Eine Übersicht über die großflächig naturnahen Waldkomplexe Sachsens ist im Zusammenhang mit der Beschreibung der potenziellen natürlichen Vegetation Sachsens entstanden (vgl. SCHMIDT et al. 2002: 115ff). Für die Auswahl der Gebiete waren im Wesentlichen die Kriterien der Waldbiotopkartierung bestimmend, nach welcher die aktuelle, flächenbezogene Baumartenzusammensetzung (entspricht zu mindestens 80 Prozent der potenziellen natürlichen Vegetation) und das Alter der Bestände (mindestens die Hälfte der Umtriebszeit) für die Ermittlung seltener naturnaher Waldgesellschaften herangezogen wurden. Des Weiteren waren Vorgaben des BfN hinsichtlich der Flächengröße von großflächig naturnahen Waldkomplexen zu beachten (in waldreichen Gebieten mindestens 100 ha, in waldarmen Gebieten mindestens 30 ha). Die Daten wurden 2012 für das Landschaftsprogramm aktualisiert. Das Gebiet Nr. 8 "Jagdschloss Weißwasser und Umgebung" wurde herausgenommen, da es vom Tagebau Nochten in Anspruch genommen wird.
Das Grüne Besenmoos (Dicranum viride) ist eine FFH-Art, die ihren Verbreitungsschwerpunkt in Mitteleuropa und Deutschland hat. Neben Bayern kommt das Moos v.a. in Baden-Württemberg in Regionen mit basen-/kalkreichem Untergrund vor. Baden-Württemberg kommt daher eine besondere Verantwortung für die Erhaltung des Grünen Besenmooses zu. Zur Ökologie des Grünen Besenmooses ist bisher nur wenig bekannt. Im Monitoring sollen die jahreszeitlich bedingten Entwicklungen/Vitalitätsveränderungen des Mooses beobachtet werden. Hierzu werden die 90 Trägerbäume der bereits bestehenden Untersuchungsflächen im Freiburger Mooswald und Schönbuch um weitere, nicht bekalkte Trägerbäume ergänzt bzw. weitere, geeignete Versuchsflächen hinzugefügt. In einem extern vergebenen Forschungsprojekt sollen v.a. die durch multivariate Prozesse bedingten (Standort, Stoffhaushalt, Schadstoffeinträge...) regionalen und überregionalen Verbreitungsmuster des Grünen Besenmooses und deren Ursachen untersucht werden. Ziele des Forschungsprojektes sind: - Entwicklung forstwirtschaftlicher Leitbilder zur Pflege und Entwicklung der Habitate an verschiedenen ökologischen Standorten - Untersuchung der Bindung der Zielart an Habitatstruktur, Baumartenzusammensetzung, Altersstruktur der Bestände und Bestandessoziologie - Untersuchung des Zusammenhangs zwischen den Verbreitungsmustern des Grünen Besenmooses und des Wandels in der historischen und aktuellen Kulturlandschaft - Untersuchung der Besiedelungsgeschwindigkeit des Grünen Besenmooses sowie der Voraussetzungen für die Bildung von Massenbeständen - Erstellung einer Literaturstudie und einer gemeinsamen wissenschaftlichen Publikation der Projektträger.
Auf Beispielsflaechen innerhalb Nordrhein-Westfalens sollen Waldbestaende verschiedenen Alters und verschiedener Baumartenzusammensetzung auf oekologischer Grundlage so behandelt werden, dass den jeweiligen standoertlichen Voraussetzungen und Funktions-Anforderungen hochgradig entsprochen wird. Die Auswirkungen solcher Behandlung auf Betriebskosten, Natural- und Finanzertraege sowie auf Hoehe und Qualitaet von Umweltleistungen sollen erfasst und dokumentiert werden.
Ziel ist es, Holzerntesysteme zu entwickeln, die es ermoeglichen, den tropischen Regenwald wirtschaftlich sinnvoll zu nutzen, ohne diesen in seiner Struktur und natuerlichen Biodiversitaet wesentlich zu beeintraechtigen. - Bislang lassen Durchforstungsmassnahmen mit unterschiedlicher Intensitaet erkennen, dass selektive, pflegliche Holzernte mit Rueckeschleppern und modernen Funkseilwinden, auf konzeptionellen Rueckegassen eingesetzt, moeglich ist; genaue Erkenntnisse zur Veraenderung der Baumartenzusammensetzung stehen noch aus.
Im Projekt ECTOMYC werden Ökosystemfunktionen und Artenreichtum von Ektomykorrhizapilzen an den Wurzeln ihrer Wirtsbäume untersucht und die Reaktion dieser Pilzgesellschaften auf Waldbewirtschaftungsmaßnahmen charakterisiert. Unsere Ergebnisse zeigten, dass Boden pH, Bewirtschaftungsintensität, Baumart und Wurzelnährelementgehalt Triebkräfte für die taxonomische Zusammensetzung von Pilzgesellschaften sind. Mit Hilfe stabiler Isotope (15NO3-, 15NH4+) zeigten wir, dass verschiedene Ektomykorrhiza-Arten große Unterschiede im Hinblick auf ihre N-Anreicherung aufwiesen. Dies zeigt, dass erhebliche Art-spezifische Unterschiede in der Pilzgemeinschaft für die N-Akquise bestehen. Über den gesamten Gradienten der Waldplots in den Exploratorien wurde ein signifikanter Zusammenhang zwischen N und der Zusammensetzung der Pilzgesellschaften nachgewiesen. Obgleich 'traits' von Pilzen wichtig für Dynamik von Nährstoffkreisläufen in Ökosystemen sind, gibt es nur wenige Untersuchungen über die Substratpräferenzen von Pilzen in ihrer natürlichen Umgebung. Um diese Wissenslücken zu schließen, planen wir in der neuen Phase folgende Untersuchungen: i) Analyse der zeitlichen und räumlichen Variation der Zusammensetzung der Pilzgesellschaften an Wurzeln (Mkcorrhiza, Saprophyten, Pathogene) und ihrer potentiellen Triebkräfte (Landnutzung, Klima, Boden, Wurzelnährelemente) ii) Analyse von Substratpräferenzen von Pilzgesellschaften in Köderexperimenten iii) Etablierung kausaler Zusammenhänge zwischen forstlichen Eingriffen (Lückenhieb), Veränderungen der Wurzelphysiologie und der Funktion und Diversität von unterschiedlichen ökologischen Gruppen in Pilzgesellschaften Um diese Ziele zu erreichen, soll die Diversität der Pilzgesellschaften auf den 150 experimentellen Waldplots untersucht und die Ergebnisse genutzt werden, um die Zeit-räumliche Variation der Pilzgesellschaften von 2014-2020 zu erforschen. Des Weiteren werden wir Substratköder auslegen und die besiedelnden Pilzgemeinschaften untersuchen. Durch das neue Waldexperiment (Auflichtung) wird der Kohlenstofffluss in den Boden stark verändert. Wir wollen diese Situation nutzen, um den Einfluss auf die Wurzelphysiologie, die Wurzel-assoziierten Pilzgesellschaften und mögliche feedback Reaktionen auf die Baumernährung zu analysieren. Insgesamt werden die Ergebnisse zu einem besseren Verständnis von funktionalen Zusammenhängen von Artengemeinschaften in Ökosystemen beitragen.
Die Sommertrockenheit in den Jahren 2003, 2013, 2015, 2018 und 2019 verdeutlichen, dass die Häufung und Intensität katastrophaler Trockenheitsereignisse durch den Klimawandel wahrscheinlich deutlich ansteigen werden. Zur deutschlandweiten Echtzeitbewertung der Wasserverfügbarkeit und von Dürrerisiken in Waldflächen soll im Rahmen des Projektes TroWaK ein hochaufgelöstes Wasserhaushaltsmodell entwickelt werden. Die Ergebnisse des Wasserhaushaltsmodells bilden die Grundlage für neue Methoden zur Abschätzung des Risikos für abiotische und biotische Folgeschäden in trockenheitsbeeinflussten Wäldern. Das Thünen-Institut arbeitet gemeinsam mit der NW-FVA und dem DWD an der Weiterentwicklung und Parametrisierung des Modells LWF-Brook90 (Wasserhaushaltsmodell) für verschiedene Baumarten. Hierfür werden Forstliche Monitoring- und Inventurdaten genutzt. Mit den Wasserhaushaltsmodellierungen werden baumspezifische abiotische Stressfaktoren abgeleitet. Diese reichen von Wachstums- über Vitalitätseinbußen, bis zur Mortalität. Damit wird zur Erstellung routinemäßiger Karten zur aktuellen Bodenfeuchtesituation und zum aktuellem Schadensrisiko von Waldbeständen beigetragen. Deutschlandweit kann so eine einheitliche Bewertung der Risiken für Waldbestände in Abhängigkeit von Klima, Baumartenzusammensetzung und Boden erfolgen. Aus den Ergebnissen sollen deutschlandweit einheitliche forstliche Standortskarten abgeleitet werden.
Die Sommertrockenheit in den Jahren 2003, 2013, 2015, 2018 und 2019 verdeutlichen, dass die Häufung und Intensität katastrophaler Trockenheitsereignisse durch den Klimawandel wahrscheinlich deutlich ansteigen werden. Zur deutschlandweiten Echtzeitbewertung der Wasserverfügbarkeit und von Dürrerisiken in Waldflächen soll im Rahmen des Projektes TroWaK ein hochaufgelöstes Wasserhaushaltsmodell entwickelt werden. Die Ergebnisse des Wasserhaushaltsmodells bilden die Grundlage für neue Methoden zur Abschätzung des Risikos für abiotische und biotische Folgeschäden in trockenheitsbeeinflussten Wäldern. Der DWD arbeitet gemeinsam mit der NW-FVA und dem Thünen-Institut für Waldökosysteme an der Weiterentwicklung und Parametrisierung des Modells LWF-Brook90 (Wasserhaushaltsmodell) für verschiedene Baumarten. Die Ergebnisse des bereits laufenden WKF-Projektes 'WBI_Praxis' zur Waldverdunstung und zur Streufeuchte sollen bei der Weiterentwicklung mit einbezogen werden. Das bestehende Bestandesklimamodell BEKLIMA wird für Waldbestände angepasst und soll zusätzliche Parameter berechnen, die für die Modelle der Projektpartner (verbessertes LWF-Brook90, Schädlinge, Krankheiten) benötigt werden. Die Daten der Level II-Stationen dienen zur Parametrisierung und zur späteren Validierung der Modelle. Als Ergebnis sollen zukünftig routinemäßig Karten zur aktuellen Bodenfeuchtesituation und zum aktuellem Schadensrisiko von Waldbeständen online bereitgestellt werden. Deutschlandweit kann so eine einheitliche Bewertung der Risiken für Waldbestände in Abhängigkeit von Klima, Baumartenzusammensetzung und Boden erfolgen.
Die Sommertrockenheit in den Jahren 2003, 2013, 2015, 2018 und 2019 verdeutlichen, dass die Häufung und Intensität katastrophaler Trockenheitsereignisse durch den Klimawandel wahrscheinlich deutlich ansteigen werden. Zur deutschlandweiten Echtzeitbewertung der Wasserverfügbarkeit und von Dürrerisiken in Waldflächen soll im Rahmen des Projektes TroWaK ein hochaufgelöstes Wasserhaushaltsmodell entwickelt werden. Die Ergebnisse des Wasserhaushaltsmodells bilden die Grundlage für neue Methoden zur Abschätzung des Risikos für abiotische und biotische Folgeschäden in trockenheitsbeeinflussten Wäldern. Der DWD arbeitet gemeinsam mit der NW-FVA und dem Thünen-Institut für Waldökosysteme an der Weiterentwicklung und Parametrisierung des Modells LWF-Brook90 (Wasserhaushaltsmodell) für verschiedene Baumarten. Die Ergebnisse des bereits laufenden WKF-Projektes 'WBI_Praxis' zur Waldverdunstung und zur Streufeuchte sollen bei der Weiterentwicklung mit einbezogen werden. Das bestehende Bestandesklimamodell BEKLIMA wird für Waldbestände angepasst und soll zusätzliche Parameter berechnen, die für die Modelle der Projektpartner (verbessertes LWF-Brook90, Schädlinge, Krankheiten) benötigt werden. Die Daten der Level II-Stationen dienen zur Parametrisierung und zur späteren Validierung der Modelle. Als Ergebnis sollen zukünftig routinemäßig Karten zur aktuellen Bodenfeuchtesituation und zum aktuellem Schadensrisiko von Waldbeständen online bereitgestellt werden. Deutschlandweit kann so eine einheitliche Bewertung der Risiken für Waldbestände in Abhängigkeit von Klima, Baumartenzusammensetzung und Boden erfolgen.
Die Sommertrockenheiten in den Jahren 2003, 2013, 2015, 2018 und 2019 verdeutlichen, dass die Häufung und Intensität katastrophaler Trockenheitsereignisse durch den Klimawandel wahrscheinlich deutlich ansteigen werden. Zur deutschlandweiten Echtzeitbewertung der Wasserverfügbarkeit und von Dürrerisiken in Waldflächen soll im Rahmen des Projektes TroWaK ein hochaufgelöstes Wasserhaushaltsmodell entwickelt werden. Die Ergebnisse des Wasserhaushaltsmodells bilden die Grundlage für neue Methoden zur Abschätzung des Risikos für abiotische und biotische Folgeschäden in trockenheitsbeeinflussten Wäldern. Die NW-FVA arbeitet gemeinsam mit dem DWD und dem Thünen-Institut für Waldökosysteme an der Weiterentwicklung und Parametrisierung des Modells LWF-Brook90 (Wasserhaushaltsmodell) für verschiedene Baumarten. Das bestehende Modell wird für Waldstandorte in Deutschland angepasst und soll zusätzliche Parameter berechnen, die für die Modelle, die das Risiko für abiotische und biotische Folgeschäden (Schädlinge, Krankheiten) in trockenheitsbeeinflussten Wäldern abschätzen, benötigt werden. Die Daten der Level II-Monitoringflächen dienen zur Parametrisierung und zur späteren Validierung der Modelle. Als Ergebnis sollen zukünftig routinemäßig Karten zur aktuellen Bodenfeuchtesituation und zum aktuellen Schadensrisiko von Waldbeständen online bereitgestellt werden. Deutschlandweit kann so eine einheitliche Bewertung der Risiken für Waldbestände in Abhängigkeit von Klima, Baumartenzusammensetzung und Boden erfolgen. Schwerpunkte der Arbeiten der NW-FVA in dem Verbundprojekt liegen in der Anpassung des waldhydrologischen Modells an Waldstandorte in Deutschland, der Abschätzung abiotischer Schadpotenziale trockenheitsgefährdeter Wälder sowie der Analyse und Entwicklung von Modellgrundlagen die Simulation biotischer Schadpotenziale unter besonderer Berücksichtigung der Buchenvitalitätsschwäche.
In dem Projekt werden tiefe Erkenntnisse über die Widerstandskraft von Mischwäldern gegenüber klimatisch bedingten Störungen gewonnen. Mit diesem Wissen werden Leitlinien zur nachhaltigen Bewirtschaftung von Mischwäldern im Kontext des Klimawandels erarbeitet. Insbesondere werden dabei die folgenden Ziele verfolgt: 1. Es wird geklärt, inwiefern die Mischung von Baumarten zu einer verminderten Vulnerabilität beitragen kann, die durch biotische und abiotische Schadfaktoren hervorgerufen wird. - 2. Es werden geeignete waldbaulichen Behandlungsprogramme definiert, mit denen die Widerstandskraft von Waldbeständen und insbesondere von Mischbeständen weiter erhöht werden kann. - 3. Es werden Modelle zur Prognose des Wachstums von Mischbeständen unter verschiedenen Klimaentwicklungsszenarien entwickelt. - 4. In Rückkopplung mit Forstpraktikern und Waldbesitzern werden verschiedene Behandlungsvarianten formuliert. Mit Hilfe von langfristigen Waldentwicklungsprognosen werden die verschiedenen Bestandesbehandlungsvarianten in ihren Auswirkungen auf die Gewährleistung ökosystemarer Funktionen (darunter Biodiversität) für verschiedene räumliche Skalenebenen evaluiert. - 5. Die Ergebnisse werden Forstpraktikern, Waldbesitzern und politischen Entscheidungsträgern anhand der Demonstrationsflächen (Fallstudien) veranschaulicht. Die Kernhypothese des Forschungsprojekts ist, dass die Vulnerabilität von Wäldern durch die Steuerung der Baumartenzusammensetzung, die Gestaltung der strukturellen Diversität und über die Intensität der Bestandesbehandlungsmaßnahmen vermindert werden kann. Insbesondere werden die folgenden Hypothesen angenommen: (H1) Der Vergleich zwischen Rein- und Mischbeständen liefert wertvolle Informationen darüber, wie existierende Methoden und Behandlungsprogramme für die Anwendung auf Mischbestände angepasst werden können. (H2) Das Ausmaß und die Hauptrichtung der wechselseitigen Beeinflussung verschiedener Baumarten in Mischwäldern hängt von der Baumartenzusammensetzung, der Mischungsform, dem Bestandesentwicklungsstadium, der Bestandesdichte und den herrschenden Klima- und Umweltbedingungen ab. (H3) Mischbestände haben eine höhere Widerstandskraft gegenüber biotischen und abiotischen Störungen. Dieses lässt sich anhand einer besseren Verjüngungsfreudigkeit, einer höheren Zuwachsleistung und niedrigeren Mortalitätsraten messen. (H4) Die Regulierung der Bestandesdichte durch waldbauliche Eingriffe vermindert die Auswirkungen von extremen Klimaereignissen, während das Schädigungsausmaß auch maßgeblich von der Baumartenzusammensetzung bestimmt wird. (H5) Mischbestände zeigen sich gegenüber Reinbeständen in ihren ökosystemaren Funktionen überlegen. Im europäischen Kontext des REFORM-Gesamtprojekts werden dadurch mancherorts Zielkonflikte aufgedeckt. (H6) Eine höhere Widerstandskraft und Stabilität von Mischwäldern bezüglich ihrer ökosystemaren Funktionen kann auch in größeren Regionen ... (Text gekürzt)
Origin | Count |
---|---|
Bund | 91 |
Land | 38 |
Wissenschaft | 3 |
Type | Count |
---|---|
Bildmaterial | 1 |
Förderprogramm | 79 |
Strukturierter Datensatz | 2 |
Text | 18 |
unbekannt | 16 |
License | Count |
---|---|
geschlossen | 25 |
offen | 91 |
Language | Count |
---|---|
Deutsch | 108 |
Englisch | 20 |
Resource type | Count |
---|---|
Archiv | 6 |
Bild | 2 |
Datei | 1 |
Dokument | 8 |
Keine | 77 |
Unbekannt | 1 |
Webdienst | 1 |
Webseite | 32 |
Topic | Count |
---|---|
Boden | 100 |
Lebewesen & Lebensräume | 116 |
Luft | 76 |
Mensch & Umwelt | 116 |
Wasser | 76 |
Weitere | 115 |