Vorhabensziel des Projekts ist die Überführung des im Vorgängervorhaben 'ErdEis II' umgesetzten Erdeisspeichers in den Vollbetrieb, das wissenschaftliche Monitoring und Benchmarking sowie die Entwicklung eines District Energy Management Systems (DEMS). Hierzu sollen verschiedene Betriebsmodi getestet, die Betriebsweise aufbauend auf den Ergebnissen optimiert, der Einfluss verschiedener Parameter modellgestützt nachvollzogen und das Kalte Nahwärmesystem mit Erdeisspeicher bestmöglich für die Gesamtsystemoptimierung mittels DEMS genutzt werden. Im zukünftigen Energiesystem wird nicht mehr allein auf Energieeffizienz respektive End- und Primärenergiebedarf optimiert werden können. Vielmehr spielt Flexibilität eine zunehmende Rolle, die schließlich gekoppelt an die Verfügbarkeit erneuerbarer elektrischer Energie den tatsächlichen CO2-Ausstoß bestimmen wird. Inzwischen sind Schnittstellen verfügbar, die über Vorhersagen zur CO2-Intensität des Stromnetzes eine entsprechende Optimierung ermöglichen. Diese Optimierung hat im Gesamtkonzept nicht nur wärme- bzw. kälteseitig zu erfolgen, sondern ganzheitlich die Bedarfe und Flexibilitäten des Kalten Nahwärmenetzes, der Haushaltsstromverbräuche, Mobilitätsbedarfe und Eigenenergieerzeugung miteinzuschließen. So kann ein Gesamtoptimum erreicht und Optimierungen von Teilsystemen, die zu Lasten der Gesamtemissionen gehen, vermieden werden. Entsprechend müssen auch Bewertungs- und Benchmarkingmethoden passend weiterentwickelt werden.
Vorhabensziel des Projekts ist die Überführung des im Vorgängervorhaben 'ErdEis II' umgesetzten Erdeisspeichers in den Vollbetrieb, das wissenschaftliche Monitoring und Benchmarking sowie die Entwicklung eines District Energy Management Systems (DEMS). Hierzu sollen verschiedene Betriebsmodi getestet, die Betriebsweise aufbauend auf den Ergebnissen optimiert, der Einfluss verschiedener Parameter modellgestützt nachvollzogen und das Kalte Nahwärmesystem mit Erdeisspeicher bestmöglich für die Gesamtsystemoptimierung mittels DEMS genutzt werden. Im zukünftigen Energiesystem wird nicht mehr allein auf Energieeffizienz respektive End- und Primärenergiebedarf optimiert werden können. Vielmehr spielt Flexibilität eine zunehmende Rolle, die schließlich gekoppelt an die Verfügbarkeit erneuerbarer elektrischer Energie den tatsächlichen CO2-Ausstoß bestimmen wird. Inzwischen sind Schnittstellen verfügbar, die über Vorhersagen zur CO2-Intensität des Stromnetzes eine entsprechende Optimierung ermöglichen. Diese Optimierung hat im Gesamtkonzept nicht nur wärme- bzw. kälteseitig zu erfolgen, sondern ganzheitlich die Bedarfe und Flexibilitäten des Kalten Nahwärmenetzes, der Haushaltsstromverbräuche, Mobilitätsbedarfe und Eigenenergieerzeugung miteinzuschließen. So kann ein Gesamtoptimum erreicht und Optimierungen von Teilsystemen, die zu Lasten der Gesamtemissionen gehen, vermieden werden. Entsprechend müssen auch Bewertungs- und Benchmarkingmethoden passend weiterentwickelt werden.
Der horizontale Wind nimmt eine Schlüsselrolle in der Dynamik der Atmosphäre ein. Insbesondere beeinflusst er die Ausbreitung und Dissipation von Schwerewellen und thermischen Gezeiten in der mittleren Atmosphäre. Simultane Wind- und Temperaturmessungen bieten dabei die einzigartige Möglichkeit, sowohl kinetische als auch potentielle Energiedichten der Schwerewellen zu berechnen, aus denen wiederum intrinsische Wellenparameter ableitbar sind. Windmessungen in der mittleren Atmosphäre sind jedoch insbesondere im Höhenbereich zwischen 35 und 75 km sehr selten, da hier weder Radiosonden noch Radars Daten liefern und Wind-Radiometer bzw. Satelliten keine für die Untersuchung von Schwerewellen ausreichend große Genauigkeit und Auflösung haben. Deshalb wollen wir in Kühlungsborn/Deutschland (54° N, 12° O) ein neues Lidar aufbauen, mit dem bei gekippten Teleskopen der Horizontalwind aus der Dopplerverschiebung der Rayleigh-Rückstreuung bestimmt werden kann. Neben der Erstellung einer Wind-Klimatologie steht vor allem die Untersuchung der Ausbreitung von Trägheitsschwerewellen in der mittleren Atmosphäre im Vordergrund. Dazu werden wir u.a. horizontale und vertikale Impulsflüsse und die Höhe des Impulsübertrags an die Hintergrundatmosphäre bestimmen. Diese für die Energiebilanz der Atmosphäre wesentlichen Parameter liefern wichtige Vergleichsgrößen für Zirkulationsmodelle. Ferner werden wir intrinsische Welleneigenschaften aus Wind-Hodographen analysieren, die für andere bodengebundene Messsysteme in der Regel nicht zugänglich sind. Unter Einbeziehung des lokalen Hintergrundwindes sollen aufwärts und abwärts propagierende Schwerewellen eindeutig getrennt und quantifiziert werden. Die Analysen werden insgesamt unser Verständnis der vertikalen Kopplung und der zu Grunde liegenden Zirkulation in der mittleren Atmosphäre deutlich verbessern. Das neue Lidarsystem ergänzt ein in Nordnorwegen am ALOMAR-Observatorium (69° N, 16° O) vorhandenes Windlidar, welches ebenfalls vom IAP betrieben wird. In diesem Projekt wird die dabei erworbene Expertise genutzt, um die Entwicklungsrisiken für das neue Lidar zu minimieren und schwerpunktmäßig Windmessungen in der mittleren Atmosphäre durchzuführen und zu interpretieren.
Im Rahmen des European Green Deal hat die Europäische Kommission (KOM) im Juli 2021 einen Entwurf für die Novellierung der EU-Emissionshandelsrichtlinie vorgelegt. Dieser Entwurf ist unter anderem im Zusammenhang mit der vorgesehenen Ambitionssteigerung der EU-Klimaschutzziele bis 2030 notwendig. Die Verhandlungen hierzu werden sich voraussichtlich bis 2023 ausdehnen. Die Novellierung der Richtlinie wird wesentlich durch eine strukturelle Weiterentwicklung des EU-ETS geprägt sein. Diese umfasst u.a. folgende Bereiche: - Ambitionssteigerung durch Absenkung des Cap, - mögliche Fortentwicklung und potenzielle Neuschaffung von Förderinstrumenten (Innovationsfonds etc.), - Ausweitung des Anwendungsbereichs (zum Beispiel Seeverkehr) und/oder Ergänzung um einen separaten Emissionshandel für die Nutzung von Brennstoffen in anderen Sektoren analog zum deutschen nEHS; - Maßnahmen zur Vermeidung von Carbon Leakage (Weiterentwicklung der Zuteilung und Zusammenspiel mit Grenzausgleichsmaßnahmen). Das Projekt hat einen ökonomischen Schwerpunkt und soll die DEHSt als zuständige Behörde und das BMU als federführendes Ressort in diesem Prozess mit wissenschaftlichen Analysen unterstützen.
Karstgrundwasserleiter spielen im Alpenraum eine wichtige Rolle. Sie bedecken etwa 56% der Fläche, und ein erheblicher Teil der Bevölkerung ist ganz oder teilweise von Trinkwasser aus Karstquellen abhängig, die oft mit wertvollen Ökosystemen verbunden sind und zur Wasserkrafterzeugung beitragen. Die Alpen zählen nach Studien zu den am stärksten vom Klimawandel betroffenen Gebieten in Europa. Als Folge der steigenden Temperaturen werden sich die gespeicherten Mengen an Schnee und Eis stark verringern, was zu einer Verschiebung zwischen Wasserhaushaltskomponenten in Verbindung mit einer saisonalen Umverteilung der Niederschläge führt. Außerdem wird erwartet, dass Hoch- und Niedrigwasserereignisse häufiger auftreten werden. Der Stand der Technik bei der Modellierung der Schüttung von Karstquellen, meist mittels konventioneller numerischer Modelle, ist auf standortspezifische, oft aufwändige und nicht übertragbare wissenschaftliche Studien beschränkt, die manuelle Modellabstimmung und Kalibrierung erfordern. Bis heute gibt es keinen leicht übertragbaren Ansatz, der gleichzeitig auf viele Karstquelleinzugsgebiete anwendbar ist. In diesem Projekt werden wir einen modernen, Deep-Learning basierten Ansatz zur Modellierung der Schüttung von Karstquellen entwickeln, der sich besonders gut eignet, übertragbare Modelle, die Informationen von verschiedenen Standorten nutzen können, aufzubauen. Deep Learning ist ein Teilgebiet des maschinellen Lernens, basierend auf künstlichen neuronalen Netzen, das sich sowohl bei akademischen als auch bei industriellen Anwendungen als sehr erfolgreich erwiesen hat. Die vorgeschlagene Studienregion sind die Alpen, mit Karstgebieten in Österreich, der Schweiz, Deutschland, Frankreich, Italien und Slowenien, mit einem Schwerpunkt auf dem besonders vom Klimawandel betroffenen von der Alpenkonvention abgegrenzten Gebirgsgebiet. Als Grundlage der Studie dient das World Karst Spring Database (WoKaS). Es wird im Laufe des Projekts mit zusätzlichen Daten von Behörden und Wasserversorgern ergänzt, insbesondere in Regionen mit bislang schlechter Abdeckung. Die Arbeiten beinhalten die Erstellung eines umfassenden Datensatzes mit Einzugsgebietsattributen und meteorologischen Einflussgrößen für etwa 150 Quellen. Klassische Lumped-Parameter-Modelle werden als Benchmarks aufgesetzt und mit den neu entwickelten Deep-Learning basierten Modellergebnissen verglichen. Ziel ist es, die Eignung neuartiger Deep-Learning Modellansätze für die Abschätzung der Auswirkungen des Klimawandels für eine Vielzahl von kurz- und langfristigen Vorhersagen zu untersuchen. Eine vertiefende Fallstudie des Dachsteingebietes, dessen große Karstregion wesentlich zur Wasserversorgung und Wasserkrafterzeugung beiträgt, wird die vergleichende Untersuchung mit einem numerischen 3D-Modell erweitern. Schließlich werden die entwickelten Modelle dazu verwendet, um Auswirkungen des Klimawandels auf die alpinen Karstgrundwasserressourcen vorherzusagen.
Die Folgen des Klimawandels bergen ökonomische Risiken für Unternehmen. Die physische Klimarisiken - insb. Extremwetterereignisse, veränderte Niederschlagsmuster und erhöhte Durchschnittstemperaturen - können zu Produktionsrückgängen, steigenden Rohstoffkosten und Gebäudeschäden führen. Nach einer aktuellen Studie des Umweltbundesamts berichten nur etwa die Hälfte der DAX-30-Unternehmen zu diesen Risiken. Dabei schätzt allein diese Gruppe die potenziellen Schäden auf einen Gesamtwert von mehreren Milliarden Euro. Über das Risikobewusstsein in anderen Unternehmen, insbesondere KMU, ist wenig bekannt. Ziel dieses Vorhabens ist es, eine Machbarkeitsstudie für die Befragung von Unternehmen bezüglich Klimarisiken und des Umgangs mit Klimawandelanpassung zu erstellen. Dabei sollen die Möglichkeiten eine repräsentative Erhebung, etwa im Rahmen existierender Unternehmenspanels, eruiert, mögliche Fragenkomplexe entworfen sowie ein handbares Konzept erstellt werden. Auch sollen vergleichbare Erhebungen in anderen OECD-Ländern als Benchmark recherchiert werden. In einer Themenkonferenz im 3. Projektjahr sollen Zwischenergebnisse mit der Zielgruppe diskutiert werden.
Das Vorhaben dient der Ableitung und Weiterentwicklung ambitionierter Standards für umweltfreundliche Produkte und Dienstleistungen im Bereich der freiwilligen Produktkennzeichnung mit dem Blauen Engel. Ein Schwerpunkt wird auf IKT-Produkten liegen (u.a. Computer, Server, gewerbliche Router, Netzwerkkomponenten). Die weitere Konkretisierung der Produkte und Dienstleistungen erfolgt in der Leistungsbeschreibung auf Grundlage der Beschlüsse der Jury Umweltzeichen. Die Ergebnisse tragen auch dazu bei, hohe ökologische Standards in Form von Benchmarks in anderen Instrumenten des produktbezogenen Umweltschutzes national und auf europäischer Ebene, z.B. bei der umweltfreundlichen öffentlichen Beschaffung, zu verankern. Neben der Entwicklung neuer Umweltzeichen für Produkte und Dienstleistungen stehen regelmäßig Aktualisierungen bestehender Vergabekriterien an (www.blauer-engel.de/de/fuer-unternehmen/vergabekriterien). Methodisch ist die Integration von bilanzierenden Indikatoren kontinuierlich weiterzuverfolgen, insbesondere die Energie-/Klimabilanz von Produkten und Dienstleistungen. Ebenso gilt es die Operationalisierung von Aspekten der Kreislaufwirtschaft (Langlebigkeit, Rezyklierbarkeit, Recyclateinsatz) bei den untersuchten Produkten und Dienstleistungen weiterzuentwickeln. Output des Vorhabens sind Neue Umweltzeichen und weiterentwickelte, bestehende Vergabekriterien
In den letzten Jahren ist die Aufgabe der Systemführung in Verbundnetzen der Übertragungsebene zunehmend komplexer geworden. Dennoch muss die Netzsicherheit erhalten bleiben. Die Online-Durchführung dynamischer Netzsicherheitsbewertungen (Online-DSA) dient hierbei als wichtiges Werkzeug für Netzbetreiber zur Beurteilung der Netzstabilität während des laufenden Netzbetriebs. Das übergeordnete Ziel des Vorhabens ist die Entwicklung von Modulen für Assistenzsysteme, die einen sicheren und gleichzeitig wirtschaftlichen Betrieb von Verbundnetzen mit geringer Trägheit und großem Anteil Erneuerbarer Energien ermöglichen. Dazu soll ein modulares DSA-System für die Bewertung der Systemsicherheit für Verbundsysteme mit geringer Rotationsenergie realisiert werden (Low Inertia Security Assessment System: LI-SA). Dieses besteht aus einem flexiblem Forschungs- und Entwicklungssystem (LI-SA-RD), einer Validierungs- und Erprobungsumgebung (LI-SA-VT), und einer dynamischen Echtzeitsimulation (LI-SA-RT), die über geeignete Schnittstellen miteinander verbunden werden. Damit sollen neuartige DSA-Module für kundenspezifische Problemstellungen entwickelt, aufgebaut und erprobt werden. Die spezifischen Ziele der Fraunhofer Institute beinhalten die Entwicklung verschiedene Verfahren zur Trägheitserkennung, Erkennung von Reglerinstabilitäten stromrichtergekoppelter Anlagen, Anomalieerkennung sowie der Aufbau eines modularen Forschungs- und Entwicklungssystems als flexible Plattform für die Entwicklung neuer Verfahren sowie als Benchmark System.
Das Vorhaben BenchmarkingFWZ-II greift die Ergebnisse vom Projekt BenchmarkingFWZ (Laufzeit 2019 bis 2022) auf und zielt auf die Etablierung und den Ausbau des Benchmarking-Systems für Forstwirtschaftliche Zusammenschlüsse in Deutschland ab. Die Gruppe der im Projekt beteiligten Zusammenschlüsse wird weiter ausgebaut, das Datenbankkonzept dynamisch den steigenden Datenmengen und Sicherheitsanforderungen angepasst, neue entstehende Geschäftsfelder integriert und für Geschäftsführungen und Vorstände eine webbasierte Informations- und Lernplattform entwickelt (Benchmarking-Forum FWZ) Im Projekt BenchmarkingFWZ II wird auf die Unterschiede der FWZ in den verschiedenen Bundesländern eingegangen; beim Vergleich werden unterschiedliche Grade der Professionalisierung und der Leistungsspektren berücksichtigt. Den oft als Ein-Personen-Unternehmen arbeitenden Organisationen fehlt häufig das betriebswirtschaftliche 'Know-how' zur Steuerung ihres FWZ. Die Arbeit der Vorstände ist oft von geringem Änderungswillen und hoher Risikoaversion geprägt. Kritische Faktoren des Ehrenamtes für FWZ umfassen eine große Verantwortung, Klärung von Haftungsfragen, Übertragung von fachlichen Aufgabenbereichen und ein hoher Zeitaufwand. Hier bestehen ein erhöhtes Maß an Beratungs- und Informationsbedarf, um das ehrenamtliche Engagement weiterhin zu fördern und zu stärken. Belastbare Daten zur Formulierung von strategischen Zielen, deren Monitoring und der Vergleich mit anderen Zusammenschlüssen sind wichtige Elemente für die Zukunftsfähigkeit dieser Organisationen und das betriebliche Management der Zusammenschlüsse BenchmarkingFWZ-II setzt an dieser Stelle an, bezieht die Vorstände verstärkt in die Diskussion mit ein und versteht sich als umfassender, praxisnaher und betriebswirtschaftlich fundierter Entwurf für eine heterogene Organisationsgruppe, die eine wesentliche Rolle für die Bewirtschaftung und Bereitstellung des nachwachsenden, klimafreundlichen Rohstoffs Holz in Deutschland spielt
| Origin | Count |
|---|---|
| Bund | 534 |
| Land | 9 |
| Wissenschaft | 25 |
| Type | Count |
|---|---|
| Daten und Messstellen | 6 |
| Förderprogramm | 491 |
| Sammlung | 1 |
| Text | 22 |
| Umweltprüfung | 1 |
| unbekannt | 46 |
| License | Count |
|---|---|
| geschlossen | 48 |
| offen | 518 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 417 |
| Englisch | 229 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Datei | 3 |
| Dokument | 14 |
| Keine | 364 |
| Unbekannt | 1 |
| Webseite | 188 |
| Topic | Count |
|---|---|
| Boden | 358 |
| Lebewesen und Lebensräume | 312 |
| Luft | 261 |
| Mensch und Umwelt | 567 |
| Wasser | 253 |
| Weitere | 538 |