Der rasche Ausbau der erneuerbaren Energiequellen stellt eine große Herausforderung dar, wenn es darum geht, die Energieentwicklung mit konkurrierenden Interessen in Einklang zu bringen. Dies unterstreicht die Notwendigkeit präziser räumlicher Daten, um eine effektive Bilanzierung, Verwaltung oder Bewertung der Einhaltung gesetzlicher Rahmenbedingungen zu ermöglichen. In diesem Beitrag wird ein Zero-Shot-Ansatz zur Extraktion von Parametern von Photovoltaik-Freiflächenanlagen in Deutschland auf der Grundlage von digitalen Orthofotos vorgestellt. Dies ermöglicht die genaue Identifizierung und Abgrenzung wesentlicher räumlicher Parameter, einschließlich des Bodenbedeckungsgrads der Photovoltaikmodule, des Reihenabstands zwischen den Modulreihen und ihrer genauen Ausrichtung. Die Ergebnisse dieser Studie sind in zweierlei Hinsicht bemerkenswert. Erstens erzielt die entwickelte technische Pipeline eine qualitativ hochwertige Segmentierung von Photovoltaik-Modulreihen, wobei über 71 % der Ergebnisse eine zufriedenstellende bis fehlerfreie Segmentierung aufweisen. Zweitens steht der resultierende Datensatz für weitere Analysen zur Verfügung und kann als Ausgangspunkt für die Entwicklung weiterer KI-Modelle zur Überwachung der Dynamik des Ausbaus von Freiflächen-Photovoltaikanlagen dienen. Diese Methodik unterstützt nicht nur die Bewertung der Einhaltung der Vorschriften, sondern verbessert auch die Entscheidungsprozesse an der Schnittstelle zwischen der Entwicklung erneuerbarer Energien und konkurrierenden Interessen, wie z. B. dem Naturschutz.
<p>Gesundheitsrisiken durch Hitze</p><p>Sommerlich hohe Lufttemperatur birgt für Mensch und Umwelt ein hohes Schädigungspotenzial. Der Klimawandel führt nachweislich vermehrt zu extremer Hitze am Tag und in der Nacht, wodurch sich die gesundheitlichen Risiken für bestimmte Personengruppen erhöhen können. Für die Gesundheit von besonderer Bedeutung sind Phasen mit mehrtägig anhaltender, extremer Hitze.</p><p>Indikatoren der Lufttemperatur: Heiße Tage und Tropennächte</p><p>Die klimatologischen Kenngrößen „Heiße Tage“ und „Tropennächte“ des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) werden unter anderem zur Beurteilung von gesundheitlichen Belastungen verwendet. So ist ein „Heißer Tag“ definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius (°C) liegt, und eine „Tropennacht“ als Nacht, deren niedrigste Temperatur 20 °C nicht unterschreitet.</p><p>Die raumbezogene Darstellung von „Heißen Tagen“ (HT) und „Tropennächten“ (TN) über die Jahre 2000 bis 2024 zeigt, dass diese zum Beispiel während der extremen „Hitzesommer“ in den Jahren 2003, 2015, 2018 und 2022 in Deutschland verstärkt registriert wurden (siehe interaktive Karte „Heiße Tage/Tropennächte“).</p><p>Zu beachten ist, dass <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> regional unterschiedlich verteilt und ausgeprägt sein können, wie die Sommer der Jahre 2015, 2018, 2019 und 2022 zeigen. So traten Heiße Tage 2015 erheblich häufiger in Süddeutschland (maximal 40 HT) als in Norddeutschland (2015: maximal 18 HT) auf. Auch Tropennächte belasteten die Menschen im Süden und Westen Deutschlands häufiger: 2015 in Südwestdeutschland (maximal 13 TN). Besonders und wiederkehrend betroffen von extremer Hitze Demgegenüber betraf die extreme Hitze der Sommer 2018 und 2019 sind einige Teilregionen Süd- und Südwestdeutschlands (oberes Rheintal und Rhein-Maingebiet) sowie weite Teile Mittel- und Ostdeutschlands, wie Südbrandenburg und Sachsen (bis zu 45 HT und 13 TN). Während 2022 vor allem die Oberrheinische Tiefebene von Basel bis Frankfurt am Main sowie weitere Ballungsräume in Süddeutschland mit weit mehr als 30 Heißen Tage betroffen waren, lag der Hitzeschwerpunkt des Sommers 2024 mit bis zu 30 Heißen Tagen erneut in Brandenburg und Sachsen, bei nur sehr wenigen Tropennächten.</p><p>Informationen zur interaktiven Karte</p><p>Quellen: <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> 2000-2024 – <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>/Climate Data Center, <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2000-2024 – DWD/Climate Data Center; Daten für 2024 – Persönliche Mitteilung des DWD vom 15.05.2025.</p><p>Bearbeitung: Umweltbundesamt, FG I 1.6/FG I 1.7</p><p>Gesundheitsrisiko Hitze</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beeinflusst in vielfältiger Weise unsere Umwelt. Klimamodelle prognostizieren, dass der Anstieg der mittleren jährlichen Lufttemperatur zukünftig zu wärmeren bzw. heißeren Sommern mit einer größeren Anzahl an Heißen Tagen und Tropennächten führen wird. Extreme Hitzeereignisse können dann häufiger, in ihrer Intensität stärker und auch länger anhaltend auftreten. Es gibt bereits belastbare Hinweise darauf, dass sich die maximale Lufttemperatur in Deutschland in Richtung extremer Hitze verschieben wird (vgl. Friedrich et al. 2023). Dieser Trend ist in der Abbildung „Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 Grad Celsius“ bereits deutlich erkennbar.</p><p>Die mit der Klimaerwärmung verbundene zunehmende Hitzebelastung ist zudem von erheblicher gesundheitlicher Bedeutung, da sie den Organismus des Menschen in besonderer Weise beansprucht und zu Problemen des Herz-Kreislaufsystems führen kann. Außerdem fördert eine hohe Lufttemperatur zusammen mit intensiver Sonneneinstrahlung die Entstehung von gesundheitsgefährdendem bodennahem Ozon (siehe<a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-ozon">„Gesundheitsrisiken durch Ozon“</a>). Anhaltend hohe Lufttemperatur während Hitzeperioden stellt ein zusätzliches Gesundheitsrisiko für die Bevölkerung dar. Bei Hitze kann das körpereigene Kühlsystem überlastet werden. Als Folge von Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit chronischen Vorerkrankungen (wie zum Beispiel Herz-Kreislauf-Erkrankungen) sind von diesen Symptomen besonders betroffen. So werden während extremer Hitze einerseits vermehrt Rettungseinsätze registriert, andererseits verstarben in den beiden Hitzesommern 2018 und 2019 in Deutschland insgesamt etwa 15.600 Menschen zusätzlich an den Folgen der Hitzebelastung (vgl. Winklmayr et al. 2022). Modellrechnungen prognostizieren für Deutschland, dass zukünftig mit einem Anstieg hitzebedingter Mortalität von 1 bis 6 Prozent pro einem Grad Celsius Temperaturanstieg zu rechnen ist, dies entspräche über 5.000 zusätzlichen Sterbefällen pro Jahr durch Hitze bereits bis Mitte dieses Jahrhunderts.</p><p>Der Wärmeinseleffekt: Mehr Tropennächte in Innenstädten</p><p>Eine Studie untersuchte die klimatischen Verhältnisse von vier Messstationen in Berlin für den Zeitraum 2001-2015 anhand der beiden Kenngrößen „Heiße Tage“ und „Tropennächte“. Während an den unterschiedlich gelegenen Stationen die Anzahl Heißer Tage vergleichbar hoch war, traten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> an der innerhalb dichter, innerstädtischer Bebauungsstrukturen gelegenen Station wesentlich häufiger (mehr als 3 mal so oft) auf, als auf Freiflächen (vgl.<a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Eine Innenstadt speichert die Wärmestrahlung tagsüber und gibt sie nachts nur reduziert wieder ab. Die innerstädtische Minimaltemperatur kann während der Nacht um bis zu 10 Grad Celsius über der am Stadtrand liegen. Dies ist als städtischer Wärmeinseleffekt bekannt.</p><p>Hitzeperioden</p><p>Von besonderer gesundheitlicher Bedeutung sind zudem Perioden anhaltender Hitzebelastung (umgangssprachlich „Hitzewellen“), in denen <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> in Kombination mit Tropennächten über einen längeren Zeitraum auftreten können. Sie sind gesundheitlich äußerst problematisch, da Menschen nicht nur tagsüber extremer Hitze ausgesetzt sind, sondern der Körper zusätzlich auch in den Nachtstunden durch eine hohe Innenraumtemperatur eines wärmegespeicherten Gebäudes thermophysiologisch belastet ist und sich wegen der fehlenden Nachtabkühlung nicht ausreichend gut erholen kann. Ein Vergleich von Messstellen des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) in Hamburg, Berlin, Frankfurt/Main und München zeigt, dass beispielsweise während der <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a> 2003 und 2015 in Frankfurt/Main 6 mehrtägige Phasen beobachtet wurden, an denen mindestens 3 aufeinanderfolgende Heiße Tage mit sich unmittelbar anschließenden Tropennächten kombiniert waren (vgl.<a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Zu erwarten ist, dass mit einer weiteren Erwärmung des Klimas die Gesundheitsbelastung durch das gemeinsame Auftreten von Heißen Tagen und Tropennächten während länger anhaltender Hitzeperioden – wie sie zum Beispiel in den Sommern der Jahre 2003, 2006, 2015 und vor allem 2018 in Frankfurt am Main beobachtet werden konnten – auch in Zukunft zunehmen wird (siehe Abb. „Heiße Tage und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2001 bis 2020“). Davon werden insbesondere die in den Innenstädten (wie in Frankfurt am Main) lebenden Menschen betroffen sein. Eine Fortschreibung der Abbildung über das Jahr 2020 hinaus ist aktuell aus technischen Gründen leider nicht möglich.</p><p><em>Tipps zum Weiterlesen:</em></p><p><em>Winklmayr, C., Muthers, S., Niemann, H., Mücke, H-G, an der Heiden, M (2022): Hitzebedingte Mortalität in Deutschland zwischen 1992 und 2021. Dtsch Arztebl Int 2022; 119: 451-7; DOI: 10.3238/arztebl.m2022.0202</em></p><p><em>Bunz, M. & Mücke, H.-G. (2017): <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> – physische und psychische Folgen. In: Bundesgesundheitsblatt 60, Heft 6, Juni 2017, S. 632-639.</em></p><p><em>Friedrich, K. Deutschländer, T., Kreienkamp, F., Leps, N., Mächel, H. und A. Walter (2023): Klimawandel und Extremwetterereignisse: Temperatur inklusive Hitzewellen. S. 47-56. In: Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. 2. Auflage, 527 S., über 100 Abb., Berlin Heidelberg. ISBN 978-3-662-6669-8 (eBook): Open Access.</em></p>
Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg. Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg. Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg.
Das Modell MoRE wurde auf die Jahre um 1880 angewandt, um die mittleren historischen Emissionen, Frachten und Konzentrationen von Stickstoff und Phosphor für Flusseinzugsgebiete, die in die deutsche Nord- und Ostsee einleiten, zu quantifizieren. Die historische Wasserbilanz wurde mit dem Modell LARSIM-ME abgeleitet und in MoRE integriert. Die Modellergebnisse ergänzen die historischen Modellergebnisse, die den bestehenden deutschen Zielkonzentrationen für Stickstoff am so genannten Übergabepunkt limnisch-marin und Schwellenwerten für den guten ökologischen Zustand der Küsten- und Meeresgewässer zugrunde liegen. Die Datensatzdatei enthält die Geometrie der 3048 Modellierungseinheiten in den Einzugsgebieten von Nord- und Ostsee (mit Ausnahme des Stettiner Haffs und des Einzugsgebiets der oberen Donau) und eine lange Datentabelle mit den Modelloutputs und ausgewählten Inputdaten (47 Variablen, Spalten durch Tabstopps getrennt).
The dataset contains information on the European river basin districts, the river basin district sub-units, the surface water bodies and the groundwater bodies delineated for the 3rd River Basin Management Plans (RBMP) under the Water Framework Directive (WFD) as well as the European monitoring sites used for the assessment of the status of the above mentioned surface water bodies and groundwater bodies. This data set is available only for internal use of the European Commission and the European Environment Agency. Please enter the publicly available version to access data: https://sdi.eea.europa.eu/catalogue/srv/eng/catalog.search#/metadata/bce2c4e0-0dad-4c42-9ea8-a0b82607d451 The information was reported to the European Commission under the Water Framework Directive (WFD) reporting obligations. The dataset compiles the available spatial data related to the 3rd RBMPs due in 2022 (hereafter WFD2022). See http://rod.eionet.europa.eu/obligations/780 for further information on the WFD2022 spatial reporting. Note: * This dataset has been reported by the member states. The subsequent QC revealed some problems caused by self-intersections elements. Data in GPKG-format should be processed using QGIS.
The Tree Species Germany product provides a map of dominant tree species across Germany for the year 2022 at a spatial resolution of 10 meters. The map depicts the distribution of ten tree species groups derived from multi-temporal optical Sentinel-2 data, radar data from Sentinel-1, and a digital elevation model. The input features explicitly incorporate phenological information to capture seasonal vegetation dynamics relevant for species discrimination. A total of over 80,000 training and test samples were compiled from publicly accessible sources, including urban tree inventories, Google Earth Pro, Google Street View, and field observations. The final classification was generated using an XGBoost machine learning algorithm. The Tree Species Germany product achieves an overall F1-score of 0.89. For the dominant species pine, spruce, beech, and oak, class-wise F1-scores range from 0.76 to 0.98, while F1-scores for other widespread species such as birch, alder, larch, Douglas fir, and fir range from 0.88 to 0.96. The product provides a consistent, high-resolution, and up-to-date representation of tree species distribution across Germany. Its transferable, cost-efficient, and repeatable methodology enables reliable large-scale forest monitoring and offers a valuable basis for assessing spatial patterns and temporal changes in forest composition in the context of ongoing climatic and environmental dynamics.
<p>Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen</p><p>Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch).</p><p>Treibhausgas-Emissionen aus der Landwirtschaft</p><p>Das Umweltbundesamt legt im Rahmen des<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetzes (KSG)</a>eine Schätzung für das Vorjahr 2024 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2023. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 76,0 % der gesamten Methan (CH4)-Emissionen und 77,3 % der Lachgas (N2O)-Emissionen in Deutschland aus der Landwirtschaft.</p><p>Im Jahr 2024 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 53,7 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 8,2 % der gesamten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 62,1 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente bzw. 9,6 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden.</p><p>In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt.</p><p>Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 62,1 % im Schätzjahr 2024 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 33,4 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,5 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO2aus anderen kohlenstoffhaltigen Düngern aus. Die CO2-Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024“).</p><p>Klimagase aus der Viehhaltung</p><p>Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2023 machten die Methan-Emissionen aus der Fermentation anteilig 76,7 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (93 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 18,8 % der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Der verbleibende Anteil (4,5 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (45,8 Mio. t CO2-Äquivalente) und 2024 (33,2 Mio. t CO2-Äquivalente) um etwa 27,5 % zurückgegangen.</p><p>Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N2O) und seiner Vorläufersubstanzen (Stickoxide, NOxund Stickstoff, N2). Dieser Bereich trägt zu 16,2 % an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2024 um rund 34,2 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert.</p><p>Somit lassen sich in 2024 rund 34,9 Mio. t CO2-Äquivalente direkte THG-Emissionen (das sind 64,5 % der Emissionen der Landwirtschaft und 5,4 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> unberücksichtigt.</p><p></p><p>Klimagase aus landwirtschaftlich genutzten Böden</p><p>Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO2)-Freisetzung infolge von<a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland/emissionen-der-landnutzung-aenderung">Landnutzung und Landnutzungsänderungen</a>(Umbruch von Grünland- und Niedermoorstandorten) sowie der CO2-Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt wurden 2024 15,1 Mio. t CO2-Äquivalente Lachgas durch die Bewirtschaftung landwirtschaftlicher Böden emittiert.</p><p>Es werden direkte und indirekte Emissionen unterschieden:</p><p>Die<strong>direkten Emissionen</strong>stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen mit 46 kt bzw. 12,3 Mio. t CO2-Äquivalenten den Hauptanteil (51,9 %) an den gesamten Lachgasemissionen aus.</p><p>Quellen für<strong>indirekte Lachgas-Emissione</strong>n sind die atmosphärische <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen.</p><p>Im Zeitraum 1990 bis 2024 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 24 % ab.</p><p>Gründe für die Emissionsentwicklung</p><p>Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a> im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten.</p><p>Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen</p><p>Das von der Bundesregierung in 2019 verabschiedete und 2021 und 2024 novellierte<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetz</a>legt für 2024 für den Landwirtschaftssektor eine Höchstmenge von 67 Mio. t CO2-Äquivalente fest, welche mit 62 Mio. t CO2-Äquivalente unterschritten wurde.</p><p>Weiterführende Informationen zur Senkung der <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen finden Sie auf den Themenseiten<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/ammoniak-geruch-staub">„Ammoniak, Geruch und Staub“</a>,<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/lachgas-methan">„Lachgas und Methan“</a>und<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/stickstoff">„Stickstoff“</a>.</p>
Das PRTR ist ein Schadstoffregister, das darüber informiert, wie viele Schadstoffe Industriebetriebe in die Umwelt entlassen und wie viele Abfälle sie außerhalb ihres Betriebes entsorgen. Die Daten werden jährlich aktualisiert und auf Thru.de veröffentlicht.
Der INSPIRE Downloaddienst Verteilung der Arten (Luchs, Wolf) in Deutschland - Vorkommen stellt bundesweite Vorkommensdatensätze gemäß den Vorgaben der INSPIRE Richtline Annex III Thema bereit. Die Vorkommensdaten wurden vom Bundesamt für Naturschutz aus Monitoringdaten (Luchs 2019-2020, Wolf 2023-2024) der Bundesländer zusammengeführt. Das Monitoringjahr bezieht sich immer auf den Zeitraum vom 01.05. bis zum 30.04. des Folgejahres.
Origin | Count |
---|---|
Bund | 18390 |
Europa | 250 |
Kommune | 12 |
Land | 2985 |
Schutzgebiete | 4 |
Wirtschaft | 1 |
Wissenschaft | 390 |
Zivilgesellschaft | 7 |
Type | Count |
---|---|
Daten und Messstellen | 370 |
Ereignis | 8 |
Förderprogramm | 15048 |
Software | 1 |
Taxon | 32 |
Text | 274 |
Umweltprüfung | 4 |
unbekannt | 3637 |
License | Count |
---|---|
geschlossen | 814 |
offen | 16227 |
unbekannt | 2332 |
Language | Count |
---|---|
Deutsch | 16420 |
Englisch | 4550 |
andere | 2 |
Resource type | Count |
---|---|
Archiv | 462 |
Bild | 31 |
Datei | 692 |
Dokument | 368 |
Keine | 10671 |
Unbekannt | 28 |
Webdienst | 494 |
Webseite | 7786 |
Topic | Count |
---|---|
Boden | 10678 |
Lebewesen und Lebensräume | 13812 |
Luft | 10058 |
Mensch und Umwelt | 19145 |
Wasser | 8406 |
Weitere | 19364 |