API src

Found 478 results.

Related terms

Begleitung der Umsetzung der Stromspeicher-Strategie des BMWK

Digital GreenTech 2 - LALWeco: Long-term Autonomous Laser Weed Control, Teilprojekt 1

Digital GreenTech 2 - LALWeco: Long-term Autonomous Laser Weed Control

Less Load Low Stress- Lebensdauernachweis von neuartigen Multi-Level Stromrichtern mit dem Fokus auf Batterieumrichter auf Basis von kaskadierten H-Brücken

Batteriespeichersysteme auf Basis von Lithium- oder Natrium-Ionen-Batterien sind ein wichtiger Baustein für das Gelingen der Energiewende. Damit aus mehreren Batteriezellen ein Batteriesystem wird, sind zusätzliche Komponenten notwendig. Besonders wichtig sind die Leistungselektronik und das Batteriemanagementsystem. In Vorprojekten wurden diese bisher meist getrennten Elemente in Multilevel-Umrichtern zusammengeführt. Ziel des L3S-Projekts ist es, den Lebensdauernachweis für diese neuartigen Multilevel-Umrichter mit dem Fokus auf Batteriespeicheranwendungen auf Basis kaskadierter H-Brücken (CHB) zu erbringen und damit unter anderem den Technologiereifegrad zu erhöhen.

Lebenszyklusverlängerung von bestehenden und zukünftigen stationären Batteriespeichersystemen durch hybride Zustandsprognose, Teilvorhaben: Produktlebenszyklus HVS: Anforderungen an Automotive Speicher mit nachgelagertem 2nd Life

Das Projekt BattLifeBoost soll die Zustandsschätzung und die damit verbundene Lebensdauerabschätzung für Batteriesysteme verbessern. Dazu soll ein Systemmodell, basierend auf realen Felddaten, erstellt werden. In Summe kann durch BattLifeBoost der Messaufwand für zukünftige Zellen minimiert und neue mögliche netzdienliche Anwendungen untersucht werden. Aktuell dauert die Qualifikation einer Zelle über ein Jahr. Dies soll um 50% reduziert werden. Zudem sollen die Ergebnisse von allen Partnern ökonomisch und ökologisch bewertet werden. Heutzutage werden Speicher lediglich für deren 1st Life-Anwendungen ausgelegt, die 2nd Life-Auslegungen bedeuten einen erheblichen Mehraufwand. Neue Ansätze zu Entwicklung, Test und Validierung für Hard- sowie Software wird in BattLifeBoost erforscht, um einerseits die 2nd Life- Anwendungen voranzubringen und andererseits einer zirkulären Wertschöpfungskette gerecht zu werden. Heutzutage werden Speicher lediglich für deren 1st Life-Anwendungen ausgelegt, die 2nd Life-Auslegungen bedeuten einen erheblichen Mehraufwand. Neue Ansätze zu Entwicklung, Test und Validierung für Hard- sowie Software wird in BattLifeBoost erforscht, um einerseits die 2nd Life- Anwendungen voranzubringen und andererseits einer zirkulären Wertschöpfungskette gerecht zu werden.

Weiterentwicklung des Campus Lichtwiese Energiesystems mit Integration erneuerbarer Energiequellen und Abwärme, Weiterentwicklung des Campus Lichtwiese Energiesystems mit Integration erneuerbarer Energiequellen und Abwärme

Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.

Weiterentwicklung des Campus Lichtwiese Energiesystems mit Integration erneuerbarer Energiequellen und Abwärme

Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.

Modularentwicklung eines Second-Life-basierten Multi-Usecase Stromspeicher-Systems, Teilvorhaben: Netzintegration und Feldtests

Mit der Energiewende steigt die Energieerzeugung durch volatile, erneuerbare Energieträger, während die Verkehrswende eine starke Zunahme an energieintensiven Verbrauchern nach sich zieht. Um den damit verbundenen Herausforderungen an die Verteilung und Bereitstellung elektrischer Energie zu begegnen ist die Entwicklung des innovativen und gleichzeitig wirtschaftlich verwertbaren Gesamtsystemkonzepts iSLE für den netzdienlichen, nachhaltigen Einsatz von Batteriespeichern geplant. Es wird vor diesem Hintergrund ein dezentral und universell einsetzbares, ortsflexibles Batteriespeichersystem mit gebrauchten Traktionsbatterien aus der E-Mobilität entwickelt und getestet. Die OsthessenNetz GmbH (OHN) trägt zu dem Projektvorhaben durch die Validierung des iSLE-Systems hinsichtlich seiner Funktionalität und insbesondere dem angestrebten netzdienlichen Verhalten unter realen Einsatzbedingungen bei. In einem ersten Teil umfasst dies die Erarbeitung einer Standartprozedur für die zukünftige Prüfung und Zertifizierung des iSLE-Systems. Daran schließt sich die Konzeptionierung einer Standardprozedur für die Netzintegration des iSLE-Systems sowie deren Umsetzung an. Die Netzintegration umfasst insbesondere die Integration in die Steuerung des Leitsystems der OHN. Nach den Vorarbeiten zur Konzeptionierung und Planung der Netzintegration erfolgt die praktische Umsetzung. Hierzu soll das iSLE-System an einen Mittelspannungsknoten angeschlossen werden. Der Anschluss beinhaltet Planung, Projektierung, Tiefbau, Montage und Inbetriebnahme. Mit der physischen Netzintegration des iSLE-Systems ist auch die Integration in das Netzschutzkonzept zu vollziehen. Für den Testbetrieb bzw. die Validierung wird ein schrittweises Verfahren gewählt, um das Schadensrisiko zu minimieren. Die erzielten Ergebnisse sollen detailliert ausgewertet werden. Das iSLE-System soll im Rahmen der Feldtests auch mit einem Fokus des Schnellladens von E-Fahrzeugen am realisierten Forschungsstandort erprobt werden.

Hybride und flexible Batteriesysteme im Bahnverkehr

Der weltweit steigende Bedarf an grünen Zuglösungen für nicht-elektrifizierte Bahnstrecken wird zu einer zunehmenden Nachfrage nach Fahrzeugen mit Traktionsbatterien anstelle von Dieselmotoren führen. Bislang sind batterieelektrische Züge vor allem mit Lithiumionen-Zellen mittlerer Energiedichte ausgestattet, die sehr leistungsfähig, aber auch teuer verglichen mit Zellen aus dem Automobilbereich sind. Das Ziel von HyFlexBahn liegt darin, die Nutzung von günstigen Zellen mit hoher Energiedichte in Kombination mit den Hochleistungszellen zu ermöglichen. Hierdurch sind hohe Energiedichten bei gleichzeitig geringeren Lebenszykluskosten möglich. Im Projekt werden die Simulationstools für hybride Batteriespeichersysteme mit Zellen unterschiedlicher Chemie geschaffen und parametriert, Systemdesigns für verschiedene Betriebsprofile simuliert und die Wirtschaftlichkeit bewertet werden. Die durch Hybridisierung erreichte Flexibilität trägt dazu bei, Batteriezüge wettbewerbsfähiger zu machen und die darin verwendeten Batterien effizient und möglichst lange zu nutzen, sowohl in der ersten Nutzung als auch einem eventuellen Second Life.

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher, Teilvorhaben: Herstellung und Charakterisierung modularer Strukturen mittels Extrusion

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

1 2 3 4 546 47 48