s/belstungsfaktor/Belastungsfaktor/gi
In Zeiten des Klimawandels wird die Pflanzengesundheit durch kombinierten Stress durch abiotischen, klimawandelbedingten Faktoren und biotischem Faktoren durch Schädlinge und Krankheitserreger beeinträchtigt. Dieses Projekt zielt darauf ab, die Auswirkungen abiotischer, klimawandelbedingte Stressfaktoren, wie z. B. erhöhtem atmosphärischen CO2-Gehalt (eCO2) und Trockenstress, auf die Interaktion zwischen Weinreben, Blattrollviren (GLRaV), und virusübertragenden Schmierläusen zu untersuchen. GLRaV, insbesondere GLRaV-3, verändert die CO2-Assimilation, die Wassernutzungseffizienz sowie die primären und sekundären Stoffwechselprodukte der Pflanze, was letzendlich zu Ertragsminderungen, verzögerter Fruchtreife und schlechter Traubenqualität führt. Das Virus wird durch infiziertes Vermehrungsmaterial und phloemsaugende Insekten, wie z. B. Schmierläuse, verbreitet. Es ist bekannt, dass eCO2- und Wasserstress einen erheblichen Einfluss auf die Pflanzenphysiologie und die Schädlingsbekämpfung haben kann. Außerdem weiß man, dass Pflanzenviren biotischen Stress für die Pflanzen verursachen und das Verhalten der Virusvektoren verändern können. Gleichzeitig werden Viren von denselben klimawandelbedingten abiotischen Stressfaktoren beeinflusst, wie die anderen Mitglieder des Ökosystems. Es gibt nur sehr wenige Studien über die Auswirkungen des Klimawandels auf Virusinfektionen auf Weinreben und keine einzige über die Auswirkungen auf Schmierläuse als Virusvektoren. Schlussfolgerungen aus anderen Pathosystemen zu ziehen, gestaltet sich schwierig, da die Auswirkungen von abiotischem, klimawandelbedingtem Stress oft artspezifisch sind. Bisher hat sich die Forschung vor allem mit den Wechselwirkungen einzelner Klimawandelparameter mit Pflanzen, Insekten oder Krankheitserregern befasst. Um die Wechselwirkungen zwischen mehreren Stressoren und die komplexen Beziehungen zwischen Pflanzen, Krankheitserregern und Vektoren zu verstehen, sind breitere Forschungsansätze nötig. Nur so können wirksame Anpassungsstrategien entwickelt werden um Pflanzen in der Zukunft gesund und produktiv zu halten. Im Rahmen des Projekts werden eine Reihe von Experimenten durchgeführt, bei denen Weinreben zwei Klimawandelparametern (Wasserstress + CO2) in Kombination mit biotischem Stress durch eine GLRaV-3-Infektion ausgesetzt werden. Untersucht werden die Mechanismen (Genexpression) und die Auswirkungen auf die Pflanzen (Aminosäuren, Phenole, C/N, Zucker, Chlorophyll) und den Insektenvektor (Fressverhalten, Fitness), zusätzlich zu klassischen Übertragungsexperimenten mit GLRaV. Die Forderung nach multifaktoriellen Stress-Experimenten wird seit Jahrzehnten erhoben. Diese Experimente sind ehrgeizig und komplex, aber sie sind der notwendige nächste Schritt, um Erkenntnisse über die zukünftige Entwicklung der Blattrollkrankheit zu gewinnen.
Als Grundlage für hochaufgelöste Klimarekonstruktionen der letzten Jahrtausende dienen jahrgenau datierbare natürliche Klimaproxies wie Jahresringe von Bäumen. Bisher konzentrierten sich dendroklimatologische Untersuchungen in Europa auf Temperaturrekonstruktionen borealer und alpiner Waldgrenzstandorte. In weitaus geringerem Umfang liegen dagegen hydroklimatische Rekonstruktionen basierend auf niederschlagssensitiven Baumarten der Tieflagen (kleiner als 1000 m NN) vor, obgleich hydroklimatische Schwankungen in der Abschätzung zukünftiger und historischer Klimaveränderungen eine wichtige Rolle spielen. Die Steuerungsfaktoren, das Ausmaß und die zeitliche Abfolge dekadischer bis mehrhundertjähriger Schwankungen im Baumwachstum, welche für die Rekonstruktion des gesamten Spektrums hydroklimatischer Variabilität von entscheidender Bedeutung sind, wurden bisher kaum untersucht und verstanden. In dem geplanten Projekt sollen nun zum ersten Mal langfristige Wachstumstrends auf verschiedenen raum-zeitlichen Skalen von acht europäischen Baumarten über die letzten 1.000 Jahre gegenübergestellt werden. Die hauptsächlich aus archäologischen und historischen Holzfunden generierten Jahrringdaten von Eiche, Buche, Erle, Esche, Ulme, Tanne, Kiefer und Fichte, in Verbindung mit Daten lebender Bäume, decken die letzten 1.000 Jahre lückenlos mit hoher Belegung ab. Dieser einmalige Datenbestand mit rund 60.000 Jahrringserien ökologisch und ökonomisch wichtiger heimischer Baumarten wird von europäischen Jahrringforschern bereitgestellt. Das Ziel des geplanten Projektes ist ein besseres Verständnis der raum-zeitlichen Variabilität von niederfrequenten Wachstumstrends und die Identifizierung gemeinsamer Faktoren, die das längerfristige Baumwachstum in Europa maßgeblich steuern (z.B. Klima und/oder Vulkanemissionen, Kohlenstoffdioxidgehalt der Atmosphäre oder Veränderungen der Sonnenaktivität). Die angewandten Methoden umfassen neue Standardisierungsverfahren, Trend- und Spektralanalysen sowie Filterungsverfahren, um niederfrequente Schwankungen der Jahrringchronologien zu detektieren und extrahieren. Faktoren, die das langfristige Baumwachstum maßgeblich steuern, werden unter Einbeziehung verschiedener Klimaparameter (Temperatur, Niederschlag, Abflussmengen von Flüssen, Grundwasserstände) sowie Zeitreihen externer und interner Einflüsse auf das Klimasystem identifiziert. Darüber hinaus werden die langfristigen Wachstumstrends mit Zeitreihen anderer Paläoarchive verglichen. Die in dem geplanten Projekt gewonnenen neuen Erkenntnisse über klimabedingter, langfristiger Wachstumsschwankungen und deren Ursachen werden eine deutlich bessere Grundlage für zukünftige valide Klimarekonstruktionen, globale Klimamodelle und für die Quantifizierung von Langzeitveränderungen des globalen Kohlenstoffkreislaufs schaffen.
Ziel des Vorhabens ist es, die Grundlagen für den energieeffizienz- und lebensdaueroptimalen Betrieb von Fernwärme- und Fernkältenetze zu erarbeiten. Berücksichtigt werden dabei die zukünftig regenerative und eher dezentrale Erzeugungsstruktur, niedrigere Vorlauftemperaturen sowie ein zunehmender Ausbau der Sensorik durch Smart Metering. Zur Erreichung dieser Ziele sollen Modelle zur Ermittlung von Energieverlusten sowie Stressfaktoren entwickelt und durch Messungen von z.B. Temperatur und Feuchtigkeit im Boden kalibriert werden. Weiterhin soll ein vorhandenes, hydraulisches Netzberechnungsverfahren um die thermische Komponente erweitert sowie für die Anwendung auf Kältenetze angepasst werden. Lebensdauerverluste sollen auf Basis von Erkenntnissen aus dem Forschungsvorhaben 'FW-lnstandhaltung' abgeschätzt werden. Zudem sollen diesbezüglich neue, Kl-basierte Algorithmen entwickelt werden. Das Verfahren zur Netzberechnung soll um diese Lebensdauerprognose erweitert werden, sodass jederzeit die hydraulischen und thermischen Zustandsgrößen sowie Stressfaktoren vorliegen und bei der Netzregelung berücksichtigt werden können. Auf Basis dessen sollen sowohl ein modellprädiktiver als auch ein Kl-basierter Ansatz zur optimalen Netzregelung entwickelt und im praktischen Einsatz erprobt werden. Teilvorhaben: Begleitung des Vorhabens, Praxisumsetzung und Wissenstransfer Im Rahmen dieses Teilvorhabens begleitet der AGFW die forschenden Verbundpartner und unterstützt die Umsetzungen der entwickelten Ansätze und Verfahren in der Praxis. Der Beitrag des Branchenverbands umfasst die Einbringung von zusätzlicher Messtechnik, die Durchführung von Messungen, die Begleitung bei der Dokumentation und die Veröffentlichung der Ergebnisse sowie die Verbreitung der Forschungsergebnisse in der Fernwärmebranche. Weiterhin prüft der AGFW eine Einbindung in eine bestehende Umgebung zur Verfügung und führt Veranstaltungen für die Zielgruppe durch.
Ziel des Vorhabens ist es, die Grundlagen für den energieeffizienz- und lebensdaueroptimalen Betrieb von Fernwärme- und Fernkältenetze zu erarbeiten. Berücksichtigt werden dabei die zukünftig regenerative und eher dezentrale Erzeugungsstruktur, niedrigere Vorlauftemperaturen sowie ein zunehmender Ausbau der Sensorik durch Smart Metering. Zur Erreichung dieser Ziele sollen Modelle zur Ermittlung von Energieverluste sowie Stressfaktoren entwickelt und durch Messungen von z.B.Temperatur und Feuchtigkeit im Boden kalibriert werden. Weiterhin soll ein vorhandenes, hydraulisches Netzberechnungsverfahren um die thermische Komponente erweitert sowie für die Anwendung auf Kältenetze angepasst werden. Lebensdauerverluste sollen auf Basis von Erkenntnissen aus dem Forschungsvorhaben 'FW-Instandhaltung' abgeschätzt werden. Zudem sollen diesbezüglich neue, KI-basierte Algorithmen entwickelt werden. Das Verfahren zur Netzberechnung soll um diese Lebensdauerprognose erweitert werden, sodass jederzeit die hydraulischen und thermischen Zustandsgrößen sowie Stressfaktoren vorliegen und bei der Netzregelung berücksichtigt werden können. Auf Basis dessen soll sowohl ein modellprädiktiver als auch ein KI-basierter Ansatz zur optimalen Netzregelung entwickelt und im praktischen Einsatz erprobt werden. Teilvorhaben: Hard-/Softwaretechnische Umsetzung und Praxiserprobung Im Rahmen dieses Teilvorhabens werden die von den forschenden Verbundpartnern entwickelten Ansätze und Verfahren zur Praxistauglichkeit gebracht und in realen Anlagen erprobt. Dies umfasst sowohl die Unterstützung der Verbundpartner bei den Entwicklungsarbeiten mit Expertenwissen zu Fernwärme- und Kältenetzen als auch die Bereitstellung von Netz- und Betriebsdaten, wie beispielsweise Messdaten zu Druck, Durchfluss oder Temperatur. Weiterhin muss die für den Betrieb der entwickelten Ansätze erforderliche Hard- und Softwareinfrastruktur geschaffen und bereitgestellt werden.
Ziel des Vorhabens ist es, die Grundlagen für den energieeffizienz- und lebensdaueroptimalen Betrieb von Fernwärme- und Fernkältenetze zu erarbeiten. Berücksichtigt werden dabei die zukünftig regenerative und eher dezentrale Erzeugungsstruktur, niedrigere Vorlauftemperaturen sowie ein zunehmender Ausbau der Sensorik durch Smart Metering. Zur Erreichung dieser Ziele sollen Modelle zur Ermittlung von Energieverluste sowie Stressfaktoren entwickelt und durch Messungen von z.B.Temperatur und Feuchtigkeit im Boden kalibriert werden. Weiterhin soll ein vorhandenes, hydraulisches Netzberechnungsverfahren um die thermische Komponente erweitert sowie für die Anwendung auf Kältenetze angepasst werden. Lebensdauerverluste sollen auf Basis von Erkenntnissen aus dem Forschungsvorhaben 'FW- Instandhaltung' abgeschätzt werden. Zudem sollen diesbezüglich neue, KI-basierte Algorithmen entwickelt werden. Das Verfahren zur Netzberechnung soll um diese Lebensdauerprognose erweitert werden, sodass jederzeit die hydraulischen und thermischen Zustandsgrößen sowie Stressfaktoren vorliegen und bei der Netzregelung berücksichtigt werden können. Auf Basis dessen soll sowohl ein modellprädiktiver als auch ein KI-basierter Ansatz zur optimalen Netzregelung entwickelt und im praktischen Einsatz erprobt werden. Teilvorhaben: Physikalische Modellierung und Regelungsentwurf Im Rahmen dieses Teilvorhabens werden bestehende Netzmodelle zur hydraulischen Simulation von Fernwärmenetzen um thermische Komponenten (Temperaturverläufe, Energieverluste) erweitert. Zudem wird das Simulationsmodell für die Verwendung im Rahmen modellprädiktiver Regelungen angepasst, welche ebenfalls in diesem Teilvorhaben entwickelt und implementiert werden soll. Neben dem modellprädiktiven Ansatz werden die vorhandenen Messdaten verwendet, um den KI-basierten Ansatz zu trainieren. Die beiden Ansätze sollen abschließend beim Projektpartner Stadtwerke München implementiert und ausgiebig getestet werden.
Ziel des Vorhabens ist es, die Grundlagen für den energieeffizienz- und lebensdaueroptimalen Betrieb von Fernwärme- und Fernkältenetze zu erarbeiten. Berücksichtigt werden dabei die zukünftig regenerative und eher dezentrale Erzeugungsstruktur, niedrigere Vorlauftemperaturen sowie ein zunehmender Ausbau der Sensorik durch Smart Metering. Zur Erreichung dieser Ziele sollen Modelle zur Ermittlung von Energieverluste sowie Stressfaktoren entwickelt und durch Messungen von z.B.Temperatur und Feuchtigkeit im Boden kalibriert werden. Weiterhin soll ein vorhandenes, hydraulisches Netzberechnungsverfahren um die thermische Komponente erweitert sowie für die Anwendung auf Kältenetze angepasst werden. Lebensdauerverluste sollen auf Basis von Erkenntnissen aus dem Forschungsvorhaben 'FW- Instandhaltung' abgeschätzt werden. Zudem sollen diesbezüglich neue, KI-basierte Algorithmen entwickelt werden. Das Verfahren zur Netzberechnung soll um diese Lebensdauerprognose erweitert werden, sodass jederzeit die hydraulischen und thermischen Zustandsgrößen sowie Stressfaktoren vorliegen und bei der Netzregelung berücksichtigt werden können. Auf Basis dessen soll sowohl ein modellprädiktiver als auch ein KI-basierter Ansatz zur optimalen Netzregelung entwickelt und im praktischen Einsatz erprobt werden. Teilvorhaben: Physikalische Modellierung und Regelungsentwurf Im Rahmen dieses Teilvorhabens werden bestehende Netzmodelle zur hydraulischen Simulation von Fernwärmenetzen um thermische Komponenten (Temperaturverläufe, Energieverluste) erweitert. Zudem wird das Simulationsmodell für die Verwendung im Rahmen modellprädiktiver Regelungen angepasst, welche ebenfalls in diesem Teilvorhaben entwickelt und implementiert werden soll. Neben dem modellprädiktiven Ansatz werden die vorhandenen Messdaten verwendet, um den KI-basierten Ansatz zu trainieren. Die beiden Ansätze sollen abschließend beim Projektpartner Stadtwerke München implementiert und ausgiebig getestet werden.
Eine Reihe von Stressoren wie elektromagnetische Felder, Hitze, Hypoxie oder auch Belastungen durch Umweltchemikalien belasten Zellen und Organismen. Typischerweise loesen die Stressoren die Synthese von Stressproteinen aus. Wir haben im Berichtszeitraum damit begonnen, ein stressinduzierbares Protein (HSP 70) in verschiedenen Zelltypen zu quantifizieren (ELISA). Ferner wurde ein Testsystem zur Quantifizierung gentoxischer Wirkungen der Stressoren erfolgreich erprobt.
Zielsetzung und Anlass des Vorhabens: Sinnvolle Konzepte zur Regenwasserbewirtschaftung trennen die Regenabflüsse von gering und stark verschmutzten Flächen. Abflüsse von stärker verschmutzten Flächen bedürfen einer Behandlung, die den örtlichen Anforderungen an den Gewässerschutz entspricht. Die bestmögliche Reinigung und Zwischenspeicherung stärker verschmutzter Niederschlagsabflüsse ist die wesentliche Aufgabe eines Retentionsbodenfilters. Im Forschungsvorhaben sollte ein semizentraler Bodenfilter entwickelt werden, der mit geringem Flächenbedarf eine bestmögliche Reinigung stark verschmutzter Regenabflüsse von Verkehrsflächen leistet. Darstellung der Arbeitsschritte und der angewandten Methoden: Nach dem bisherigen Forschungsstand kommt bei der Adsorption von Inhaltsstoffen dem Bodensubstrat in den Bodenfilteranlagen eine entscheidende Rolle zu. Die Auswahl und Entwicklung eines geeigneten Substrates erfolgte in einem dreistufigen Vorgehen. Über einer Literaturrecherche wurden Anforderungen an Bodensubstrate zur Regenwasserreinigung formuliert. Daraufhin wurden in Schüttelversuchen verschiedene Substrate ausgewählt und ihre Adsorptionseigenschaften gegenüber Schwermetallen, PAKs und Mineralölen ermittelt. Ausgehend von diesen Vorversuchen wurden verschiedene Bodenfilteraufbauten entwickelt und in halbtechnischen Lysimetern untersucht. Dazu wurden die Lysimeter in einem einjährigen Messprogramm mit stark verunreinigten Straßenabflüssen belastet. Die Gesamtfrachten an Inhaltsstoffen im Zulauf zu den Lysimetern wurden ermittelt. An Einzelereignissen wurde die Reinigungsleistung der verschiedenen Bodenfilteraufbauten ermittelt. Die Lysimeter wurden mit einer hohen hydraulischen und somit auch stofflichen Belastung beaufschlagt, die über den bisher bei der Bemessung von Bodenfilteranlagen üblichen Belastungen lagen. Aus den Messergebnissen wurden Rückschlüsse für den Einsatz von Bodenfiltern mit hoher hydraulischer Belastung bei beengten Platzverhältnissen gezogen und Empfehlungen für die Bemessung gegeben. Über die Messung der aufgebrachten Feststoffbelastung und der Durchlässigkeit der Lysimeter wurde eine eventuell eintretende Kolmation der Bodensubstrate erfasst. Fazit: Die untersuchten halbtechnischen Bodenfilter (Lysimeter) führten im Untersuchungszeitraum zu einer deutlichen Reduzierung der straßenspezifischen Schmutzstoffe geführt. Aussagen über den Langzeitbetrieb können auch mit einem Stofftransportmodell nicht gemacht werden. Insgesamt führen adsorptionsstarke Substrate zu einem höheren Rückhalt gelöster Inhaltsstoffe (Schwermetalle). Die Empfehlung des ATV-DVWK-Merkblatt 153 zum Einsatz der Bodenfilter zur Straßenentwässerung kann nach den bisherigen Untersuchungen bestätigt werden. Weiterer Forschungsbedarf besteht hinsichtlich der Belastbarkeit der eingebauten Substrate gegenüber der Chloridbelastung, die bei der Straßenentwässerung als Regelfall anzusehen ist. ...
| Origin | Count |
|---|---|
| Bund | 556 |
| Type | Count |
|---|---|
| Förderprogramm | 556 |
| License | Count |
|---|---|
| offen | 556 |
| Language | Count |
|---|---|
| Deutsch | 512 |
| Englisch | 121 |
| Resource type | Count |
|---|---|
| Keine | 419 |
| Webseite | 137 |
| Topic | Count |
|---|---|
| Boden | 425 |
| Lebewesen und Lebensräume | 480 |
| Luft | 423 |
| Mensch und Umwelt | 554 |
| Wasser | 392 |
| Weitere | 556 |