Die negativen Auswirkungen klimawandelbedingter Wetterextreme sind besonders in Städten zu spüren. Hohe Flächenversiegelungsgrade und Bebauungsdichten verschärfen das Überflutungsrisiko durch Starkregen und die Bildung sommerlicher Hitzeinseln. Das Projekt AMAREX, kurz für "Anpassung des Managements von Regenwasser an Extremereignisse", untersucht Möglichkeiten zur Anpassung des Regenwassermanagements an die zunehmenden Extrembelastungen Starkregen und Trockenheit als Schlüsselbeitrag zur Klimafolgenanpassung. In diesem Rahmen wurden von den Berliner Wasserbetrieben Flächenpotentialkarten entwickelt, die durch die Verschneidung und Analyse öffentlich zugänglicher Daten, grundstücksscharfe Umsetzungspotentiale im Berliner Raum für unterschiedliche dezentrale Versickerungsmaßnahmen aufzeigt. Die Machbarkeitsanalyse von insgesamt sechs untersuchten Versickerungsmaßnahmen basiert auf geohydrologischen Gegebenheiten, die sich in der Versickerungsfähigkeit, Wasserdurchlässigkeit und dem einzuhaltendem Grundwasserflurabstand widerspiegeln, sowie für alle Versickerungsmaßnahmen allgemein geltende Planungshilfen. Allgemein geltende Planungshilfen: Für eine grobe Ersteinschätzung der Machbarkeit dezentraler Versickerungsmaßnahmen werden verschiedene Karten mit Bedingungen und Richtwerten aus geltenden Regelwerken, Richtlinien und Hinweisblättern in den allgemein geltenden Planungshilfen aufgeführt. Betrachtet wurden Abstandsregelungen zu Gebäudeflächen und Bäumen, bestehender Denkmalschutz, Wasserschutzzonen, Schutzgebiete und die Hangneigung. Diese ist für unterirdische Maßnahmen, wie Rigolen, vernachlässigbar. Eine Besonderheit bildet die vereinfachte Abschätzung des Verschmutzungsgrades oberflächig ablaufendem Niederschlagswassers von Verkehrs- und Gebäudeflächen nach geltendem Regelwerk. Die Betrachtung von Altlasten und unterirdisch liegenden Infrastrukturen wie Leitungsnetzen konnten in der Anlayse nicht aufgenommen werden. Versickerungsfähigkeit: Für eine grobe Ersteinschätzung der Machbarkeit dezentraler Versickerungsmaßnahmen wird die Versickerungsfähigkeit nach geltendem Regelwerk und fachlichen Annahmen bewertet. Die Karte der Versickerungsfähigkeit ist ein Verschnitt aus der Analyse der Wasserdurchlässigkeit des Untergrunds und des Grundwasserflurabstands jeweils für alle untersuchten Versickerungsmaßnahmen. Die Wasserdurchlässigkeit des Untergrunds wird über die Mächtigkeit der wasserdurchlässigen Schicht ab Geländeoberkante angegeben. Für unterschiedliche Versickerungsmaßnahmen sind unterschiedliche Mindestanforderungen an die Mächtigkeit der wasserdurchlässigen Schicht festgelegt. Zusätzlich muss für die Umsetzung von dezentralen Versickerungsmaßnahmen ein 1 Meter Abstand von Maßnahmensohle bis Bemessungsgrundwasserstand eingehalten werden. Für die untersuchten Versickerungsmaßnahmen wurden Regeltiefen festgelegt, um die jeweiligen einzuhaltenden Flurabstände flächendeckend auszuwerten. Daten zum Bemessungsgrundwasserstand sind nur für das Panke- und Urstromtal und der Wasserschutzzone III vorhanden. Für die Hochflächen Berlins wurden andere Grundwasserflurabstandsdaten ausgewertet. Häufig auftretendes Schichtenwasser in den Hochflächen erschwert die Umsetzung von Versickerungsmaßnahmen kann jedoch nicht kartenbasiert dargestellt werden, aufgrund saisonaler und örtlicher Schwankungen. Wasserdurchlässigkeit: Für eine grobe Ersteinschätzung der Machbarkeit dezentraler Versickerungsmaßnahmen wird die Wasserdurchlässigkeit des Untergrunds nach geltendem Regelwerk und fachlichen Annahmen bewertet. Die Wasserdurchlässigkeit des Untergrunds wird über die Mächtigkeit der wasserdurchlässigen Schicht ab Geländeoberkante angegeben. Für unterschiedliche Versickerungsmaßnahmen sind unterschiedliche Mindestanforderungen an die Mächtigkeit der wasserdurchlässigen Schicht festgelegt. Grundwasserflurabstand: Für eine grobe Ersteinschätzung der Machbarkeit dezentraler Versickerungsmaßnahmen wird der Grundwasserflurabstand nach geltendem Regelwerk und fachlichen Annahmen bewertet. Für die Umsetzung von dezentralen Versickerungsmaßnahmen muss ein 1 Meter Abstand von Maßnahmensohle bis Bemessungsgrundwasserstand eingehalten werden. Für die untersuchten Versickerungsmaßnahmen wurden Regeltiefen festgelegt, um die jeweiligen einzuhaltenden Flurabstände flächendeckend auszuwerten. Daten zum Bemessungsgrundwasserstand sind nur für das Panke- und Urstromtal und der Wasserschutzzone III vorhanden. Für die Hochflächen Berlins wurden andere Grundwasserflurabstandsdaten ausgewertet. Häufig auftretendes Schichtenwasser in den Hochflächen erschwert die Umsetzung von Versickerungsmaßnahmen kann jedoch nicht kartenbasiert dargestellt werden, aufgrund saisonaler und örtlicher Schwankungen.
Atmosphärische Modelle verwenden eine Schnittstelle zwischen dem Landoberflächenmodell und der Parametrisierung der Flüsse in der atmosphärischen Grenzschicht (ABL). Über eine Parameterisierung der Prandtlschicht (engl. surface layer scheme) werden Impuls-, Wärme- und Feuchtigkeitsflüsse zwischen der Oberfläche und der untersten atmosphärischen Modellschicht ausgetauscht. Bei diesem Ansatz wird eine „Blending Height“ eingeführt, bei der die Oberflächenflüsse über einer heterogenen Landoberfläche als homogen auf der Gitterskala betrachtet werden. In dieser Höhe, die innerhalb der untersten atmosphärischen Modellschicht angenommen wird, findet der Übergang zur ABL-Parametrisierung statt. Bei konvektionserlaubenden (CP) Modellsimulationen (Gitterskala < 3 km) über heterogener Vegetation können die unteren Modellschichten jedoch unterhalb der „Blending Height“ liegen, was zu Fehlern in den simulierten Flüssen führt. Eine große Herausforderung bei der atmosphärischen Modellierung ist die Parametrisierung der Schnittstelle zwischen heterogener dynamischer Vegetation und ABL unter instabilen, stabilen und neutralen Bedingungen mit Advektion aus verschiedenen Windrichtungen. Dementsprechend sind unsere Ziele die Identifizierung der „Blending Height“ in Abhängigkeit von der Heterogenität und dem Zustand der Vegetation sowie von den atmosphärischen Randbedingungen und die Quantifizierung des Einflusses der Vegetationsheterogenität auf die Energieflüsse in der „Blending Height“. Die Ergebnisse werden verwendet, um repräsentative, skalenabhängige Flüsse auf dieser Ebene für Land-Atmosphären (L-A) Rückkopplungsstudien und Turbulenzparametrisierungen abzuleiten. WRF-NoahMP-Gecros-Modellsimulationen von der CP- bis zur Large-Eddy-Skala werden mit Beobachtungen an den LAFO- und MOL-RAO-Standorten verglichen, um die „Blending Height“ und die effektiven Rauhigkeitsparameter der Vegetation für CP-Simulationen in Abhängigkeit von den atmosphärischen Rahmenbedingungen zu ermitteln. Die Simulationen werden über die Cross Cutting Working Group (CCWG)-MME in das Multi Model Experiment (MME) eingebettet. Die Auswirkungen der Heterogenität auf die Stärke der L-A-Rückkopplung werden untersucht und das Verständnis der Austauschprozesse zwischen Oberfläche und Atmosphäre sowie innerhalb der ABL verbessert. Die Synergie dieser Modellergebnisse und 3D-Beobachtungsdaten wird genutzt, um die skalenabhängigen Auswirkungen der dynamischen Vegetationsheterogenität auf die Energieflüsse in der „Blending Height“ zu untersuchen. Dieses Projekt befasst sich mit den LAFI-Hauptzielen 2, 3, 4, S und E. Es ist an der CCWG-MME und der CCWG-DL beteiligt. Die Simulationen werden in Zusammenarbeit mit den Projekten P6, P8 und P9 durchgeführt. P2 liefert den Blattflächenindex und den Anteil der Vegetationsdecke für die Initialisierung des Modells. Die LAFI-Beobachtungen von P1-P5 werden für die Modellevaluation verwendet.
Die Intensivierung der Landwirtschaft und insbesondere der Einsatz von Düngemitteln ist der Schlüssel zur Ernährungssicherung einer wachsenden Weltbevölkerung. Der im Dünger enthaltene Stickstoff geht jedoch nicht nur in die pflanzliche Biomasse ein und wird schließlich geerntet, sondern wird auch als reaktiver Stickstoff (Nr) über verschiedene gasförmige und hydrologische Pfade in die Umwelt abgegeben. Dies führt zu gravierenden Umweltproblemen wie Eutrophierung, Treibhausgasemissionen oder Grundwasserverschmutzung. Wir gehen davon aus, dass wissenschaftlich fundierte Stickstoffminderungsstrategien es ermöglichen, die N2O- und NH3-Emissionen zu reduzieren und die NO3-Einträge in die Gewässer zu verringern, während die Erträge erhalten bleiben. Ziel des MINCA-Projekts ist daher die Etablierung eines gekoppelten, prozessbasierten hydro-biogeochemischen Modells zur Identifizierung von Feldbewirtschaftungsstrategien zu nutzen, die es ermöglichen, den Nr-Überschuss zu reduzieren und damit die N-Belastung in landwirtschaftlich dominierten Landschaften zu mindern. Unser besonderes Interesse gilt den Nr-Umwandlungsmechanismen an den Schnittstellen von Feldern, Grundwasser, Uferzone und Bächen. Um das derzeit begrenzte Verständnisses der zeitlichen und räumlichen hydro-biogeochemischen Flüsse bei der Nr-Transformation in der Landschaft zu überwinden, werden wir innovative Feldexperimente mit einem prozessbasierten Modellierungsansatz kombinieren. Der N-Zyklus in hydro-biogeochemischen Modellen ist jedoch komplex und die Validierung der zugrunde liegenden Prozesse datenintensiv. Die Messungen werden daher auf vier verschiedenen landwirtschaftlichen-, einem Grünland- und einem Waldgebiet durchgeführt. MINCA besteht aus vier eng miteinander verbundenen Arbeitspaketen (WP). In WP1 werden bereits laufende Messung der Wasser- und Stickstoffflüsse im Vollnkirchener Bach Studiengebiet beschrieben. Die bereits relativ umfangreichen kontinuierlichen Messungen, z.B. N2O-Emissionen, Bodenfeuchte, Abfluss und Gewässerqualität, sollen durch weitere Messungen wie NO3-Auswaschung und -Konzentrationen, saisonale Blattflächenindices, Erträge, Biomasse und deren C- und N-Gehalt ergänzt werden. Zusätzlich werden 15N2O und 15NO3 Isotopomer in Feldkampagnen gemessen. Komplexe Messungen für Modellversuche in WP1, modellbasierte hochskalierungs-Methoden im Rahmen von WP2 und Parameterreduktion, Unsicherheitsanalyse und Prozessplausibilitätsprüfung von WP3 erlauben es uns zu erkennen, wann und wo N-Belastung in der Landschaft auftreten. Dieses vertiefte Wissen wird die Grundlage für die Entwicklung von wissenschaftlich fundierten Mitigationsszenarien im WP4 bilden. Das gekoppelte Modell wird im Echtzeit-Modus ausgeführt, um die vom Bundesministerium für Ernährung und Landwirtschaft erstrebten Zielwerte von reduziertem Nr-Überschuss zu erreichen. Maßgeschneiderte in-situ-Experimente zu N2O-Emissionen und NO3-Auswaschung werden die Wirksamkeit des Minderungspotenzials aufzeigen.
Wir werden eine Strategie zur Assimilation der Landoberflächentemperatur implementieren, bei der verschiedene Beobachtungen innerhalb eines Tages verwendet werden, um sensitive Landoberflächenparameter und -zustandsgrößen anzupassen. Wir werden zudem einen Operator zur Assimilation des Blattflächenindex entwickeln, um damit dynamische Vegetationszustandsgrößen und sensitive Ökosystemparameter anzupassen. Der Nutzen der genannten Daten in Kombination mit Bodenfeuchtebeobachtungen wird mit Hilfe synthetischer Experimente ermittelt. Im Besonderen wird dabei untersucht, ob die Parameterschätzung verbessert werden kann und in welchem Ausmaß die Assimilation bestimmter Datentypen die Zustandsgrößen anderer Kompartimente verbessert. Hierbei werden realistische Szenarien verwendet, welche verschiedene Unsicherheitsquellen und unbekannte Parameter beinhalten. Synthetische Experimenten werden zunächst mit der Landkomponente von TerrSysMP-PDAF (CLM-ParFlow-PDAF) mit Hilfe eines gemeinsamen Testfalles mit P5, P6 und P7 durchgeführt. Wir werden zudem Beiträge zu den Experimenten mit dem gesamten TerrSysMP-PDAF liefern, welche von C1 koordiniert werden. Im letzten Schritt werden Tests mit dem Rureinzugsgebiet durchgeführt.
Im Rahmen der MSRL-Bewertung 2024 - Bewertung der Weichböden mit dem BQI wurden folgende Datensätze für die Ostsee erstellt: Die Berechneten BQI-Werte aus den Rohdaten sowie die Finale BHT-Bewertung. Diese Daten (sowie die Datengrundlage) werden über diesen WFS-Dienst zum Download bereitgestellt. Hintergrunddokument zur BHT-Bewertung und der BQI-Schwellenwerte: BMUV. 2024. Zustand der deutschen Ostseegewässer 2024. Aktualisierung der Anfangsbewertung nach § 45c, der Beschreibung des guten Zustands der Meeresgewässer nach § 45d und der Festlegung von Zielen nach § 45e des Wasserhaushaltsgesetzes zur Umsetzung der Meeresstrategie-Rahmenrichtlinie. Bund/Länder-Arbeitsgemeinschaft Nord- und Ostsee (BLANO), 7. Oktober 2024. Anlage 1 Ergänzende nationale Indikatorblätter. https://mitglieder.meeresschutz.info/de/berichte/zustandsbewertungen-art8-10.html?file=files/meeresschutz/berichte/art8910/zyklus2024/Anlage_1_Ergaenzende_nationale_Indikatorblaetter_Ostsee.pdf Für BHT-Karte siehe: Marx, D., Feldens, A., Papenmeier, S., Feldens, P., Darr, A., Zettler, M. L., & Heinicke, K. (2024). Habitats and Biotopes in the German Baltic Sea. Biology, 13(1), 6. https://doi.org/10.3390/biology13010006 Für EIG-Karte siehe: Schaub, I., Friedland, R., & Zettler, M. L. (2024). Good-Moderate boundary setting for the environmental status assessment of the macrozoobenthos communities with the Benthic Quality Index (BQI) in the south-western Baltic Sea. Marine Pollution Bulletin, 201, 116150. https://doi.org/10.1016/j.marpolbul.2024.116150
Im Rahmen der MSRL-Bewertung 2024 - Bewertung der Weichböden mit dem BQI wurden folgende Datensätze für die Ostsee erstellt: Die Berechneten BQI-Werte aus den Rohdaten sowie die Finale BHT-Bewertung. Diese Daten (sowie die Datengrundlage) werden über diesen WFS-Dienst zum Download bereitgestellt. Hintergrunddokument zur BHT-Bewertung und der BQI-Schwellenwerte: BMUV. 2024. Zustand der deutschen Ostseegewässer 2024. Aktualisierung der Anfangsbewertung nach § 45c, der Beschreibung des guten Zustands der Meeresgewässer nach § 45d und der Festlegung von Zielen nach § 45e des Wasserhaushaltsgesetzes zur Umsetzung der Meeresstrategie-Rahmenrichtlinie. Bund/Länder-Arbeitsgemeinschaft Nord- und Ostsee (BLANO), 7. Oktober 2024. Anlage 1 Ergänzende nationale Indikatorblätter. https://mitglieder.meeresschutz.info/de/berichte/zustandsbewertungen-art8-10.html?file=files/meeresschutz/berichte/art8910/zyklus2024/Anlage_1_Ergaenzende_nationale_Indikatorblaetter_Ostsee.pdf Für BHT-Karte siehe: Marx, D., Feldens, A., Papenmeier, S., Feldens, P., Darr, A., Zettler, M. L., & Heinicke, K. (2024). Habitats and Biotopes in the German Baltic Sea. Biology, 13(1), 6. https://doi.org/10.3390/biology13010006 Für EIG-Karte siehe: Schaub, I., Friedland, R., & Zettler, M. L. (2024). Good-Moderate boundary setting for the environmental status assessment of the macrozoobenthos communities with the Benthic Quality Index (BQI) in the south-western Baltic Sea. Marine Pollution Bulletin, 201, 116150. https://doi.org/10.1016/j.marpolbul.2024.116150
Origin | Count |
---|---|
Bund | 61 |
Land | 15 |
Wissenschaft | 15 |
Type | Count |
---|---|
Daten und Messstellen | 7 |
Ereignis | 1 |
Förderprogramm | 47 |
Text | 1 |
unbekannt | 22 |
License | Count |
---|---|
geschlossen | 9 |
offen | 65 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 54 |
Englisch | 35 |
Resource type | Count |
---|---|
Archiv | 8 |
Bild | 3 |
Datei | 6 |
Dokument | 1 |
Keine | 33 |
Webdienst | 6 |
Webseite | 31 |
Topic | Count |
---|---|
Boden | 58 |
Lebewesen und Lebensräume | 69 |
Luft | 41 |
Mensch und Umwelt | 76 |
Wasser | 51 |
Weitere | 78 |