere Bedeutung.</p><p>Die gesamtwirtschaftliche Emissionsintensität (Emissionen bezogen auf das Bruttoinlandsprodukt) sank zwischen 1991 und 2024 um 62 % (siehe Abb. „Kohlendioxid-Emissionsintensität in Deutschland“).</p>
Teil der Statistik "Wirtschaft und Bevölkerung (UGRdL-Bezugszahlen)" Erläuterung Die Umweltökonomischen Gesamtrechnungen der Länder (UGRdL) beschreiben die Wechselwirkungen zwischen Umwelt, Wirtschaft und privaten Haushalten und liefern Daten zu einer Vielfalt an Themen – wie Abfall, Energie, Fläche und Raum, Gase, Rohstoffe und Materialflüsse, Umweltschutz, Verkehr und Umwelt oder Wasser. Grundlage dafür ist das international vereinbarte System of Environmental-Economic Accounting (SEEA), welches einheitliche Konzepte, Definitionen und Klassifikationen verwendet. Damit werden wichtige statistische Informationen zur Umwelt und Nachhaltigkeit für die Gesellschaft, die politische Diskussion und das Monitoring von Klima-, Umwelt- und Nachhaltigkeitszielen geliefert. Die UGRdL zählt aus folgenden Gründen zum Zusatzangebot der Regionaldatenbank (Ergänzung des Regio-Stat-Angebots) und wird daher durch ein „Z“ im Tabellencode gekennzeichnet: 1. Die Ergebnisse liegen meistens nur bis zur Ebene der Bundesländer vor. 2. Aus methodischen Gründen (Nichtadditivität einiger Aggregate) werden Ergebnisse nicht nur für die einzelnen Bundesländer und Deutschland, sondern auch für die Stadtstaaten und alle Bundesländer zusammen (Summe der Länder) ausgewiesen. Methodische Erläuterungen und das Glossar finden Sie hier: https://www.statistikportal.de/de/ugrdl/glossar-und-methoden Mit dem Dashboard der UGRdL unter https://www.giscloud.nrw.de/ugrdl-dashboard.html können Sie ausgewählte Indikatoren und deren Entwicklung in den Bundesländern vergleichen. Mit der Status- und Trendanalyse unter https://www.statistikportal.de/de/ugrdl/ergebnisse/status-und-trendanalyse bieten die UGRdL darüber hinaus eine Methode für objektive und statistisch fundierte Aussagen zur Entwicklung von Umweltindikatoren. Weitere Informationen zu den UGRdL finden Sie im Statistikportal des Bundes und der Länder unter https://www.statistikportal.de/de/ugrdl. Kontakt: ugrdl@it.nrw.de
Der Datensatz "Benzo(a)pyren - Hintergrundwerte stofflich gering beeinflusster Böden Schleswig-Holsteins" enthält für Benzo(a)pyren die 90er-Perzentilwerte von 13 Auswerteklassen als landesweite Kartendarstellung. Die Auswerteklassen werden aus Informationen zu den Nutzungen Acker, Grünland und Wald sowie zum Boden (Bodenart/Torfe, Bodentypen) gebildet. In der Karte werden regional noch als typisch einzuschätzende Arsengehalte als Hintergrundwerte dargestellt. Als Klassengrenzen für die farbliche Abstufung werden die 50er-, 75er-, 90er- und 95-Perzentilwerte des Gesamtdatenbestandes ohne Waldauflagen verwendet. So lassen sich gegenüber einer für ganz Schleswig-Holstein über alle Nutzungen gültigen Verteilung gebietsbezogene Einheiten in ihrer Tendenz gut darstellen.
Dieser Dienst enthält Daten der Planungsregionen Oberes Elbtal/Osterzgebirge, Region Chemnitz und Oberlausitz-Niederschlesien und deckt im Endausbau den gesamten Freistaat Sachsen ab. Entsprechend des Landesentwicklungsplanes 2013 als fachübergreifendes Gesamtkonzept zur räumlichen Entwicklung, Ordnung und Sicherung des Freistaates Sachsen stellen die Regionalpläne einen verbindlichen Rahmen für die räumliche Entwicklung, Ordnung und Sicherung des Raumes dar. Im Dienst sind regionalplanerische Festlegungen des Komplexes Raumstruktur enthalten. Die rechtsverbindlichen Karten Raumstruktur werden in der Regel in Maßstäben zwischen 1:300.000 und 1:450.000 erstellt. Eine Darstellung der Inhalte der Regionalpläne erfolgt in diesem Dienst nur im Maßstab kleiner 1:10.000.
Dieser Dienst enthält Daten der Planungsregionen Oberes Elbtal/Osterzgebirge, Leipzig-Westsachsen, Region Chemnitz und Oberlausitz-Niederschlesien und deckt im Endausbau den gesamten Freistaat Sachsen ab. Entsprechend des Landesentwicklungsplanes als fachübergreifendes Gesamtkonzept zur räumlichen Entwicklung, Ordnung und Sicherung des Freistaates Sachsen stellen die Regionalpläne einen verbindlichen Rahmen für die räumliche Entwicklung, Ordnung und Sicherung des Raumes dar. Im Dienst sind regionalplanerische Festlegungen des Komplexes Raumnutzung - Klima enthalten.
<p>In Oldenburg existieren derzeit vier Carsharing-Anbieter, die sukzessive auf den Markt gekommen sind.<br /> Im Jahr 1992 startete cambio Oldenburg das Carsharing-Angebot als „StadtTeilAuto“-Verein. Im April 2003 entwickelte sich daraus cambio Oldenburg („StadtTeilAuto Oldenburg cambio GmbH“). Seit Oktober 2004 kooperiert cambio Oldenburg mit der VWG (Verkehr und Wasser GmbH Oldenburg).<br /> Zweiter Anbieter in Oldenburg war „flinkster“ (Carsharing der Deutschen Bahn). Seit 2004 stehen am Oldenburger Hauptbahnhof Süd beziehungsweise ZOB insgesamt zwei Carsharing-Fahrzeuge von „flinkster“ bereit. Die Anzahl der Fahrberechtigten von „flinkster/DB Connect“ liegt leider nicht für Oldenburg vor. Deutschlandweit waren es aggregiert im Jahr 2023 rund 256.000 Fachberechtigte.<br /> Der dritte Anbieter ist seit März 2014 das Oldenburger Autohaus Munderloh. Im Dezember 2023 hat Munderloh acht Fahrzeuge von „Ford Carsharing“ an sieben Stationen in Oldenburg auf den Markt gebracht. Die Anzahl der Fahrberechtigten von Ford Carsharing liegt nicht vor. Besonderheit ist, dass das Carsharing von Ford Munderloh im DB-Verbund angeboten wird.<br /> Anfang 2023 kam mit der Firma Braasch all to drive GmbH in Kooperation mit der Firma EWE GO GmbH, ein vierter Carsharing-Anbieter auf den Oldenburger Carsharing-Markt. Dieser Anbieter setzt von Beginn an auf batterieelektrische Fahrzeuge. Der Anbieter cambio Oldenburg erhöht seine batterieelektrisch betriebene Fahrzeugflotte stetig.</p> <p>Die Stadt Oldenburg fördert den Ausbau der Carsharing-Systeme als sinnvolle Alternative zum eigenen Autobesitz. Carsharing unterstützt städtische Zielsetzungen der Mobilitäts- und Umweltpolitik, hierfür werden jährlich finanzielle Mittel des städtischen Haushalts für Carsharing-Projekte zur Verfügung gestellt.</p> <p>Die Standorte der Carsharing-Stationen können über den <a href="https://gis4ol.oldenburg.de/Verkehrsinformationen/index.html?level=13&layers=7,-0,-1,-2,-3,-8">interaktiven Stadtplan »</a> eingesehen werden.</p>
Zur Einhaltung der stetig steigenden Anforderungen des Gesetzgebers, aber auch der Endverbraucher gilt es, die Geraeuschabstrahlung der Automobile und hierbei insbesondere der Motoren zu reduzieren. Mit Hilfe experimenteller und vor allem numerischer Methoden werden neue Konzepte der Reduktion der Schallabstrahlung entwickelt und bewertet.
XPlanung Version 6.0 inklusive Sachinformationen (siehe Pflichtenheft Version 1.0 unter https://www.gdi-suedhessen.de/geoportal/#Fachthemen). Bereitgestellt über die Plattform www.gdi- inspireumsetzer.de - Ein Service der GDI-Südhessen. 👉 Downloadlink der XPlanGML-Datei inklusive der externen Referenzen: https://www.gdi-inspireumsetzer.de/store/data/buckets/org/45/c4db3617-69a4-4d51-95dd-b54f75cb5a5c/zip
| Origin | Count |
|---|---|
| Bund | 1299 |
| Kommune | 229 |
| Land | 2179 |
| Wissenschaft | 20 |
| Zivilgesellschaft | 8 |
| Type | Count |
|---|---|
| Chemische Verbindung | 12 |
| Daten und Messstellen | 1666 |
| Ereignis | 9 |
| Förderprogramm | 799 |
| Gesetzestext | 9 |
| Hochwertiger Datensatz | 2 |
| Text | 222 |
| Umweltprüfung | 45 |
| unbekannt | 663 |
| License | Count |
|---|---|
| geschlossen | 2081 |
| offen | 1191 |
| unbekannt | 147 |
| Language | Count |
|---|---|
| Deutsch | 3325 |
| Englisch | 1862 |
| andere | 19 |
| Resource type | Count |
|---|---|
| Archiv | 20 |
| Bild | 9 |
| Datei | 514 |
| Dokument | 279 |
| Keine | 1971 |
| Multimedia | 1 |
| Unbekannt | 7 |
| Webdienst | 78 |
| Webseite | 903 |
| Topic | Count |
|---|---|
| Boden | 2522 |
| Lebewesen und Lebensräume | 2647 |
| Luft | 2310 |
| Mensch und Umwelt | 3415 |
| Wasser | 2051 |
| Weitere | 3371 |