API src

Found 2855 results.

Related terms

Zylindrische Zellen mit lasergetrimmtem Elektroden-Design für Hochenergiemodule extrem langer Lebensdauer

WD 8 - 013/20 Zur Berücksichtigung von emissionsarmen Fahrzeugen bei der Berechnung des Flottenverbrauchs

Kurzinformation des wissenschaftlichen Dienstes des Deutschen Bundestages. 2 Seiten. Auszug der ersten drei Seiten: Wissenschaftliche Dienste Kurzinformation Zur Berücksichtigung von emissionsarmen Fahrzeugen bei der Berechnung des Flottenverbrauchs Für Personenkraftwagen (Pkw) sieht die Verordnung (EU) 2019/631 ab seit dem 1. Januar 2020 einen Zielwert für den europäischen Flottenverbrauch von 95 g CO2/km vor. Die Grenzwerte für die einzelnen Hersteller können hiervon abweichen, da für die Berechnung der spezifischen Her- stellerwerte auch das durchschnittliche Fahrzeuggewicht berücksichtigt wird. Bei Berechnung des Flottenverbrauchs werden übergangsweise Pkw besonders begünstigt, die spezifische CO2-Emissionen von weniger als 50 g CO2/km verursachen. Ermittelt werden diese Emissionen nach den europaweit einheitlichen Regeln des WLTP (Worldwide Harmonized Light- Duty Vehicles Test Procedure, vgl. hierzu ab dem 1. Januar 2021 die Verordnung (EU) 2017/1151, bis zum 31. Dezember 2020 die Verordnung (EG) Nr. 692/2008 in Verbindung mit den Durchfüh- rungsverordnungen (EU) 2017/1152 und (EU) 2017/1153). Diese Fahrzeuge werden im Jahr 2020 als zwei Fahrzeuge, im Jahr 2021 als 1,67 Fahrzeuge und im Jahr 2022 als 1,33 Fahrzeuge gezählt, so dass sie den rechnerischen Flottenverbrauch überproportional senken. Der sich für den Her- steller aus dem Verkauf solcher Fahrzeuge ergebende Vorteil ist auf 7,5 g CO2/km je Hersteller begrenzt (Artikel 5 der VO (EU) 2019/631). Der Grenzwert von 50 g CO2/km wird von Elektro- und Brennstoffzellenfahrzeugen erreicht, die im WLTP-Zyklus keine CO2-Emissionen ausweisen. Für sogenannte Plug-in-Hybride, deren Batte- rie extern geladen werden kann, werden die Emissionen in einem mehrstufigen Verfahren ermit- telt. Gestartet wird mit voller Batterie. Der Zyklus wird so oft wiederholt, bis die Batterie leer ist. Anschließend erfolgt eine Messung mit leerer Batterie, bei der die Antriebsenergie ausschließlich vom Verbrennungsmotor und der Bremsenergierückgewinnung stammt. Anschließend wird auf Grundlage der gemessenen Emissionen der auszuweisende CO2-Wert berechnet, in dem die elekt- rische Reichweite ins Verhältnis zur Gesamtreichweite gesetzt wird. Der sogenannte Utility Fac- tor (zu Deutsch: Nutzenfaktor) repräsentiert den Anteil der Fahrten, die elektrisch zurückgelegt worden sind. Bei entsprechend dimensionierter Batterie können auch Plug-in-Hybride den ge- nannten Grenzwert unterschreiten. Bei Fahrzeugen mit Verbrennungsmotoren, die auch mit alternativen, möglicherweise emissions- freien Kraftstoffen betrieben werden könnten, erfolgt die Verbrauchsmessung mit konventionel- lem Kraftstoff. Sie können daher nicht als emissionsfrei deklariert werden. Um dies zu ändern, WD 8 - 3000 - 013/20 (2. März 2020) © 2020 Deutscher Bundestag Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines sei- ner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasse- rinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeit- punkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abge- ordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, ge- schützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fach- bereich berät über die dabei zu berücksichtigenden Fragen.[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 2 Zur Berücksichtigung von emissionsarmen Fahrzeugen bei der Berechnung des Flottenverbrauchs wenn zukünftig emissionsfreie Kraftstoffe auch praktisch in relevanten Mengen am Markt verfüg- bar wären, bedürfte es einer entsprechenden Regelung auf europäischer Ebene. Dies dürfte jedoch nicht von praktischer Bedeutung sein, da die Übergangsregelung bis Ende 2022 befristet ist. *** Fachbereich WD 8 Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung

Digitalisierter Heizkreisverteiler zur Effizienzsteigerung von Gebäuden mit Fußbodenheizung, Teilvorhaben: Integration, Energy Harvesting und hydraulischer Abgleich

Es soll ein Plattformkonzept für Komponenten intelligenter Fußbodenheizungssysteme entwickelt werden. Hauptaugenmerk soll dabei auf der Steigerung der Energieeffizienz des Heizkreisverteilers und der Raumthermostate liegen. Das Vorhaben umfasst dazu ein neues Antriebs- und Sensorkonzept für den Heizkreisverteiler, welches einen erhöhten Grad der funktionalen Integration aufweisen und einen automatisierten hydraulischen Abgleich erlauben soll. Die dazu notwendigen Sensoren und die Elektronik des Heizkreisverteilers sollen idealerweise vollständig durch geeignete Energy-Harvesting-Konzepte mit Energie versorgt werden. Um die Kommunikation mit der Peripherie des Heizkreisverteilers energieeffizient zu ermöglichen, soll die notwendige Antennentechnik optimiert werden. Durch den Entfall elektrischer Leitungen und den neuen Aufbau in Form einer vormontierten Baugruppe reduziert sich der Installationsaufwand erheblich und ermöglicht die wirtschaftliche Nachrüstung des Gebäudebestands mit einer modernen Heizungssteuerung. Auch im Bereich der Raumthermostate sollen geeignete Energy-Harvesting-Konzepte Verwendung finden, um in Zukunft auf den wartungsintensiven Wechsel der Batterien bzw. die aufwändige, feste Verdrahtung verzichten zu können. Das Teilprojekt 'Integration, Energy Harvesting und hydraulischer Abgleich' beschäftigt sich dabei mit der Integration von Heizkreisverteiler, Stellantrieben, Ventilen, Regelungselektronik und Heizkreisverteilerschrank zu einer vormontierten Baugruppe. Durch die Integration soll ein dynamischer hydraulischer Abgleich implementiert werden und der Heizkreisverteiler durch Energy Harvesting mit elektrischer Energie versorgt werden können. Darüber hinaus soll der Heizkreisverteiler in Kooperation mit der HsH drahtlos mit Raumthermostaten und externer Sensorik vernetzt werden, um die gewonnenen Daten für die vorausschauende Temperaturregelung heranzuziehen.

Entwicklung der Herstellungstechnologie einer gewebebasierten dreidimensionalen Silicium-Elektrode für Lithium-Ionen-Zellen und deren Charakterisierung

Lösungsbasierte Liberalisierung und Reintegration funktionaler Batteriematerialen aus Produktionsausschüssen der Zellfertigung, Lösungsbasierte Liberalisierung und Reintegration funktionaler Batteriematerialen aus Produktionsausschüssen der Zellfertigung

Leistungsoptimierte Lithium-lonen Batterien

Der schnelle Fortschritt der elektronischen Geräte erhöht die Nachfrage nach verbesserten Li-Ionen Batterien. Kommerziell erhältliche Li-Zellen nutzen meist Lithiumkobaltoxid für die positive Elektrode. Doch gerade dieses Material ist ein Hindernis für eine weitere Optimierung, insbesondere für eine Kostensenkung. Vor allem für größere Anwendungen wie Hybrid- oder Elektrofahrzeuge müssen alternative Materialen erforscht werden, die billiger, sicherer und umweltverträglicher sind. Daher wird im ISEA derzeit ein neues Forschungsprojekt ins Leben gerufen und die dafür benötigte Infrastruktur geschaffen. Die Forschung wird sich auf die Untersuchung geeigneter Übergangsmetalloxide und Polyanionen konzentrieren, die besonders gut zur Einlagerung von Li-Ionen geeignet sind. Es werden neue Herstellungsverfahren unter Verwendung wässriger Precurser-Substanzen untersucht, die Verbindungen mit überlegenen Eigenschaften erzeugen und außerdem leicht an eine Massenproduktion angepasst werden können. Ziel der Arbeiten ist, preisgünstiges Elektrodenmaterial zu entwickeln, das eine spezifische Energie von über 200 Wh/kg und eine Leistungsdichte von 400 W/kg aufweist. Außerdem werden Arbeiten im Bereich der physikalisch-chemischen Charakterisierung der neuen Materialien stattfinden sowie elektrochemische Analysen der gesamten Zellen- und Batteriesysteme durchgeführt. Das elektrodynamische Verhalten der neuen Zellen wird u. a. mit Hilfe der elektrochemischen Impedanzspektroskopie analysiert, um präzise und zuverlässige Algorithmen für ein späteres Batteriemonitoring im realen Betrieb zu finden.

Entscheidungshilfesystem für das Recycling von Lithium-Ionen-Batterien

Zielsetzung: Die immer stärker zunehmende Nutzung und Verbreitung von Lithium-Ionen- Batterien (LiB) führt dazu, dass die Frage nach einer nachhaltigen Entsorgung und Wiederverwendung selbstverständlich an Bedeutung gewinnt. Aktuell bestehen erhebliche Defizite in der Schaffung effizienter Stoffkreisläufe und im Zugang zu praktikablen Recyclingstrategien, insbesondere für kleine und mittelständische Unternehmen (KMU). Das übergeordnete Ziel des Vorhabens ist die Entwicklung eines umfassenden Entscheidungshilfesystems, das KMU`s dabei unterstützt, die geeignetsten Recyclingstrategien für LiB zu identifizieren. Dabei werden zwei zentrale Fragestellungen betrachtet: Zunächst geht es um die Auswahl des optimalen Systems für die Stoffkreisläufe. Hierbei stellt sich die Frage, ob „Hersteller- bzw. Branchen-individuelle Stoffkreisläufe“ bevorzugt werden sollten oder ob auch „alternative Konzepte“ zur Verfügung stehen, die möglicherweise besser geeignet sind. Im zweiten Schritt soll die beste Recycling-Route ermittelt werden, wobei verschiedene Optionen zur Verfügung stehen, wie etwa die Wiederverwendung (ReUse oder Second Life Anwendungen), die stoffliche Verwertung von Kathodenmaterial oder die Nutzung der Batterien als Sekundärrohstoffe. Durch die gezielte Analyse und Bewertung dieser Optionen wird ein praxisnahes Entscheidungssystem entwickelt, das nicht nur ökologische Vorteile bietet, sondern auch ökonomisch tragfähige Lösungen aufzeigt. Somit leistet das Vorhaben einen wichtigen Beitrag zur Stärkung der Kreislaufwirtschaft und zur Ressourcenschonung im Bereich der Batterietechnologie, die im Einklang mit den Vorgaben der Europäischen Union sowie der Bundesrepublik Deutschland stehen.

Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Einblicke in die Dotierungsmechanismen von Polymerelektrolyt / redoxaktiven organischen Radikal Polymer lamellaren Verbundwerkstoffen

Organische Radikalbatterien sind aufgrund ihrer hohen Leistungsdichte besonders vielversprechend. Aus grundlegende Sicht müssen eine günstige Ladungstransferkinetik und ein schneller Ladungstransport gleichzeitig ermöglicht werden. Darüber hinaus erfordert die Ladungsspeicherung eine aliovalente Dotierung, um die Ladungsneutralität zu gewährleisten. Die zugrunde liegenden Mechanismen auf atomarer Ebene sind jedoch nicht gut verstanden. Dies gilt insbesondere für die 'trockenen' Gel- oder 'festen' Polymer-MehrschichtElektrolyte, die aufgrund ihrer hohen elektrochemischen Stabilität derzeit die bevorzugten Materialien sind. In einem systematischen Ansatz wird eine Familie von Mehrschichtpolymersystemen vorbereitet und in Bezug auf PolyTEMPO, ein etabliertes Redoxpolymersystem für Flüssigelektrolyte, untersucht. Die Modellsysteme bestehen aus einer Lithium-Metall-Anode, einer hochlithiumionenleitenden Polymerelektrolytschicht und gemischt leitenden Polymerverbunden, einschließlich Elektronenleiter, Redox-Polymer und einem hoch anionenleitenden Polymer. Der Syntheseteil umfasst die Herstellung und Verarbeitung der Polymermaterialien zu lamellaren Verbundwerkstoffen sowie eine umfassende elektrochemische Charakterisierung.Details der Radikal-Transfermechanismen und der auftretenden Ionenspezies werden anhand von c.w. und gepulsten EPR-Methoden aufgeklärt, wobei spektrale Merkmale von reinen und zyklischen Materialien (post-mortem) verglichen und bestimmt werden, einschließlich der Anwendung von PELDOR/DEER zur Aufklärung der Abstände und wahrscheinlichen Verteilungen der beim Zellbetrieb gebildeten Radikalspezies, trotz schwieriger hoher lokaler Radikalkonzentrationen. Wenn möglich, soll mittels ENDOR / HYSCORE die radikalen Arten mit den Materialien weiter charakterisiert werden. In-operando EPR wird an ausgewählten Proben durchgeführt, um die Entwicklung der radikalen Spezies anhand ihres Fingerabdrucksignals zu verfolgen und Einblicke in molekulare Details der Ladungsübertragungsprozesse zu geben. Weitere Einblicke in die mechanistischen Details des elektronischen und ionischen Ladungstransports werden durch die rechnerische Modellierung relevanter Prozesse vom elementaren Elektronentransfer bis zum Ionentransport über die Grenzflächen innerhalb des Schichtverbundes ermöglicht. Ab initio-Methoden werden zur Charakterisierung der elektronischen Eigenschaften der redoxaktiven Polymere eingesetzt, während die weitreichenden Ionentransport- und Dotierungsmechanismen der organischen Kathode auf der Grundlage klassischer molekulardynamischer Simulationen entschlüsselt werden. Zusammenfassend lässt sich sagen, dass all diese Bemühungen neben einem tieferen grundlegenden Verständnis als Leitfaden für die Identifizierung vielversprechender redoxaktiver Materialien und die Gestaltung von Grenzflächen innerhalb der Mehrschichtstrukturen dienen werden, um so die zukünftige Entwicklung leistungsfähiger fester organischer Elektrolyte zu fördern.

Microfarming: lebensfähige Gemüsebetriebe auf kleinster Fläche - Anbauverfahren, Hilfsmittel, Fruchtfolgen

Zielsetzung: Die Stärkung der Eigenversorgung im Bereich Gemüse soll verbessert werden. Dies bietet nicht nur einen ökonomischen Wert durch eine erhöhte regionale Wertschöpfung und ökologische Vorteile kurzer Transportwege, sondern dient auch dazu, der Bevölkerung sowohl eine gesicherte Qualität als auch eine regionale (energieautarke) Versorgungssicherheit zu gewährleisten. Das Konzept der Vielfaltsgärtnerei verspricht eine ressourcenschonende Bewirtschaftung in Bezug auf Bodenverbrauch, Düngung und Pestizideinsatz. Gleichzeitig wird erwartet, dass durch die bio-intensive Bewirtschaftung der kleinen Flächen der Ertrag, verglichen mit konventionellen Anbausystemen, signifikant höher ist und damit die Ressourceneffizienz gesteigert werden kann. Durch den zum ersten Mal projektierten energieautarken Ansatz ist es möglich, sowohl die Produktion als auch den Vertrieb der Produkte vollständig durch vor Ort produzierte Energie (Photovoltaik, mit Batterien und Smart Grid Anwendungen) zu bewerkstelligen. Durch den low-tech Ansatz (kein Einsatz von Traktoren!) werden keine Arbeitsplätze vernichtet, sondern im Gegenteil hochwertige, regionale, den Ansprüchen einer modernen Gesellschaft gerechte, Arbeitsplätze geschaffen. Die Entwicklung vielfältiger Strukturen auf den Produktionsflächen (Blühflächen, Sträucher und Bäume mit Fruchtnutzung) sorgt nicht nur für die Förderung der Artenvielfalt, das Bestäuben der Nutzpflanzen und die Förderung von Nützlingen, sondern schafft neben der zusätzlichen Lebensmittelproduktion auch ein menschenwürdiges Arbeitsumfeld und damit einen Mehrnutzen. Sowohl durch den Humusaufbau (Kohlenstoffspeicherung) auf den Produktions- und Diversitätsflächen als auch durch die fehlende Verbrennung fossiler Energie, wird die Klimaerwärmung eingebremst und durch das Konzept der Vielfaltsgärtnerei eine aktive Adaptierung an den Klimawandel eingeführt. Durch Bewusstseinsbildung und Vermittlung hat das Projekt auch das Ziel, junge Menschen in die unternehmerische Lebensmittelproduktion zu bringen. Ein besonderes Ziel ist auch das Bewusstsein für die Bedeutung einer hochwertigen und diversen Nahrung für den Gesundheitsbereich zu stärken und vermehrte Forschungstätigkeit und Kooperationen in diesem Sektor auszulösen. Bedeutung des Projekts für die Praxis: Die Eigenversorgung mit Gemüse in Österreich liegt bei nur etwa 60% mit einem stetig ansteigenden Verbrauch. Die derzeit verwendeten Methoden zur Gemüseproduktion in Niederösterreich sind durch sehr hohen technischen Aufwand (Investitionsbedarf!), kombiniert mit hohem Pestizid- und Mineraldüngereinsatz (konventionell) oder hohem mechanischen Aufwand (biologisch) gekennzeichnet. Neue (alte) Methoden erleben in Nordamerika und Teilen Europas einen Aufschwung. Junge Menschen (oft Quereinsteiger) entwickeln ressourcenschonende Methoden mit einem geringen Technik-, aber umso höherem Wissenseinsatz. (Text gekürzt)

Hybrid-Batterie-Systeme 4.0

1 2 3 4 5284 285 286