Im ersten Schritt des Vorhabens sollen die Reaktionsmuster des CO2- und H2O Blattgaswechsels von Mistel-Wirt-Paaren bezüglich Mikroklima und Lebensform des Wirts (immer- oder wechselgrün) im Jahreslauf möglichst kontinuierlich untersucht werden, um diese bis heute offen gebliebenen Informationslücke zu schliessen. Dabei soll die Hypothese überprüft werden, derzufolge Misteln vielfach mehr als ihre Wirte transpirieren, um über den Transpirationsstrom Nährstoffe des Wirtes, insbesondere Stickstoff, an sich zu binden. Es sollen hierzu auch Düngungsversuche an getopften Mistel-Wirt-Paaren durchgeführt und dabei besonderes Augenmerk auf die Nettophotosynthese und Wasserumsatz gelegt werden. Weiterhin wird die unterschiedliche Reaktion der beiden pflanzlichen Komponenten auf Wasserstress untersucht. Im fortgeschrittenen Stadium der Untersuchungen ist es das Ziel, über Kronenphotosynthese und deren Bilanzierung die C-Allokationsmuster des Parasiten zu bestimmen. Aufgrund des hohen Mistelbefalls von Forstbeständen und Obstbäumen, insbesondere im Raum Baden-Württemberg, ist diese Grundlagenforschung unmittelbar vor einem angewandten Hintergrund zu sehen.
Im Zuge des Klimawandels steigt der Informationsbedarf zur Vitalitätsentwicklung von Waldbeständen, zu Baumarten, zu Folgereaktionen von Störungsereignissen wie z.B. Sturm, Kalamitäten, Da detaillierte Information häufig fehlen, sind die zahlreich verbreiteten Abschätzungen hierzu widersprüchlich und spekulativ. Parallel zur terrestrischen Waldzustandserfassung ist die forstliche Fernerkundung seit mehreren Jahrzehnten bemüht, diese Informationslücke zu schließen. Allerdings ist die Unterscheidung von Baumarten bzw. -gattungen und deren Zustand noch immer problematisch. Zur Erhebung dieser Messwerte fehlen u.a. belastbare baumphysiologisch belegte Zusammenhänge. Dafür bieten sich Verfahren der Fernerkundung an, wenn über eine rein empirische Erhebung hinaus die Ableitung baumphysiologischer Parameter gelingt. Vor diesem Hintergrund soll mit dem aktuellen Forschungsvorhaben eine Brücke zwischen den modernen Möglichkeiten der forstlichen Fernerkundung und Gehölzphysiologie geschlagen werden. Ein im Wald installierter 40 m hoher Drehkran am GFZ TERENO-Forschungsstandort im Raum Demmin (Mecklenburg-Vorpommern) bietet dabei für FEMOPHYS einzigartige Möglichkeiten. Das Forschungsvorhaben verfolgt folgende Zielstellungen: 1. Untersuchung von Zusammenhängen zwischen stressbedingten, physiologischen Veränderungen in Baumkronen, Stamm und Wurzeln und deren Quantifizierbarkeit durch 'Messung von außen' 2. Verknüpfung des methodischen Knowhow der baumphysiologischen Diagnostik und den Verfahren der hyper-/multispektralen und thermalen Diagnostik von Baumkronen 3. Identifikation klimasensitiver Areale auf der Basis von Flächendaten und baumphysiologischen Untersuchungen speziell für Hauptbaumarten 4. Entwicklung eines einfach zugänglichen Informationsproduktes zum baumartenspezifischen Waldzustand Das Projekt will einen Forest Vulnerability Index anvisieren, der Zielgrößen wie z.B. Anfälligkeit für Insektenbefall und Dürre-Schäden ausgibt.
Im Zuge des Klimawandels steigt der Informationsbedarf zur Vitalitätsentwicklung von Wäldern und Baumarten sowie deren Reaktionen auf Störungsereignisse wie Sturm oder Kalamitäten. Da detaillierte Informationen häufig fehlen, sind die verbreiteten Abschätzungen hierzu teils widersprüchlich und spekulativ. Parallel zur terrestrischen Waldzustandserfassung ist die forstliche Fernerkundung bemüht, diese Informationslücke zu schließen. Allerdings ist die Unterscheidung von Baumarten und deren Vitalitätszustand noch immer problematisch. Zur Erhebung dieser Messwerte fehlen belastbare baumphysiologisch belegte Zusammenhänge. Dafür bieten sich Verfahren der Fernerkundung an, wenn über eine rein empirische Erhebung hinaus die Ableitung baumphysiologischer Parameter gelingt. Mit dem aktuellen Forschungsvorhaben soll eine Brücke zwischen den modernen Möglichkeiten der forstlichen Fernerkundung und Gehölzphysiologie geschlagen werden. Ein im Wald installierter 40 m hoher Drehkran am GFZ TERENO-Forschungsstandort im Raum Demmin (MV) bietet dabei für FeMoPhys einzigartige Möglichkeiten. Das Vorhaben verfolgt folgende Ziele: 1. Untersuchung von Zusammenhängen zwischen stressbedingten, physiologischen Veränderungen in Baumkronen, Stamm und Wurzeln und deren Quantifizierbarkeit durch 'Messung von außen' 2. Verknüpfung des methodischen Knowhow der baumphysiologischen Diagnostik und den Verfahren der hyper-/multispektralen und thermalen Diagnostik von Baumkronen 3. Identifikation klimasensitiver Areale auf der Basis von Flächendaten und baumphysiologischen Untersuchungen speziell für Hauptbaumarten 4. Entwicklung eines einfach zugänglichen Informationsproduktes zum baumartenspezifischen Waldzustand Das Projekt will einen Forest Vulnerability Index anvisieren, der Zielgrößen wie Anfälligkeit für Insektenbefall und Dürreschäden ausgibt. Dieser und weitere Indizes können kombiniert werden und so helfen, Risiken für Kaskadeneffekte und die Überschreitung von Kipppunkten abzuschätzen.
In Anlehnung an ein Projekt des UFZ, wird die, für das Ökosystem Wald immens wichtige Tier-Pflanzen-Interaktion 'Herbivorie' untersucht. Neben dem Versuch der Quantifizierung des Blattfraßes auf Bestandsebene, wird speziell die räumliche und zeitliche sowie die artspezifische Differenzierung des Blattfraßes untersucht.
Waldökosysteme sind vielfältigen Belastungen ausgesetzt. Um rechtzeitig ungünstigen Entwicklungen entgegensteuern zu können, ist eine fortlaufende Überwachung des Waldzustandes notwendig. Dieses forstliche Umweltmonitoring erfolgt in Rheinland-Pfalz mit Hilfe von landesweiten Übersichtserhebungen (Level-I: Kronenzustandserhebung, Bodenzustandserhebung oder Waldernährungserhebung auf einem systematischen Raster) und anhand von Intensivuntersuchungen an Waldökosystem-Dauerbeobachtungsflächen (Level-II kontinuierliche Messungen der Luftschadstoffbelastung und der Witterungsverläufe sowie eine fortlaufende Beobachtung der Reaktionen der Waldökosysteme auf natürliche und anthropogene Stresseinflüsse an ausgewählten für die wichtigsten Waldstandorte in Rheinland-Pfalz charakteristischen Flächen). Erfasst werden u.a.: Kronenzustand (terrestrisch und aus IRC-Luftbildern); Waldwachstum; Nährstoffversorgung; Bodenvegetation; Bodenzustand; Baumflechten; Feinwurzeln; Mykorrhiza; Streufall; Ozonschadsymptome; Phänologie; Klima; Witterung; Luftschadstoffimmission; Luftschadstoffdeposition; Bodenwasser; Quellwasser. Anhand dieser Ergebnisse erfolgen Bewertungen zu den Themen: Wasserhaushalt, Bioelementhaushalt, Bodenversauerung, Stickstoffsättigung, Überschreitungen der ökologischen Belastungsgrenzen durch Luftschadstoffe (critical loads, AOT 40 etc.). Alle wesentlichen Befunde und umfangreiche Bewertungen können auch unter www.fawf.wald-rlp.de und hier unter: Forschungsschwerpunkte/Forstliches Umweltmonitoring eingesehen werden.
Insektenkalamitäten können Menge und chemische Zusammensetzung von gelöster und partikulärer organischer Substanz (DOM, POM) innerhalb des Transfers zwischen Baumkronen und Boden verändern. Dies kann mikrobielle Aktivitäten in der Phyllosphäre und im Boden beeinflussen, was zu veränderten C und N Umsätzen führt. Projektziel ist, die C und N Verbindung zwischen Kronenraum und Boden in 60-jährigen Kiefernwäldern (Pinus silvestris L.) unter Insektenbefall zu untersuchen. Um die Hypothese zu testen, dass Massenvermehrung von herbivoren Insekten den C und N Umsatz in Kiefernwäldern steigert, wird (1) der Eintrag quantifiziert: DOM und POM Flüsse vom Kronenraum in den Boden, (2) Mechanismen bewertet: Effekte durch leicht- und schwerabbaubare Verbindungen in DOM und POM (Phenole, Lipide, Kohlenhydrate, Proteine, freie Aminosäuren) auf Kronen- und Bodenmikroorganismen (mikrobielle Biomasse, Enzymaktivitäten), sowie biogeochemische Prozesse (C-Mineralisierung) im Boden und (3) Konsequenzen quantifiziert: Treibhausgasemissionen (THG) und flüchtige organische Verbindungen (VOCs) vom Boden. Veränderte C und N Pfade werden über neu entwickelte Algorithmen modelliert, um langfristige Auswirkungen auf ökosystemarer Ebene abzuschätzen. Damit wird der Kurzschluss zwischen erhöhter DOM und POM Produktion im Kronenraum durch Herbivore einerseits, mit C und N Einträgen im Boden und Umsatzprozesse andererseits analysiert und modelliert.
Lufttemperatur, Feuchtigkeit, die Lage, Bebauung, Grünflächen und noch ein paar Dinge mehr sind entscheidend für das Stadtklima. Wie sich das Klima und seine entscheidenden Faktoren in Berlin verhalten und wie ihre Wirkung auf den Menschen positiv beeinflusst werden kann, erfahren Sie hier. Bild: Umweltatlas Berlin Klimaanalyse Immer mehr Menschen leben in Berlin und dadurch wird mehr gebaut – das hat Auswirkungen auf unser Stadtklima. Wie frisch ist unsere Luft? Wie stark heizt sich die Stadt im Sommer auf? Hier finden Sie analytische Karten zum Zustand des Stadtklimas. Weitere Informationen Bild: Umweltatlas Berlin Klimabewertung Wie sollte sich Berlin zukünftig entwickeln, um ein für den Menschen gesundes Klima in der Stadt zu sichern? Ein Baustein dafür ist die sogenannte Planungshinweiskarte Stadtklima, die als Grundlage für bauliche und planerische Entscheidungen dient. Weitere Informationen Bild: Umweltatlas Berlin Entwicklung von Klimaparametern Die langfristige Entwicklung von Klimaparametern wie etwa der Lufttemperatur zeigt, wie sich das Klima zurzeit darstellt und wie es sich zukünftig verändern könnte. Hier finden Sie Analysen zu Klimaparametern der vergangenen Jahrzehnte sowie einen Ausblick zum Klima in Berlin bis 2100. Weitere Informationen Bild: Umweltatlas Berlin Bioklima Vor allem heiße Sommernächte können unseren Kreislauf belasten und Schlaflosigkeit nach sich ziehen. Zur Wärmebelastung in Berlin finden Sie hier ausführliche Informationen, Karten und Daten. Weitere Informationen Bild: Umweltatlas Berlin Klimawandel Im Jahr 2100 haben wir in Berlin südfranzösische Verhältnisse – zumindest was das Klima betrifft. Warum wird die Hauptstadt immer wärmer? Und wieso können wir so weit in die Zukunft blicken? Hier finden Sie die Ergebnisse umfangreicher Modellberechnungen und Karten. Weitere Informationen Bild: Umweltatlas Berlin Oberflächentemperatur Wie warm und kalt ist es eigentlich in Berlin? Eine Möglichkeit, das herauszufinden, ist die Infrarot-Temperaturmessung von einzelnen Oberflächen wie Dächern, Straßen und Baumkronen. Wie das funktioniert und welche Erkenntnisse sich daraus gewinnen lassen, lesen Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Niederschlagsverteilung Wie oft regnet es in Berlin? Und wie viele Tropfen kommen dann herunter? Hier finden Sie umfangreiche Messergebnisse und Karten zur langjährigen Niederschlagsverteilung und erhalten Informationen darüber, wie gut das Regenwasser in Berlin abfließen kann. Weitere Informationen Bild: Umweltatlas Berlin Stadtklimatische Zonen Was macht der asiatische Götterbaum in Berlin? Und was verrät er uns über das Klima in der Stadt? Hier finden Sie Antworten – und dazu einen detaillierten Überblick über die verschiedenen stadtklimatischen Zonen in Berlin. Weitere Informationen
Für das Projekt "Kühle Karte Neuss" des Amtes für Klima und Umwelt der Stadt Neuss (Amt 19) werden hier Bänke als Geometriedaten veröffentlicht, die sich (laut Berechnungen) im Schatten von Baumkronen befinden und zur Nutzung freigegeben.
Für das Projekt "Kühle Karte Neuss" des Amtes für Klima und Umwelt der Stadt Neuss (Amt 19) werden hier die Baumkronen als Geometriedaten veröffentlicht und zur Nutzung freigegeben.
Digitale Oberflächenmodelle (DOM) beschreiben die Erdoberfläche einschließlich Bewuchs, Gebäude und Bauwerke. Das bildbasierte bDOM wird aus Punktwolken, die durch Bildkorrelation aus Luftbildern gewonnen werden, abgeleitet. Brücken sind Bestandteile des DOM. Baumkronen setzen sich auf der Seite senkrecht nach unten fort. Masten, Hochspannungsleitungen sowie Autos können Bestandteil des Modells sein. Bäume, die über Dächer ragen, werden abgebildet. Bedingt durch unterschiedliche Aufnahmezeitpunkte können Höhensprünge auftreten (z. B. bei Vegetations- und Wasserflächen). Spezifikation bDOM20: bildbasiertes digitales Oberflächenmodell in der Rasterweite 0,2 m
| Origin | Count |
|---|---|
| Bund | 231 |
| Kommune | 4 |
| Land | 83 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 215 |
| Taxon | 1 |
| Text | 63 |
| unbekannt | 27 |
| License | Count |
|---|---|
| geschlossen | 59 |
| offen | 240 |
| unbekannt | 7 |
| Language | Count |
|---|---|
| Deutsch | 297 |
| Englisch | 44 |
| Resource type | Count |
|---|---|
| Bild | 6 |
| Datei | 5 |
| Dokument | 18 |
| Keine | 213 |
| Unbekannt | 2 |
| Webdienst | 9 |
| Webseite | 71 |
| Topic | Count |
|---|---|
| Boden | 231 |
| Lebewesen und Lebensräume | 290 |
| Luft | 196 |
| Mensch und Umwelt | 302 |
| Wasser | 166 |
| Weitere | 306 |