Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.
Bei der Energieversorgung arbeiten immer mehr Verbundnetzteilnehmer zusammen: Erzeuger, Verbraucher, Speicher. Letztere sollen im Fokus dieses Projekts stehen. Räumlich über weite Entfernung verteilte Batteriespeicher sollen digitalisiert, synchronisiert, miteinander vernetzt und an zentrale Überwachungs- und Steuerungseinheiten angeschlossen werden. Ziel ist eine smarte und barrierefreie Vernetzung der Systeme sowie Echtzeit-Anforderungen auf Basis moderner Cloud- und 5G-Mobilfunktechnologien bereitzustellen. Auf Basis neuerer IKT und Cloud-Services fordern heute die Netzbetreiben von Quartieren und Sektoren, dass die Digitalisierung in den Energieanlagen von Smart Grids zum Einsatz kommt. Mit der Vernetzung der Einrichtungen lassen sich übergeordnet in einer Cloud die Betriebsparameter protokollieren. Der Zugriff ist weltweit auf die laufenden Prozesse möglich. Durch die Orchestrierung aller Geräte in einem smarten Netzwerk, entfallen manuelle Aufgaben wie SW-Updates, Fernwartung und -lenkung im Gerät. Mit der Plattform, die das National 5G Energy Hub (N5GEH) in Deutschland geschaffen hat, können solche Aufgaben durch Cloud-Services für IoT-Devices ausgeführt werden. Eine Hauptaufgabe für den wissenschaftlichen Projektpartner BCM ist, Anlagendaten in Echtzeit zu erfassen, in zentralen Cloud-Systemen zusammenzuführen und die realen Batteriespeicher für Systemdienstleistungen zeitkritisch zu erfassen. Die fusionierten Daten sollen deterministisch mit einem sogenannten digitalen Zwilling verknüpft werden. Dazu ist die IoT-Architektur für harte Echtzeitanforderungen auszulegen, um die Anwendung mit einem parallel ablaufenden Modell interagieren zu lassen. Zur Datenermittlung werden intelligente Sensorik und leistungsfähige Controller integriert, welche die Daten über eigensichere Netzwerke direkt in die Cloud-Systeme übertragen. Die Anbindung und Verwaltung der IoT-Devices in Cloud-Services erlaubt die Überwachung und Anpassung der Batteriesysteme aus der Ferne.