API src

Found 5 results.

Teilprojekt 4: Energie- und ressourcenschonende Fertigung durch Heißzerspanen aus der Schmiedehitze

Das Projekt "Teilprojekt 4: Energie- und ressourcenschonende Fertigung durch Heißzerspanen aus der Schmiedehitze" wird vom Umweltbundesamt gefördert und von Stiftung Institut für Werkstofftechnik, Hauptabteilung Fertigungstechnik an der Universität Bremen durchgeführt. Forschungsziele: Das Vorhaben ist ein Teilprojekt (TP4) der Leittechnologie-Initiative 'EcoForge - Ressourcen-effiziente Prozessketten für Hochleistungsbauteile' der AiF und hat im Bereich Zerspanung zwei übergeordnete Ziele: - Analyse der in den Teilprojekten TP1-6 betrachteten Werkstoffe auf ihre Eigenschaften bezüglich Zerspanbarkeit durch die Prozesse Tiefbohren und Drehen - Überprüfung der Machbarkeit einer Nutzung der Schmiedehitze zur Heißzerpanung. Gegenstand der Forschung im laufenden Vorhaben ist die Realisierung der Nutzung der Schmiedehitze zur Heißzerspanung (Bild 1). Durch die Verknüpfung von Schmiedeprozess und Zerspanung kann von der besseren Zerspanbarkeit bei hohen Temperaturen profitiert werden und in Zukunft die Verwendung von bainitischen Schmiedestählen mit reduziertem Schwefelgehalt zur Herstellung von Hochleistungsbauteilen ermöglichen. Angestrebte Forschungsergebnisse: Die Vorteile der Nutzung der Schmiedehitze zur Heißzerspanung für die Prozesskette können wie folgt zusammengefasst werden: - Wegfall einer zusätzlichen Randschichthärtung bzw. -verfestigung - Bainit besitzt ausreichende mechanische Eigenschaften - Bauteile weisen homogene Härte auf - Nutzung der Schmiedehitze zur Heißzerspanung - Abschrecken wird bei ca. 500 C unterbrochen - Verbesserte Zerspanbarkeit bei hohen Temperaturen (Bild 2) - Längere Werkzeugstandzeiten. Zerspankräfte beim Drehen der Proben mit unterschiedlichen Temperaturen. - Reduzierung des Schwefelgehalts in AFP-Stählen - Zerspanbarkeit wird durch hohe Temperaturen gewährleistet - Bessere Funktionseigenschaften der Bauteile.

Teilprojekt 6: Kontrollierte Abkühlung von Bauteilen aus der Schmiedewärme

Das Projekt "Teilprojekt 6: Kontrollierte Abkühlung von Bauteilen aus der Schmiedewärme" wird vom Umweltbundesamt gefördert und von Stiftung Institut für Werkstofftechnik, Hauptabteilung Verfahrenstechnik an der Universität Bremen durchgeführt. Motivation: Durch die Einstellung des Werkstoffgefüges direkt aus der Schmiedehitze sind ressourcen- und energieeffiziente Prozessketten in der Umformindustrie realisierbar. Eine gezielte Temperatur-Zeit-Führung der Bauteile in der Wärmebehandlung ermöglicht es, die Werkstoffgefüge zu optimieren und die Prozesskette in der Produktion hochbeanspruchter Schmiedebauteile zu verkürzen und somit einen Vorsprung in der Entwicklung zu erlangen. Zielsetzung: - Verkürzung der Prozesskette - Einstellen des Werkstoffgefüges durch kontrollierte Zeit-Temperatur-Umwandlungsverläufe - Abkühlen aus der Schmiedewärme - Integration einer sicheren und energieeffizienten Prozessführung. Lösungsweg: Der Lösungsweg baut auf experimentellen und simulativen Untersuchungen adaptierter Abkühlprozesse auf. Der Temperatur-Zeit-Verlauf im Wärmebehandlungsprozess kann in drei Hauptbereiche unterteilt werden: - zügiges Abkühlen auf Bainitisierungstemperatur TB1 - isothermes Halten während der Bainitisierung TB2 - geregeltes Abkühlen aus der Bainitisierung TB3. Kontinuierliches ZTU-Diagramm eines HDB-Stahls mit möglicher Abkühlkurve. TB 1: zügiges Abkühlen auf Bainit - TBS. Die Wärmebehandlung der Schmiedebauteile erfolgt über eine kontrollierte Düsenfeldabschreckung. Düsenfeldabschreckung: Jets und Sprays. TB 2: isothermes Halten auf Bainitisierungstemperatur. Über einen Heißgasprozess ist ein isothermes Halten der Bauteile auf Bainittemperatur möglich. TB3: geregelte Abkühlung auf RT. Die Abkühlung auf RT erfolgt wiederum mittels Düsenfeldabschreckung.

Teilprojekt 1: Tieftemperatur-Umwandlungsvorgänge in hochfesten Schmiedestählen

Das Projekt "Teilprojekt 1: Tieftemperatur-Umwandlungsvorgänge in hochfesten Schmiedestählen" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Eisenhüttenkunde - IEHK durchgeführt. Entwicklung und Etablierung einer Methodik zur exakten Beschreibung mehrphasiger bainitischer Gefüge, da die Lichtmikroskopie aufgrund zu hoher Komplexität und zu geringer möglicher Auflösung versagt - Entwicklung einer Bildanalyseroutine zur automatisierten Auswertung von REM-Aufnahmen bainitischer Mikrostrukturen - Anwendung der Routine auf die Stähle HDB, 38MnVS6, 18CrNiMo7-6 und exakte Beschreibung der entstehenden Mikrostrukturen - Identifikation relevanter Gefügeparameter und Verknüpfung mit mechanisch-technologischen Eigenschaften (TP 2, TP 3, TP 4, TP5). Lösungswege: Einstellung definierter Mikrostrukturen der Stähle 38MnVS6, HDB, 18CrNiMo7-6 mittels Dilatometrie - Charakterisierung der Proben mittels LOM, REM und EBSD, sowie Anwendung eines neuen Klassifizierungssystems - Entwicklung einer Bildanalyseroutine für bainitische Gefüge - Anwendung der Bildanalyseroutine auf gesteuert abgekühlte Proben (Kerbschlagbiege-, Zugproben) und Korrelation der mechanischen Eigenschaften mit der Mikrostruktur - Charakterisierung der Mikrostrukturen in Modellbauteilen (Rail-Bauteil und abgesetzte Welle) und Korrelation mit den mechanisch-technologischen Eigenschaften - Ableitung von eigenschafts- bzw. anwendungsbezogenen Richtlinien für kritische Mikrostrukturcharakteristika (Phasenanteile, -verteilungen, -morphologien etc.). Projektstruktur: Arbeitspaket 1: Werkstoffbereitstellung - Bereitstellung des HDB-Stahls für alle Projektpartner. Arbeitspaket 2: Basischarakterisierung : - Charakterisierung des Umwandlungsverhaltens anhand von ZTU- und UZTU-Diagrammen - Vorgaben für die Prozessführung in TP 2, TP 3, TP 4 - Erster Abgleich mit Ergebnissen aus TP 5. Arbeitspaket 3: Rasterelektronenmikroskopie : Ausführliche Charakterisierung kontrolliert abgekühlter Dilatomterproben mittel LOM, REM und EBSD - Entwicklung eines Klassifizierungssystems für bainitische Mikrostrukturen. Arbeitspaket 4: Entwicklung der Bildanalyseroutine : Entwicklung einer Strukturerkennungsroutine für REM-Aufnahmen - Entwicklung einer Klassifizierungsroutine auf Basis der Strukturerkennungsroutine. Arbeitspaket 5: Korrelation von Mikrostruktur und mechanischen Eigenschaften : Untersuchung der mechanischen Eigenschaften kontrolliert abgekühlter Proben mit bainitischen Mikrostrukturen - Identifikation maßgeblicher mikrostruktureller Einflussgrößen auf die mechanischen Eigenschaften und ggf. Quantifizierung des Einflusses. Arbeitspaket 6: Anwendung der Bildanalyseroutine auf die Modellbauteile : Anwendbarkeit der Analyseroutine auf die Mikrostrukturen der Modellbauteile (Rail-Bauteil und abgesetzte Welle) - Verknüpfung der mechanischen Eigenschaften mit Mikrostruktureigenschaften und Abgleich mit AP 5 - Verknüpfung der technologischen Eigenschaften mit Mikrostrukturparametern (aus TP 2 - 5). Arbeitspaket 7: Entwicklung einer Richtreihe für bainitische Mikrostrukturen. Arbeitspaket 8: Dokumentation.

Teilprojekt 5: Sensorkontrollierte Umwandlung aus der Schmiedehitze

Das Projekt "Teilprojekt 5: Sensorkontrollierte Umwandlung aus der Schmiedehitze" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Werkstoffkunde durchgeführt. Motivation: Moderne Hochleistungsbauteile erfordern die gezielte Einstellung von Bauteileigenschaften, entsprechend dem Beanspruchungsprofil, in effizienten Prozessketten bei kostengünstiger Fertigung. Forschungsziele: Durch die Entwicklung einer neuen Sensortechnik, die das Werkstoff- Umwandlungsverhalten erfasst, kann die Phasen- und Gefügeentwicklung in der Abkühlphase direkt verfolgt und gesteuert werden. Damit ergeben sich nach erfolgter thermomechanischer Bearbeitung neue Möglichkeiten zur gezielten Einstellung von Gefügen direkt aus der Schmiedewärme und damit von Bauteileigenschaften, wie diese bei Hochleistungsbauteilen gefordert werden - Sensorkontrollierte Werkstoffumwandlung aus der Schmiedewärme - Gezielte Einstellung von Phasenanteilen und Gefügen in der Abkühlphase - Qualitätssicherung der Bauteileigenschaften von Hochleistungsbauteilen in verkürzten Schmiedelinien bei kostengünstiger Fertigung. Lösungsansatz: - Sensorkontrollierte Umwandlung - Entwicklung und Erprobung einer zerstörungsfreien Sensor-Prüftechnik zur Inline-Erfassung des Werkstoff-Umwandlungsverhaltens - Klassifizierung der Phasen- und Gefügeanteile (Restaustenit, Bainit, Martensit, ...) - Steuerung der Phasenentwicklung und Gefügeausbildung in der Abkühlphase - Gezielte Einstellung von beanspruchungsgerechten, bainitischen Mehrphasen-Gefügen in Hochleistungsbauteilen. Messprinzip: - Wirbelstromtechnik - Online Werkstoffcharakterisierung - Mehrparameterprüfung. Differenzierte Betrachtung von Kern- und Randzoneneigenschaften - Fourieranalyse / Harmonischen Messwerte. Erfassung von Umwandlungsabläufen - Impedanzverhalten der Harmonischen - Identifizierung von Umwandlungsmechanismen - Quantifizierung von Gefügeanteilen. Sensorik: - Bainitsensor-Prüftechnik - Robust - Temperaturbeständig größer als 400 C - Berührungslose Messung - Quantifizierung des Bainit-Anteils. Voruntersuchungen: - Umwandlungsverhalten.

Teilprojekt 2: Experimentelle und numerische Untersuchungen zur kontrollierten Wärmebehandlung hochbeanspruchter Stahlschmiedebauteile aus der Schmiedewärme

Das Projekt "Teilprojekt 2: Experimentelle und numerische Untersuchungen zur kontrollierten Wärmebehandlung hochbeanspruchter Stahlschmiedebauteile aus der Schmiedewärme" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Umformtechnik und Umformmaschinen durchgeführt. Motivation: Die konventionelle Herstellung hochbelasteter Bauteile ist durch eine relativ lange Prozesskette gekennzeichnet. Mittels einer prozessintegrierten Wärmebehandlung aus der Schmiedewärme können sowohl die Wirtschaftlichkeit produzierender Unternehmen als auch die Energieeffizienz erhöht werden. Das Zwischenstufengefüge Bainit kombiniert hohe Festigkeit mit verbesserter Zähigkeit. - Verbesserung der mechanischen Bauteileigenschaften - Verkürzung der Prozesskette - Berücksichtigung der umformbedingten Korngrößenänderung und abkühlungsbedingten Gefügeentwicklung im Schmiedebauteil bereits während der Prozessauslegung - FE-basierte Vorhersage des durch die Wärmebehandlung hervorgerufenen Verzugs im Bauteil. Zielsetzung und Vorgehensweise: - Programmtechnische Erweiterung kommerzieller FE-Systeme durch Einbindung von Unterroutinen - Die Unterprogramme basieren auf physikalischen empirischen Modellen zur Berechnung des Umformverhaltens, der zeitlich und lokal ausbildenden Gefüge- und Kornstruktur sowie des Aufkohlungsverhaltens - Numerische und experimentelle Untersuchungen an den zwei Modellgeometrien 'Abgesetzte Welle' und 'Railbauteil' - Untersuchung von Stählen mit unterschiedlichem Ausgangs- und Zielgefüge - Einsatzstahl - AFP-Stahl - HDB-Stahl. Experimentelle Untersuchungen: FE-gestützte Prozessentwicklung und Werkzeugauslegung - Reproduzierbare Versuchsergebnisse durch automatisierten Schmiedeprozess - Gezielte Prozessführung mit thermischer Überwachung zur Einstellung der Zielgefüge - Beurteilung der Bauteilqualität hinsichtlich Maßhaltigkeit mittels einer 3D-Koordinatenmessmaschine - Metallographische Untersuchungen der Fertigteile zur Beurteilung der umformtechnisch eingebrachten Kornfeinung - Untersuchung des Verzugverhaltens. Numerische Untersuchungen. Berechnung der diffusionsgesteuerten und diffusionslosen Gefügeumwandlung während des Abkühlvorgangs - Berechnung des abkühlvorgangsbedingten Bauteilverzugs durch Berücksichtigung umwandlungsplastischer und umwandlungsbedingter Dehnungsanteile - Bestimmung der Korngrößenverteilung infolge statischer und dynamischer Rekristallisation - Lückenlose numerische Abbildung von Schmiedeprozessketten (Erwärmen, Schmieden, Abkühlen) unter Berücksichtigung gefügeevolutionsbedingter Veränderungen der Bauteileigenschaften.

1