<p>Bauabfälle</p><p>Der Bausektor gehört zu den ressourcenintensivsten Wirtschaftssektoren. Entsprechend hoch sind auch die anfallenden mineralischen Bauabfälle. Im Jahr 2022 waren es insgesamt fast 208 Mio. t derartiger Abfälle. Das entspricht etwa 61 Prozent des Gesamtabfallaufkommens in Deutschland. Der größte Teil der Abfälle wurde recycelt oder anderweitig verwertet.</p><p>Verwertung von Bau- und Abbruchabfällen</p><p>Deutschland befindet sich in einer notwendigen Transformation zu einer ressourcenschonenden und auf <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=Nachhaltigkeit#alphabar">Nachhaltigkeit</a> ausgerichteten Kreislaufwirtschaft. Für den Umgang mit Abfällen, die beim Bau und beim Abbruch von Gebäuden anfallen, aber auch etwa bei Bau und Sanierung von Straßen, Gleisen oder Tunneln, bedeutet dies dreierlei:</p><p>Nur so können natürliche Rohstoffe und Deponieraum eingespart und die Ziele des<a href="https://www.bmuv.de/gesetz/kreislaufwirtschaftsgesetz">Kreislaufwirtschaftsgesetzes</a>, der europäischen<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32008L0098&qid=1651054748037">Abfallrahmenrichtlinie</a>oder des<a href="https://www.bmuv.de/publikation/deutsches-ressourceneffizienzprogramm-iii-2020-bis-2023">Deutschen Ressourceneffizienzprogramms (ProgRess III)</a>erreicht werden.</p><p>Die Daten aus den folgenden Darstellungen stammen aus dem im Jahr 2024 erschienenen Bericht zum Aufkommen und zum Verbleib mineralischer Bauabfälle im Jahr 2022<a href="https://kreislaufwirtschaft-bau.de/Download/Bericht-14.pdf">(14. Monitoring-Bericht der Bauwirtschaft)</a>.</p><p>Mineralische Bauabfälle</p><p>Bauabfälle fallen als Bauschutt, Straßenaufbruch, Boden und Steine sowie als Baustellenabfälle an. Bauabfälle auf Gipsbasis werden separat erfasst. Im Jahr 2022 waren die mineralischen Bauabfälle einschließlich des Bodenaushubs – das sind Böden und Steine – mit 207,9 Millionen Tonnen (Mio. t) die mengenmäßig wichtigste Abfallgruppe in Deutschland (siehe Abb. „Statistisch erfasste Mengen mineralischer Bauabfälle 2022“).</p><p>Boden und Steine, Bauschutt und Straßenaufbruch</p><p>Im Jahr 2022 fielen 294,4,1 Mio. t an Bodenaushub, Baggergut, Gleisschotter, Bauschutt und Straßenaufbruch an.</p><p>Bauabfälle auf Gipsbasis und Baustellenabfälle</p><p>Im Jahr 2022 fielen etwa 0,640 Mio. t Bauabfälle auf Gipsbasis an. Mit 0,38 Mio. t wurden 59,5 % im übertägigen Bergbau und im Deponiebau verwertet. 0,26 Mio. t (40,5 %) wurden auf Deponien beseitigt (siehe Abb. „Verbleib von Bauabfällen auf Gipsbasis 2022“). Wegen der hohen Nachfrage durch die – aus ökologischer Sicht umstrittene – sonstige Verwertung im Bergbau ist das hochwertige Recycling von Bauabfällen auf Gipsbasis in den letzten Jahren nicht im erwünschten Maße in Gang gekommen.</p><p>Bei den Baustellenabfällen haben sich im Vergleich zum vorigen Berichtsjahr 2020 der Anfall und die Verwertungsrate nur geringfügig geändert. Von den insgesamt 12,9 Mio. t wurden 0,1 Mio. t (0,8 %) deponiert, 0,3 Mio. t (2,3 %) recycelt und 12,5 Mio. t (96,9 %) sonstig verwertet, d.h. thermisch verwertet, also für Energie- und Wärmeerzeugung verbrannt, oder verfüllt (siehe Abb. „Verbleib der Baustellenabfälle 2022“).</p><p>Recycling Baustoffe</p><p>Recycling-Baustoffe werden überwiegend als Gesteinskörnungen im Straßen-, Erd- und Deponiebau eingesetzt.</p><p>Von den recycelten Baustoffen wurden lediglich 14,5 Mio. t als Gesteinskörnung in der Asphalt- und Betonherstellung eingesetzt. Weitere 35,8 Mio. t wurden im Straßenbau verwertet, 18,4 Mio. t im Erdbau und 6,6 Mio. t in sonstigen Anwendungen wie dem Bau von Deponien (siehe Abb. „Verbleib der Recycling-Baustoffe 2022“). Diese recycelten Baustoffe deckten einen Anteil von 13,3 % des Gesamtbedarfs an Gesteinskörnungen: Im Hoch- und Tiefbau sowie dem Straßenbau wurden im Jahr 2022 insgesamt 564,1 Mio. t an Gesteinskörnungen verwendet. Technisch ließen sich bereits heute noch mehr Recycling-Gesteinskörnungen aus dem Hochbau wieder im Hochbau einsetzen, wie das<a href="https://www.umweltbundesamt.de/publikationen/ermittlung-von-ressourcenschonungspotenzialen-bei">Umweltbundesamt</a>im Jahr 2010 am Beispiel des Betonbruchs zeigte. Mittelfristig ist es wichtig, die große Abhängigkeit vom Straßen(neu)bau bei der Entsorgung von Abbruchabfällen zu reduzieren, denn der materialintensive Neubau von Straßen wird, vor allem in strukturell benachteiligten Regionen, abnehmen. In Regionen mit eher geringem Neubau von Straßen liegen die ökologischen Vorteile, Gesteinskörnungen im Hochbau zu verwerten, auf der Hand.</p><p>Baustoffrecycling wird gefördert</p><p>Einige Bundesländer wollen den Einsatz gütegesicherter Recyclingbaustoffe und damit die Kreislaufwirtschaft am Bau fördern. Die Landesregierung in Rheinland-Pfalz ging voran. Sie gründete ein Bündnis für eine diskriminierungsfreie Ausschreibung von gütegesicherten Recycling-Baustoffen. Dieses Bündnis<a href="https://kreislaufwirtschaft-bau.rlp.de/buendnis-kreislaufwirtschaft-bau">Kreislaufwirtschaft auf dem Bau</a>wirbt für Ressourcenschonung und Wiederverwertung im Baubereich. An der Initiative beteiligen sich auch die Landesverbände der kommunalen Spitzenverbände, die Architektenkammer, die Ingenieurkammer, der Landesverband Bauindustrie, der Baugewerbeverband, der Industrieverband Steine und Erden und der Baustoffüberwachungsverein. Die Vereinbarung für die umfassende Wiederverwertung von Bauabfällen auf dem Bau finden Sie<a href="https://kreislaufwirtschaft-bau.rlp.de/fileadmin/kreislaufwirtschaft-bau/Startseite/Buendnis/Buendnis_Kreislaufwirtschaft.pdf">hier</a>.</p>
Etwa 20 km vor der deutsch-niederländischen Grenze fließt der Niederrhein von Süden in einer scharfen Kurve nach Westen. Am Ende dieses Reeser Rheinbogens liegt bei Rhein-km 837 die kleine namensgebende Stadt Rees unmittelbar am rechten Flussufer. Die Stadtmauern widerstehen hier seit Jahrhunderten den Fluten des Stroms. Wegen des eingeengten Flussquerschnitts haben insbesondere extreme Hochwasser in der Vergangenheit eine tiefe Erosion der Rheinsohle von mehreren Metern verursacht. Ein im Jahr 1998 begonnener Kolkverbau verhindert die weitere Tiefenerosion. Aber um das Problem nachhaltig zu beherrschen, hat die Wasser- und Schifffahrtsverwaltung des Bundes (WSV) bereits in den 1990er-Jahren mit der Planung einer Flutmulde begonnen. Die Planungsarbeiten für die Flutmulde erstreckten sich über nahezu zwei Jahrzehnte und wurden durch umfangreiche Modelluntersuchungen der BAW begleitet. Zu Beginn der 1990er-Jahre galt es zunächst, aus verschiedenen möglichen Varianten den optimalen Korridor für die Trassierung der Flutmulde auszuwählen. Die nun im Bau befindliche Flutmulde durchsticht den Reeser Rheinbogen mit einer Breite von 150 m bis 180 m linksrheinisch auf einer Länge von rund 3 km. Der Rhein erhält dadurch einen gewaltigen Nebenarm, der ab einem Wasserstand von 80 cm über Mittelwasser zur Entlastung des Hauptstroms führt. Der Zustrom zur Flutmulde wird durch eine stromaufwärts gelegene Überlaufschwelle geregelt. Bei extremem Hochwasser steigt der Abfluss durch die Flutmulde auf rund 18 % des Gesamtabflusses im Rhein an. Hierdurch wird die Erosion in diesem Rheinabschnitt vor den Stadtmauern von Rees deutlich gemindert. Außerdem wird bei extremen Hochwasserereignissen der Wasserspiegel um etwa 10 cm abgesenkt. Die Baukosten liegen bei 50 Millionen Euro, an denen sich das Land Nordrhein-Westfalen mit 4 Millionen Euro beteiligt. Neben der hydraulischen Funktion mussten insbesondere ökologische Vorgaben berücksichtigt werden, um die ökologisch hochsensiblen Naturräume nicht zu beeinträchtigen. Denn die Flutmulde liegt nicht nur in einem Landschaftsschutzgebiet des Kreises Kleve und einem Naturschutzgebiet des Kreises Wesel, welches zwei Fauna-Flora-Habitat-Areale beinhaltet, sondern gehört auch zum EU-Vogelschutzgebiet und dem 'Feuchtgebiet von internationaler Bedeutung Unterer Niederrhein' (RAMSAR-Konvention, UNESCO). Um dieser Bedeutung gerecht zu werden, wird die Flutmulde naturnah gestaltet, soweit dies mit der wasserbaulichen Funktion und der Standsicherheit des Bauwerks vereinbar ist. So werden im Umfeld der Nebenrinne Feuchtwiesen geschaffen und die Ufer durch die initiale Anpflanzung von Röhricht in ingenieurbiologischer Bauweise gesichert. Text gekürzt
Der Datensatz enthält die Bauwerke in und an Gewässern der Freien und Hansestadt Hamburg im INSPIRE Zielmodell.
<p>Im Rahmen der Open-Data-Initiative der Stadt Münster erhalten Sie an dieser Stelle alle Rohdaten, die zur Darstellung des <a href="https://klimadashboard.ms/">"Klimadashboard Münster"</a> genutzt werden.</p> <ol> <li>Die angehängte CSV-Datei enthält alle Daten, die sich monatlich oder seltener aktualisieren.</li> <li>Daten, die sich häufiger aktualisieren, sowie detailliertere Datensätze finden Sie <a href="https://opendata.stadt-muenster.de/search?query=klimadashboard">in weiteren Datensätzen auf dem Open-Data-Portal der Stadt Münster</a>. </li> </ol> <p><strong>Infos zu den Datenspalten der CSV-Datei</strong></p> <p>Die CSV-Datei enthält alle Werte, die in den Diagrammen des Klimadashboards genutzt werden, die sich seltener als 1x im Monat aktualisieren. Dazu enthält sie folgende Spalten: </p> <ol> <li>DATEINAME - Über die Spalte "Dateiname" können zusammengehörende Zeilen zugeordnet werden. Die CSV-Datei enthält (fast) alle Rohdaten für die unterschiedlichen "Kacheln" bzw. Diagramme des Klimadashboards. Anhand des Dateinamens können Daten zu einer Klimadashboard-Kachel zugeordnet werden.</li> <li>RAUM - Räumlicher Bereich, auf den sich die Daten beziehen. Z.B. die Gesamtstadt, oder nur ein Stadtviertel.</li> <li>QUELLE_INSTITUTION - Von welcher Institution die Daten stammen, also z.B. die Stadtwerke.</li> <li>THEMENBEREICH - Nur intern genutzt. Die hier enthaltene Zahl stellt eine numerische ID des Dateinamens dar.</li> <li>MERKMAL - Die Beschreibung des Merkmals, auf das sich der Wert bezieht. </li> <li>ZEIT - Der Zeitraum, auf den sich der Wert bezieht.</li> <li>WERT - Der Wert selbst.</li> <li>WERTEEINHEIT - Die Einheit des Werts, z.B. Prozent.</li> </ol> <p><strong>Weitere Infos zum Klimadashboard</strong></p> <p>Der Quellcode, mit dem diese Daten für das Klimadashboard verarbeitet werden, ist Open Source Software und kann im <a href="https://gitlab.opencode.de/smart-city-muenster/klimadashboard-muenster">Klimadashboard-Repository unter OpenCODE.de</a> eingesehen werden. OpenCODE.de ist vergleichbar mit Github. Es ist eine gemeinsame Plattform der Öffentlichen Verwaltung für den Austausch von Open Source Software und kann von Bundes-, Landes- und Kommunalverwaltungen genutzt werden.</p> <p>Das Ziel des Klimadashboard Münster ist es, einen Eindruck zu geben, auf wie vielen unterschiedlichen Ebenen Fortschritte nötig sind, um Klimaneutralität zu erreichen. Ebenso zeigt es auf, wie viele Menschen, Unternehmen und Einrichtungen sich in Münster bereits auf den Weg gemacht haben, damit die Stadtgesellschaft gemeinsam das Klimaziel erreicht. Weitere Informationen zum Klimadashboard erhalten Sie auf der <a href="https://smartcity.ms/klimadashboard-muenster/">Homepage Smart City Münste</a>r.</p> <p>Das Klimadashboard Münster ist von den städtischen Stabsstellen Smart City und Klima in Zusammenarbeit mit weiteren Ämtern und Töchtern des Stadtkonzerns entwickelt worden. Die Maßnahme wurde im Rahmen der Strategiephase (01/2022-06/2023) des Programms „Modellprojekte Smart City (MPSC)“ vom Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen (BMWSB) und der KfW (Kreditanstalt für Wiederaufbau) gefördert.</p>
Das Energiekonzept der Bundesregierung sieht seit Oktober 2010 einen Energiemix bei der Stromerzeugung für 2050 vor, bei dem der Anteil erneuerbarer Energien auf 80 % gesteigert wird. Bislang sind die deutschen Stromnetze nicht flächendeckend auf den Transport des Stroms aus erneuerbaren Energien ausgelegt. Demzufolge sind große Infrastrukturmaßnahmen geplant, die mit erheblichen Einwirkungen auf das Schutzgut Boden durch die Verlegung der Kabel verbunden sein werden. Neben Veränderungen in der Bodenstruktur führen Erdkabel auch zu einer erheblichen Wärmeabgabe an den umliegenden Boden. Die Zusammenhänge und Auswirkungen auf das Pflanzenwachstum, die Ertragsfähigkeit des Standortes durch alternative bodenschonende Baumaßnahmen sowie mögliche thermische Verluste der Erdkabel sind nur unzulänglich erforscht. Ziel des Projektes ist, statistisch abgesicherte Daten zum Einfluss von Erdkabeltrassen auf landwirtschaftliche Böden und Nutzpflanzen zu erheben und zu evaluieren. Die übergeordneten Ziele fügen sich in die wissenschaftlichen, wirtschaftlichen, gesellschaftlichen und politischen Ziele zum Ausbau erneuerbarer Energien in Deutschland und leisten einen wesentlichen Erkenntnisgewinn, der durch die angewandten Methoden auf andere Standorte übertragbar ist.
Wasserbauliche Maßnahmen stehen nicht nur für Veränderungen in der Gewässermorphologie und der Landnutzung, sondern auch für eine Umdeutung des Gewässers in seinen Aufgaben. Diese sind getragen, durch die Anforderungen an das Fließgewässer und sein Umfeld sowie durch die Vorstellungen der Akteure zum Zeitpunkt der Maßnahmen. Als Untersuchungsgebiet wurde die Schwarze Elster ausgewählt. Sie entspringt im heutigen Bundesland Sachsen, durchfließt Brandenburg und mündet dann, nach 179 km Lauflänge, in Sachsen-Anhalt in die Elbe. Die Schwarze Elster wurde sowohl durch den Technischen Hochwasserschutz als auch durch die Meliorationen und Vorflutmaßnahmen für die Braunkohleabwässer des Niederlausitzer Braunkohle-Reviers mehrfach geprägt und umgedeutet. Anhand archivalischer Quellen, Primärliteratur und einer GIS-gestützten Analyse werden die Veränderungen der Schwarzen Elster und der an sie grenzenden Niederungen untersucht. Damit soll ein wichtiger Beitrag zu der Erforschung des Landschaftswandels und den treibenden Faktoren im Ausbau und der Veränderung von Fließgewässern geleistet werden.
Der Ausgangspunkt zur Entwicklung eines neuartigen Klebers ist das Typhaboard, das derzeit mittels des anorganischen Bindemittels Magnesit zum Baustoff gefertigt wird. Um die vorhandenen Schwachstellen des Materials Magnesitboard (vor allem die Absenkung der Wärmeleitfähigkeit und die Erhöhung der Festigkeit ist wünschenswert) zu überwinden, ist es ein Schwerpunktziel des Projektes ein neues Klebersystem für Rohrkolben (lat. Typha) zur Herstellung Natur basierender Baustoffe zu entwickeln. Ganz wesentlich für die Entwicklung des neuartigen nachhaltigen Klebers ist die Berücksichtigung der ganz speziellen Eigenschaften des Blattmaterials Typha. Wichtig ist dabei auch, dass mit dem neu entwickelten Klebstoff ein Material entwickelt werden kann, das den speziellen bauphysikalischen Anforderungen für einen Einsatz im Baubereich genügt. Oberstes Kriterium bei der Bindemittelentwicklung ist die Rückführbarkeit in den Stoffkreislauf. Weitere Aspekte für die Wahl und Optimierung des Klebstoffes sind Brandschutz, Schimmelpilzresistenz und Festigkeitseigenschaften.
Langjährige Pegelaufzeichnungen aus dem Gebiet der südöstlichen Nordsee zeigen seit Mitte des 20. Jahrhunderts signifikante Veränderungen im lokalen Tideregime. Während der mittlere Meeresspiegel (englisch: Mean Sea Level, MSL) über die vergangenen 150 Jahre generell dem globalen Mittel gefolgt ist, deuten Auswertungen der mittleren Tidehoch- und Tideniedrigwasser auf signifikant abweichende Trends hin. So sind die Tidehochwasser signifikant schneller als der MSL angestiegen, während die Tideniedrigwasser deutlich geringere oder teils negative Trends aufzeigen. Daraus resultierte eine gleichzeitige Zunahme des Tidehubs (die Differenz aus Tidehoch- und Tideniedrigwasser) von ca. 10 % seit 1955. Derartige Veränderungen haben direkte Auswirkungen auf den Küstenschutz. So ergeben sich bei einem Anstieg der mittleren Tidehochwasser größere Wassertiefen, wodurch das Wellenklima insbesondere im Bereich der Wattflächen und Außensände in der Deutschen Bucht beeinflusst wird. Größere Wellenhöhen und damit höhere Orbitalgeschwindigkeiten und Brandungsenergien sind die unmittelbare Folge, die zu großflächigen Erosionen führen kann. Gleichzeitig beeinflussen geringere Tideniedrigwasser die Schiffbarkeit der flachen Küstengewässer. Durch den vergrößerten Tidehub treten größere Tidestromgeschwindigkeiten auf, die z.B. Ausräumungen der Tiderinnen, verstärkte Erosionen an Inselsockeln, Strandräumungen und im Zusammenhang mit Sturmfluten Dünen- und Kliffabbrüchen verursachen können. Dies verdeutlicht, dass neben den global wirkenden übergeordneten Veränderungen im MSL (Massenänderungen, thermale Expansion) auch regionale Phänomene und Prozesse eine wichtige Rolle für die Ausprägung der Wasserstände spielen. Eine Berücksichtigung solcher Faktoren in den Projektionen zukünftiger Wasserstände setzt voraus, dass vergangene Entwicklungen und zugrunde liegende Prozesse ausreichend verstanden sind. Das übergeordnete Ziel von TIDEDYN besteht daher in der Analyse der in der Vergangenheit bereits aufgetreten Veränderungen im lokalen Tideregime der Nordsee. Die beobachtete Zunahme des Tidehubs ist in ihrer starken Ausprägung ein weltweit einzigartiges Phänomen, welches bis heute nicht erklärt werden kann. Als mögliche (aber bisher unerforschte) Ursachen kommen z.B. langfristige Änderungen im MSL, morphologische Änderungen im Küstenvorfeld (natürlich oder anthropogen, z.B. Ausbaggerungen oder Baumaßnahmen wie Eindeichungen) oder saisonale Änderungen in der thermohalinen Schichtung des Ozeans in Frage. Durch die integrierte Analyse von hochauflösenden numerischen Modellen (barotrop und baroklin) und Beobachtungsdaten mit robusten Methoden der Zeitreihenanalyse, sollen die Änderungen im Tideregime der Nordsee über die vergangen 60-70 Jahre beschrieben, modelliert und systematisch erforscht werden sowie einzelne Prozesse mittels Sensitivitätsstudien voneinander abgegrenzt werden.
Origin | Count |
---|---|
Bund | 926 |
Kommune | 7 |
Land | 204 |
Zivilgesellschaft | 3 |
Type | Count |
---|---|
Ereignis | 8 |
Förderprogramm | 758 |
Gesetzestext | 1 |
Text | 210 |
Umweltprüfung | 53 |
unbekannt | 88 |
License | Count |
---|---|
geschlossen | 300 |
offen | 797 |
unbekannt | 21 |
Language | Count |
---|---|
Deutsch | 1079 |
Englisch | 116 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 9 |
Datei | 8 |
Dokument | 127 |
Keine | 666 |
Multimedia | 1 |
Unbekannt | 1 |
Webdienst | 10 |
Webseite | 351 |
Topic | Count |
---|---|
Boden | 743 |
Lebewesen und Lebensräume | 801 |
Luft | 532 |
Mensch und Umwelt | 1118 |
Wasser | 498 |
Weitere | 1053 |