Die Karte zeigt den mittleren potentiellen Bodenwasservorrat (in %nFK) in der Vegetationsperiode (April – September) für die Dekade 1961-1970 berechnet mit dem Bodenwasserhaushaltsmodell BOWAB (für 0 – 60 cm). Für die Pflanzen ist die Wasserverfügbarkeit im Boden ein zentrales Element für das Wachstum. Diese Verfügbarkeit von Bodenwasser hängt von der Bodenart und der Menge des im Boden gespeicherten Wassers ab. Wobei letztere maßgeblich vom Niederschlag und der Temperatur (bzw. Verdunstung) beeinflusst wird. Das für Pflanzen nutzbare Bodenwasser wird als Prozent der nutzbaren Feldkapazität (%nFK) angegeben. Ein Wert von 100% nFK oder mehr bedeutet die Speicherfähigkeit des Bodens für pflanzenverfügbares Wasser erreicht ist. Ab etwa 40 % nFK wird eine Beregnung von Ackerkulturen empfohlen, um einen optimalen Ertrag erzielen zu können.
A) den Beduerfnissen der Pflanzen an die Wasserapplikation soll unter Beibehaltung der Arbeitswirtschaftlichen Vorteile heutiger Beregnungstechniken gerecht werden. B) fort- und Neuentwicklung, Bewaesserungstechniken. C) Freilandversuche, Untersuchungen im Labor.
Charakterisierung der Bodenfruchtbarkeit auf der Basis von 45 bodenphysikalischen und bodenchemischen Parametern durch lineare und nichtlineare Regressionsanalysen und deren Beeinflussung durch die Beregnung mit Beregnungswasser unterschiedlicher Qualitaet. Im Vordergrund stehen Fragen zum Einfluss hoher Salzkonzentrationen im Beregnungswasser am Beispiel des Rheinwassers. Zur Charakterisierung der Salzdynamik wird die Sorption und Desorption von Na und Cl an Bodenaggregaten unterschiedlicher Korngroesse und Stabilitaet verfolgt. Ein weiterer Untersuchungsschwerpunkt betrifft die Stickstoffdynamik (N-min, N-org, N-Fix. und N- Freisetzung) in diesen Versuchen unter besonderer Beruecksichtigung des Zwischenfruchtanbaus. Zur Charakterisierung der Bodenfruchtbarkeitsparameter werden die konventionellen Methoden der Bodenanalytik verwendet, die zur Charakterisierung der N-Dynamik im Boden um den Einsatz von biochemischen Methoden zur Charakterisierungder verschiedenen organischen N-Fraktionen im Boden, auch unter dem Einsatz von Isotopen, erweitert werden (Gefaess- undFeld-Versuche).
Analyse der Verfahren, neue Wasserverteilsysteme, Steuer- und Regelsysteme zur besseren Abstimmung der Wassergabe, energiesparende Wasserbereitstellung Erprobung wassersparender Verfahren (Abwasserverregnung, Einzelregnerverfahren, Tropfbewaesserung), Planungsverfahren.
Seit 1975 wird am Geographischen Institut, Universitaet Basel, die Bodenerosion untersucht. In einer ersten Phase ging es vor allem darum, Methoden zu entwickeln, mit denen der Abtragungsprozess im Feld und unter realen Bedingungen gemessen werden konnte. Ergaenzt wurde dies durch spezifische Untersuchungen einzelner wichtiger Prozessparameter (z.B. experimentell durch kuenstliche Beregnung). Dabei zeigte sich, dass die Bodenerosion auch in der Schweiz ein ernstzunehmendes Umweltproblem darstellt. Gefaehrdet ist dabei nicht nur die Ressource Boden, sondern auch das Gewaessernetz, da durch den Bodenabtrag auch Duenger- und Schaedlingsbekaempfungsmittel verlagert werden. Neben dem langjaehrigen Monitoring stehen daher heute das Entwickeln eines Konzeptes eines integrierten landschaftsoekologischen Bodenschutzes und das Testen entsprechender ackerbaulicher Anbauverfahren im Mittelpunkt. Ebenfalls von grosser Bedeutung ist die Erfassung des stoffhaushaltlichen Aspektes des Bodenabtrags.
Die Karte zeigt den mittleren potentiellen Bodenwasservorrat (in %nFK) in der Vegetationsperiode (April – September) für das Jahr 2018 berechnet mit dem Bodenwasserhaushaltsmodell BOWAB (für 0 – 60 cm). Für die Pflanzen ist die Wasserverfügbarkeit im Boden ein zentrales Element für das Wachstum. Diese Verfügbarkeit von Bodenwasser hängt von der Bodenart und der Menge des im Boden gespeicherten Wassers ab. Wobei letztere maßgeblich vom Niederschlag und der Temperatur (bzw. Verdunstung) beeinflusst wird. Das für Pflanzen nutzbare Bodenwasser wird als Prozent der nutzbaren Feldkapazität (%nFK) angegeben. Ein Wert von 100% nFK oder mehr bedeutet die Speicherfähigkeit des Bodens für pflanzenverfügbares Wasser erreicht ist. Ab etwa 40 % nFK wird eine Beregnung von Ackerkulturen empfohlen, um einen optimalen Ertrag erzielen zu können.
Die Karte zeigt den mittleren potentiellen Bodenwasservorrat (in %nFK) in der Vegetationsperiode (April – September) für die Dekade 2011-2020 berechnet mit dem Bodenwasserhaushaltsmodell BOWAB (für 0 – 60 cm). Für die Pflanzen ist die Wasserverfügbarkeit im Boden ein zentrales Element für das Wachstum. Diese Verfügbarkeit von Bodenwasser hängt von der Bodenart und der Menge des im Boden gespeicherten Wassers ab. Wobei letztere maßgeblich vom Niederschlag und der Temperatur (bzw. Verdunstung) beeinflusst wird. Das für Pflanzen nutzbare Bodenwasser wird als Prozent der nutzbaren Feldkapazität (%nFK) angegeben. Ein Wert von 100% nFK oder mehr bedeutet die Speicherfähigkeit des Bodens für pflanzenverfügbares Wasser erreicht ist. Ab etwa 40 % nFK wird eine Beregnung von Ackerkulturen empfohlen, um einen optimalen Ertrag erzielen zu können.
<p>Naturbasierte Lösungen unterstützen sowohl den Klimaschutz als auch die Klimaanpassung. Digitale Technologien können Kommunen helfen, entsprechende Maßnahmen gezielter zu planen, umzusetzen und zu überwachen. Ein Forschungsprojekt im Auftrag des BMUKN hat zentrale Herausforderungen und Potenziale untersucht und praxisnahe Lösungsansätze erarbeitet.</p><p>Extreme Hitze, <a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Starkregen#alphabar">Starkregen</a> und Überschwemmungen: Die Auswirkungen der Klimakrise sind in Städten und Gemeinden bereits deutlich spürbar (<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> 2024). Naturbasierte Lösungen bieten hier einen doppelten Nutzen: Einerseits tragen sie dazu bei, Treibhausgase zu mindern und <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biodiversitt#alphabar">Biodiversität</a> zu schützen, andererseits spielen sie eine zentrale Rolle für die Klimaanpassung, etwa durch Minderung von Überflutungsrisiken und Abkühlung. In Städten und Kommunen umfassen sie vier zentrale Themenfelder:</p><p>Gerade auf kommunaler Ebene besteht ein großes Potenzial, naturbasierte Maßnahmen umzusetzen (s. auch <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/anpassung-an-den-klimawandel/anpassung-auf-kommunaler-ebene/naturbasierte-klimaanpassung-in-kommunen#typen-naturbasierter-losungen-fur-die-stadtische-klimaanpassung">Themenseiten des Umweltbundesamtes zur naturbasierten Klimaanpassung in Kommunen</a>). Digitale Technologien können dabei helfen, diese Maßnahmen gezielter zu planen, effizienter umzusetzen, wirkungsvoller zu überwachen und zum Teil auch autonom zu betreuen. Doch werden diese Chancen oft noch zu wenig genutzt.</p><p>Aus diesem Grund initiierte das Bundesumweltministerium (BMUKN) das Forschungsprojekt „<a href="https://www.ioew.de/projekt/digitale_technologien_fuer_natuerlichen_klimaschutz_in_kommunen_dinakom">Digitale Technologien für den natürlichen Klimaschutz in Kommunen (DiNaKom)</a>“. Dessen Ziel war es, die Potenziale digitaler Technologien für die Planung und Umsetzung naturnaher Klimaschutzmaßnahmen auf kommunaler Ebene systematisch zu analysieren, die Herausforderungen zu erheben und Lösungen zu entwickeln (Johnson et al. 2025). Das Institut für ökologische Wirtschaftsforschung GmbH und Net Positive Cities GmbH haben hierfür zahlreiche Interviews geführt und Workshops veranstaltet.</p><p><strong>Digitale Werkzeuge in der Praxis – Fallbeispiele aus Kommunen</strong></p><p>Ob Biotopvernetzung, smarte Bewässerung oder klimafreundliche Stadtplanung – digitale Technologien eröffnen vielfältige Möglichkeiten, um naturbasierte Maßnahmen in Kommunen gezielter und effizienter umzusetzen. Von künstlicher Intelligenz (KI) und digitalen Zwillingen bis hin zu 3D-Stadtklimamodellen – die digitalen Werkzeuge sind vielfältig. Aus den analysierten Potenzialen der DiNaKom-Studie lassen sich konkrete Anwendungsbeispiele erkennen, wie diese Potenziale bereits heute in der Praxis genutzt werden.</p><p><strong>Biotope</strong> bieten sowohl ökologisch – durch die Förderung der Biodiversität und der Temperaturregulation – als auch gesellschaftlich – durch Gesundheitsförderung und Erholung – einen großen Mehrwert. Ihre Integration in die Landschafts- und Stadtplanung ist daher ein zentraler Baustein für nachhaltiges und klimaresilientes Handeln. Ein digitales Beispiel für die Vernetzung von Biotopen ist die Software Marxan. Sie wird international in der systematischen Naturschutzplanung eingesetzt. Konkret unterstützt sie Fachplan*innen dabei, <strong>optimale Flächenkombinationen für Biotopverbünde </strong>zu identifizieren, und betrachtet dabei sowohl ökologische Kriterien als auch wirtschaftliche Faktoren. In Bayern wird das Tool vom <a href="https://www.lfu.bayern.de/natur/bayaz/biotopverbund/konzept_aufbau/index.htm">Bayerischen Artenschutzzentrum</a> genutzt, um Biodiversitätsberater*innen eine datenbasierte Planungsgrundlage zur Verfügung zu stellen.</p><p>Auch bei der <strong>urbanen Grünflächenpflege</strong> leisten digitale Anwendungen einen wichtigen Beitrag. Umweltüberwachungssysteme können etwa Hinweise zum Wasserbedarf und Gesundheitszustand von Bäumen geben. Für letzteren Anwendungsfall können Sensoren, Drohnen oder „LiDAR tree maps“, also 3D-Punktwolken und Satellitendaten, genutzt werden. So kann die Anwendung <a href="https://www.geodesy.tu-darmstadt.de/fernerkundung/forschung_fub/forschungsthemen_fub/forsens.de.jsp">ForSens</a>, die in einem Verbundprojekt der Karuna Technology UG und der TU Darmstadt entwickelt wird, mithilfe von Sentinel-2-Satellitendaten Vitalitätsverluste bei Stadtbäumen mit bis zu 16 Monaten im Voraus identifizieren. So können Grünflächenämter gezielt handeln und Pflegeeinsätze besser planen. Auch verhindert diese vorausschauende Analyse Sicherheitsrisiken, die durch Baumsturz entstehen.</p><p>Stadtbäume spielen eine sehr relevante Rolle bei der Kühlung von Städten. Gleichzeitig leiden Sie unter der zunehmenden Hitze und Trockenheit. Aus diesem Grund beschäftige sich das Berliner Projekt <a href="https://www.qtrees.ai/en/">Q-Trees</a> mit dem <strong>Wasserbedarf</strong> von Bäumen. Die daraus entstandenen Anwendungen informieren über die Vitalität und den Wasserbedarf der Stadtbäume. Auf diese Weise soll für den Baumerhalt sensibilisiert werden. Die im Projekt entstandene Open-Source-App für Bürger*innen und das Expert*innen-Dashboard enthalten eine auf MapTiler und OpenStreetMap basierende Karte. Sie ist mit dem städtischen Baumkataster verknüpft, das 800.000 Bäume mit Angaben zu Art, Alter, Größe, Kronendurchmesser und Stammumfang enthält. Angereichert wird die Karte mit Umgebungsparametern und Echtzeitdaten wie Wetterdaten und Feuchtigkeitssensoren, die mit einigen Bäumen verbunden sind. Ein KI-basiertes Vorhersagemodell nutzt diese Daten und kann damit die aktuelle Saugspannung aller sich im unmittelbaren Umfeld befindlichen Straßenbäume berechnen und für 14 Tage vorhersagen – also auch für Bäume, die ohne Sensor ausgestattet sind.</p><p>Gebäude sind wesentliche Wärmespeicher und fördern damit die Bildung von Hitzeinseln in urbanen Räumen. <strong>Gebäude- und Dachbegrünung</strong> können dem entgegenwirken. Dachkatasterdaten können identifizieren, wo eine Dachbegrünung realisierbar ist. Darauf aufbauend können Building Information Models (BIM) helfen, die Begrünung mit einem geringen Ressourcenaufwand zu planen und gleichzeitig sicherzustellen, dass die Statik des Gebäudes mit der Begrünung kompatibel ist. Die Digitalisierung kann auch die Pflege der Dach- und Fassadenflächen erleichtern, indem die Bewässerung autonom erfolgt, also auf der Grundlage von Echtzeitdaten wie <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wetter#alphabar">Wetter</a>- und Feuchtigkeitsdaten ähnlich dem QTree-Projekt. Auch können Kamera-Systeme die Biodiversität an den Flächen beobachten und so den biologischen Mehrwert der Pflanzungen überprüfen. </p><p>Besonders im <strong>Wassersektor</strong> zeigen sich vielfältige Möglichkeiten, wie digitale Technologien naturbasierte Lösungen stärken können; einige Beispiele beleuchten Real Perdomo et al. (2025) genauer. Beispielhaft für ganzheitliche Anwendungen sind die Lösungen der Firma RX-Watertec. Das gleichnamige System erfasst Echtzeit-Füllstandinformationen aus Zisternen, Baumsensorik und Wetterdaten. Damit evaluiert es live, ob Bäume autonom bewässert werden sollten oder aufgrund eines vorausgesagten Regens keine Beregnung nötig ist sowie ob die Zisternen wegen einer Starkregenvorhersage geleert werden sollen, um Schäden zu reduzieren. Die Digitalisierung der Regenwasserbewirtschaftung ermöglicht es auch, Wartungen bedarfsgerecht und somit ressourcenschonender und kostengünstiger durchzuführen.</p><p><strong>Hürden in der Umsetzung</strong></p><p>Für die erfolgreiche Planung und Umsetzung von naturbasierten Maßnahmen spielt eine Vielzahl von Akteuren eine entscheidende Rolle, darunter kommunale Grünflächenämter, Infrastrukturbetreiber und Stadtwerke. Mit diesen und weiteren kommunalen Akteuren sowie Technologieanbietern hat das Projektteam über qualitative Interviews Herausforderungen bei der Einführung digitaler Technologien für naturbasierte Lösungen erhoben.</p><p>Die Interviews liefern vertiefte Einblicke in strukturelle, organisatorische und technische Herausforderungen. So fällt auf, dass es in Kommunen häufig an personellen Ressourcen fehlt. Der Fachkräftemangel erschwert die Personalsuche und somit die mittelfristige Abhilfe. Auch fehlt das Wissen zu geeigneten digitalen Werkzeugen und zu deren Anwendungsmöglichkeiten. Ein zentrales Hemmnis sind langwierige und aufwändige Vergabeprozesse, insbesondere bei innovationsorientierten Vorhaben. Fachabteilungen wünschen sich oft agile Umsetzungspartner wie Start-ups, doch die hohe Risikoaversion in Vergabestellen und der hohe Aufwand bei größeren Vergabesummen bremsen Tempo und Innovationsbereitschaft erheblich.</p><p>Darüber hinaus zeigt sich in der Praxis, dass strukturelle Hürden die Umsetzung naturbasierter Lösungen erschweren. Dazu zählen unklare Zuständigkeiten und fehlende Koordinationsstrukturen zwischen Verwaltungsbereichen wie Tiefbau-, Umwelt- und Grünflächenämtern. Naturbasierte Maßnahmen greifen häufig in bestehende Zuständigkeitslogiken ein – insbesondere, wenn sie mehrere Sektoren gleichzeitig betreffen. So kann beispielsweise die dezentrale Versickerung von Regenwasser und dessen Nutzung zur Bewässerung von Stadtgrün zu Unklarheiten führen: Abwasserbetriebe sind traditionell auf die Ableitung von Regenwasser ausgerichtet und betrachten Bewässerungsfragen nicht als ihren Zuständigkeitsbereich. Gleichzeitig ist auf kommunaler Ebene oft nicht geregelt, wer die Planung, Finanzierung und Unterhaltung solcher fachübergreifenden Lösungen übernehmen soll. Dies verdeutlicht, dass nicht nur technische, sondern auch institutionelle Anpassungen notwendig sind, um naturbasierte Lösungen in der Breite zu verankern.</p><p>Der zur Überwindung dieser Herausforderungen nötige Kulturwandel schreitet nach dem Eindruck der Interviewpartner*innen nur sehr langsam voran. Die zögerliche Digitalisierung und das weiterhin fehlende systemische – und somit fachabteilungsübergreifende – Denken wurde als eine der größten Hemmschwellen identifiziert. Diesbezüglich schafft das Forschungsprojekt „<a href="https://www.ufz.de/bluegreencitycoaching/index.php?de=52207">Blue Green City Coaching (BGCC)</a>“ Abhilfe: Eine Coaching-Toolbox bietet Stadtakteuren Instrumente und praxisnahe Hilfestellungen, um lokalspezifische Herausforderungen zu überwinden und ins Handeln zu kommen.</p><p><strong>Ausblick: Lösungswege zur Gestaltung der digitalen Zukunft</strong></p><p>Auf Basis von weiterführenden Interviews wurden Handlungsempfehlungen und Unterstützungsangebote entwickelt. Notwendig sind:</p><p><strong>Fazit</strong></p><p>Digitale Technologien können einen entscheidenden Beitrag dazu leisten, Städte und Gemeinden mithilfe naturbasierter Lösungen klimaresilient und zukunftsfähig zu machen – vorausgesetzt, sie werden zielgerichtet, kooperativ und vorausschauend eingesetzt. Die vom Bundesumweltministerium geförderte Studie zeigt, wie dies gelingen kann.</p><p><strong> </strong></p><p><em>Autor*innen: Dr. Maria Real Perdomo (Net Positive Cities), Dr. Daniel Johnson und Dr. Alexandra Dehnhardt (Institut für ökologische Wirtschaftsforschung, IÖW)</em></p><p><em>Den vollständigen Bericht des Projekts finden Sie <a href="https://www.ioew.de/fileadmin/user_upload/DOKUMENTE/Publikationen/Schriftenreihe/IOEW_SR_230_DiNaKom.pdf">hier</a>.</em></p><p><em>Dieser Artikel wurde als Schwerpunktartikel im Newsletter Klimafolgen und Anpassung Nr. 97 veröffentlicht. <a href="https://www.umweltbundesamt.de/service/newsletter">Hier</a> können Sie den Newsletter abonnieren.</em></p><p> </p><p><strong>Quellen: </strong></p><p>Johnson, D., Schmelzle, F., Real Perdomo, M., Bergset, L., Rösch, E., & Rohde, F. (2025). Digitale Technologien für natürlichen <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a> in Kommunen – Lösungen um Austausch, Koordination und Management zu verbessern. In: Schriftenreihe des IÖW 230/25, ISBN 978-3-940920-36-2. <a href="http://www.ioew.de/fileadmin/user_upload/DOKUMENTE/Publikationen/Schriftenreihe/IOEW_SR_230_DiNaKom.pdf">www.ioew.de/fileadmin/user_upload/DOKUMENTE/Publikationen/Schriftenreihe/IOEW_SR_230_DiNaKom.pdf</a></p><p>Real Perdomo, M., Johnson, D. & Dehnhardt, A. (2025). Technologien für den natürlichen Klimaschutz im Wassersektor. In: wwt Wasserwirtschaft Wassertechnik, Ausgabe 5/2025, S. 23–27. DOI: 10.51202/1438-5716-2025-5-023</p><p>Umweltbundesamt (<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>) (2024). Kommunalbefragung Klimaanpassung 2023. Climate Change 34/2024. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/34_2024_cc_kommunalbefragung.pdf">https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/34_2024_cc_kommunalbefragung.pdf</a></p>
| Origin | Count |
|---|---|
| Bund | 198 |
| Kommune | 7 |
| Land | 204 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 2 |
| Ereignis | 1 |
| Förderprogramm | 157 |
| Text | 43 |
| Umweltprüfung | 127 |
| unbekannt | 55 |
| License | Count |
|---|---|
| geschlossen | 181 |
| offen | 192 |
| unbekannt | 12 |
| Language | Count |
|---|---|
| Deutsch | 378 |
| Englisch | 23 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Bild | 6 |
| Datei | 4 |
| Dokument | 124 |
| Keine | 178 |
| Unbekannt | 2 |
| Webdienst | 28 |
| Webseite | 91 |
| Topic | Count |
|---|---|
| Boden | 335 |
| Lebewesen und Lebensräume | 291 |
| Luft | 187 |
| Mensch und Umwelt | 381 |
| Wasser | 383 |
| Weitere | 385 |