tozero is committed to its mission to truly bring lithium-ion battery waste to zero. With its novel hydrometallurgical (i.e. wet chemical)battery recycling approach, it can maximize the recovery of critical raw materials (lithium, nickel, cobalt, manganese, and graphite)from both lithium-ion batteries that have reached their end of life, and scrap created during the production of new batteries.Proven on a daily basis in an operational pilot plant (commissioned in July 2023) close to Munich, Germany, tozero already now fulfillsthe recovery rates for critical raw materials from lithium-ion battery waste required by the recently enforced EU Battery Directive for2027 and 2031 and established itself as one of the leading battery recycling startups in Europe. In addition, the use of less aggressivechemicals than competitors and a mostly closed circular production process reduces the carbon footprint for batteries using tozero’srecycled material compared to batteries using mined materials by up to 80%.Considering an initial pre-seed funding of EUR 3.5mn in 2022, receiving the EIC grant would allow to significantly accelerate tozero´sscale up to industry-scale commercialization and bridge the gap for the next funding round. First, this includes additional funds fromthe EIC for the purchasing and in-house optimization of chemical reactors tailored to the innovative hydrometallurgical process oftozero. Second, it allows us to largely automate our processing and prepare for industry-scale processing. Third, it supports in thecreation of a full lifecycle assessment that is required to officially accredit our CO2e savings and helps to identify the largest lever tofurther reduce our environmental footprint. All three aspects combined allow to reach an industrial scale proof of our operations andunlock a large equity financing round in 2026.
Introduction: By 2020, the community Wuestenrot wants to cover its energy needs through the utilization of renewable energy sources, such as biomass, solar energy, wind power and geothermal energy, within the town area of 3000 hectares. In order to elaborate a practicable scheme for realizing this idea in a 'real' community and to develop a roadmap for implementation, the project 'EnVisaGe' under the leadership of the Stuttgart University of Applied Sciences (HFT Stuttgart) was initiated. Accompanying particular demonstration projects are a) the implementation of a plus-energy district with 16 houses connected to a low exergy grid for heating and cooling, b) a biomass district heating grid with integrated solar thermal plants.
Project goal: The aim of the project is to develop a durable roadmap for the energy self-sufficient and energy-plus community of Wüstenrot. The roadmap shall be incorporated in an energy usage plan for the community, that shall be implemented by 2020 and brings Wüstenrot in an energy-plus status on the ecobalance sheet.
A main feature within the EnVisaGe project is the implementation of a 14,703-m2 energy-plus model district called 'Vordere Viehweide'. It consists of 16 residential houses, supplied by a cold local heating network connected to a large geothermal ('agrothermal') collector. Here PV systems for generating electricity are combined with decentralised heat pumps and thermal storage systems for providing domestic hot water as well as with batteries for storing electricity.
Another demonstration project is a district heating grid fed by biomass and solar thermal energy in the neighbourhood 'Weihenbronn'. It's based on a formerly oil-fired grid for the town hall and was extended to an adjacent residential area.