Batteriespeichersysteme auf Basis von Lithium- oder Natrium-Ionen-Batterien sind ein wichtiger Baustein für das Gelingen der Energiewende. Damit aus mehreren Batteriezellen ein Batteriesystem wird, sind zusätzliche Komponenten notwendig. Besonders wichtig sind die Leistungselektronik und das Batteriemanagementsystem. In Vorprojekten wurden diese bisher meist getrennten Elemente in Multilevel-Umrichtern zusammengeführt. Ziel des L3S-Projekts ist es, den Lebensdauernachweis für diese neuartigen Multilevel-Umrichter mit dem Fokus auf Batteriespeicheranwendungen auf Basis kaskadierter H-Brücken (CHB) zu erbringen und damit unter anderem den Technologiereifegrad zu erhöhen.
Das Teilvorhaben Sicherheit von Batteriespeichern befasst sich mit dem Teilaspekt der Sicherheit von 2nd-Life-Batteriespeichern. Dieser Aspekt ist für die Akzeptanz von Speichern sowie den sicheren Betrieb über eine möglichst lange Lebensdauer von entscheidender Bedeutung. Einzelne defekte Zellen können zur Havarie eines gesamten Batteriespeichers führen. Daher müssen insbesondere gebrauchte Zellen vor einer Verwendung in einem 2nd-Life-Speicher hinsichtlich ihres Zustands bewertet werden. Die dafür nötige Methode wird in diesem Teilvorhaben entwickelt und auf bereits gealterte Module angewandt. Ein zweiter Aspekt der Sicherheit von Batteriespeichern ist mit der Alterung verknüpft. So lässt über eine hohe Anzahl von Zyklen nicht nur die Kapazität der Zellen nach, sondern die Gefahr für einen Fehlerfall steigt an. Bisher ist nicht bekannt, welche Auswirkungen der Einsatz von Batteriespeichern in einem Prosumer-Betrieb hat. Die Alterungseigenschaften der Batterien unter diesen speziellen Bedingungen werden daher in diesem Teilvorhaben untersucht. Ein Schwerpunkt des Verbundvorhabens ist die zuverlässige Bereitstellung von Momentanreserve durch Prosumersysteme unter Berücksichtigung der Auswirkungen auf Leistungselektronik und Batterien sowie ihre Lebensdauer und Zuverlässigkeit.
Das Projekt BattLifeBoost soll die Zustandsschätzung und die damit verbundene Lebensdauerabschätzung für Batteriesysteme verbessern. Dazu soll ein Systemmodell, basierend auf realen Felddaten, erstellt werden. In Summe kann durch BattLifeBoost der Messaufwand für zukünftige Zellen minimiert und neue mögliche netzdienliche Anwendungen untersucht werden. Aktuell dauert die Qualifikation einer Zelle über ein Jahr. Dies soll um 50% reduziert werden. Zudem sollen die Ergebnisse von allen Partnern ökonomisch und ökologisch bewertet werden. Heutzutage werden Speicher lediglich für deren 1st Life-Anwendungen ausgelegt, die 2nd Life-Auslegungen bedeuten einen erheblichen Mehraufwand. Neue Ansätze zu Entwicklung, Test und Validierung für Hard- sowie Software wird in BattLifeBoost erforscht, um einerseits die 2nd Life- Anwendungen voranzubringen und andererseits einer zirkulären Wertschöpfungskette gerecht zu werden. Heutzutage werden Speicher lediglich für deren 1st Life-Anwendungen ausgelegt, die 2nd Life-Auslegungen bedeuten einen erheblichen Mehraufwand. Neue Ansätze zu Entwicklung, Test und Validierung für Hard- sowie Software wird in BattLifeBoost erforscht, um einerseits die 2nd Life- Anwendungen voranzubringen und andererseits einer zirkulären Wertschöpfungskette gerecht zu werden.
Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.
Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.
1
2
3
4
5
…
48
49
50