API src

Found 274 results.

Related terms

Mass occurrence of anatoxin-a- and dihydroanatoxin-a-producing tychonema sp. in mesotrophic reservoir mandichosee (River Lech, Germany) as a cause of neurotoxicosis in dogs

In August 2019, three dogs died after bathing in or drinking from Mandichosee, a mesotrophic reservoir of the River Lech (Germany). The dogs showed symptoms of neurotoxic poisoning and intoxication with cyanotoxins was considered. Surface blooms were not visible at the time of the incidents. Benthic Tychonema sp., a potential anatoxin-a (ATX)-producing cyanobacterium, was detected in mats growing on the banks, as biofilm on macrophytes and later as aggregations floating on the lake surface. The dogsâ€Ì pathological examinations showed lung and liver lesions. ATX and dihydroanatoxin-a (dhATX) were detected by LC-MS/MS in the stomachs of two dogs and reached concentrations of 563 and 1207 Ìg/L, respectively. Anatoxins (sum of ATX and dhATX, ATXs) concentrations in field samples from Mandichosee ranged from 0.1 Ìg/L in the open water to 68,000 Ìg/L in samples containing a large amount of mat material. Other (neuro)toxic substances were not found. A molecular approach was used to detect toxin genes by PCR and to reveal the cyanobacterial community composition by sequencing. Upstream of Mandichosee, random samples were taken from other Lech reservoirs, uncovering Tychonema and ATXs at several sampling sites. Similar recent findings emphasize the importance of focusing on the investigation of benthic toxic cyanobacteria and applying appropriate monitoring strategies in the future. © 2020 by the authors

Ökologie der Stehgewässer

Die Stehgewässer (Seen) stellen, im Gegensatz zu Fließgewässern, ein geschlossenes Ökosystem dar und sind durch ein vergleichsweise großes Gesamtwasservolumen mit langen Wasseraufenthaltszeiten gekennzeichnet. Je nach der Entstehung des Sees spricht man von künstlich angelegten Seen (Abgrabungsseen, bzw. Baggerseen) oder natürlich entstandenen Seen. Ein See umfasst grundsätzlich die Freiwasserzone (Pelagial) und die Bodenzone (Benthal). Das Pelagial umfasst eine obere, durchlichtete trophogene Zone (Epilimnion), eine Sprungschicht mit einem Temperaturgradienten (Metalimnion), und eine untere tropholytische Wasserschicht (Hypolimnion). Das Benthal lässt sich wiederum in eine durchlichtete Uferzone (Litoral) und eine Tiefenzone (Profundal) unterteilen. Diese Zonen stellen Lebensräume für die unterschiedlichen Biozönosen des Sees dar und sind geprägt von verschiedenen abiotischen Faktoren (Wassertemperatur, pH-Wert, Lichtverfügbarkeit, Nährstoffe, Sauerstoff). Dem Lebensraum entsprechend lassen sich die Lebewesen des Ökosystems See in folgende Kategorien unterteilen: Plankton, Nekton, Neuston/ Pleuston und Benthos. Die autochthone Primärproduktion eines Sees umfasst in erster Linie die photoautotrophe Produktion des Phytoplanktons im Pelagial und der Makrophyten, des Phytobenthos und des Periphytons im Benthal. Im Nahrungsnetz der Ökosystems See schließen sich die Primär- und Sekundärkonsumenten an (z.B. im Pelagial vorkommende Fische und Insektenarten, benthische Makrozoobenthosarten). Tiefere Seen sind in der Regel dimiktisch, das heißt der Wasserkörper unterliegt zweimal im Jahr einer Zirkulation (Frühjahres- und Herbstzirkulation). In Abhängigkeit der Jahreszeit ändert sich die Temperatur des Sees. Im Winter kommt es aufgrund der Dichteanomalie des Wassers zu einer sehr kalten, zum Teil eisbedeckten oberflächennahen Schicht und einer wärmeren, tieferen Schicht von 4 °C am Grund des Sees. Damit ist das Überleben der Fische in den tieferen Wasserschichten des Sees im Winter sichergestellt. Im Frühling setzt eine Frühjahrszirkulation ein und die beiden Wasserschichten mischen sich. Nach der Vollzirkulation hat der See eine konstante Wassertemperatur und ähnliche Sauerstoff- und Nährstoffverhältnisse. Während der Sommerstagnation erwärmt sich das Oberflächenwasser auf über 20 °C, während das Wasser in den tieferen Schichten des Hypolimnions kälter ist. Die im Herbst einsetzenden Stürme führen erneut zu einer Herbstzirkulation und die beiden Wasserschichten durchmischen sich. Ein Team des LANUV bei der Seeuntersuchung, Foto: LANUV/FB 55 Das LANUV NRW – hier der Fachbereich 55 „Ökologie der Oberflächengewässer“ - führt regelmäßig biologische Untersuchungen in 23 Seen und 24 Talsperren mit einer Fläche von mehr als 50 ha durch. Die Seen in NRW sind bis auf 2 natürlich entstandene Altarme des Rheins (Altrhein Bienen-Prast und Altrhein Xanten) durch Menschenhand geschaffene Abgrabungsseen der Kies- und Sandindustrie oder des Braunkohletagebaus und damit gemäß Terminologie der WRRL künstliche Gewässer. Talsperren sind aufgestaute und damit erheblich veränderte Fließgewässer, die mit ihren limnischen Eigenschaften stehenden Gewässern am ähnlichsten sind. Grundlage für diese Gewässeruntersuchungen ist die im Jahr 2000 beschlossene Wasserrahmenrichtlinie (WRRL) die in Deutschland rechtlich durch die Novellierung des Wasserhaushaltsgesetzes (WHG) und durch die Oberflächengewässerverordnung (OGewV 2011, 2016) umgesetzt ist. Nach diesen Regelungen soll der gute Gewässerzustand erhalten bleiben und – wo dies nicht mehr der Fall ist – soll schrittweise spätestens bis zum Jahr 2027 der gute Zustand erreicht werden. Erheblich veränderte und künstliche Gewässer müssen das gute ökologische Potenzial erreichen. Foto: LANUV/FB 55 Foto: LANUV/FB 55 Gewässerüberwachung Die Untersuchung und Bewertung der Flora und Fauna liefert wesentliche Grundlagen z.B. zum Erhalt und zur Verbesserung der Artenvielfalt, des Gewässerschutzes und des Erholungs- und Freizeitwertes der Seen und Talsperren in NRW. Tiere und Pflanzen sind wichtige Bioindikatoren. In der Zusammensetzung der Arten und der Häufigkeit ihres Vorkommens spiegeln diese Organismen die Lebensbedingungen über einen längeren Zeitraum wider und geben Auskunft über eine längerfristige Belastungssituation. Chemische Analysen beschreiben lediglich eine Momentaufnahme. Für die Stehgewässer ist das Phytoplankton die wichtigste biologische Qualitätskomponente. Biologische Qualitätskomponenten

Culture experiments on the environmental controls of trace metal ratios (Mg/Ca, B/Ca, U/Ca) recorded in calcareous tests of bipolar deep-sea benthic foraminifera

Das Projekt "Culture experiments on the environmental controls of trace metal ratios (Mg/Ca, B/Ca, U/Ca) recorded in calcareous tests of bipolar deep-sea benthic foraminifera" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung durchgeführt. The Polar eans are our most important climate amplifiers: First, the production of polar deep waters drives the Global Thermohaline Conveyer Belt, and thus, climate. Second, the Antarctic deep water during glacial time was, disputably still is, the largest marine sink of atmospheric CO2. Employment of effective and fossilisable proxies on changes in the physical and geochemical properties is essential to assess glacial-interglacial variabilities, modern and future changes in bipolar deep-waters. In this respect, analyses on trace metal (Mg/Ca, U/Ca, B/Ca) ratios recorded in tests of foraminifers to estimate calcification temperatures, alkalinity, carbonate ion saturation, and pH are common methods. However, for the Arctic and Southern Ocean deep-sea benthic foraminifera calibration curves constrained by either core-top samples or culture experiments are lacking. Newly developed high-pressure aquaria have recently facilitated the first efficient cultivation (producing offspring) of our most trusted palaeodeep-water recorders Fontbotia wuellerstorfi and Uvigerina peregrina. In different experimental set-ups the same facilities will be used to cultivate these foraminifera and associated species at different temperatures and in waters with different carbonate chemistries to establish the first species-specific trace metal calibration curves for both Polar Oceans. Core top analyses on more than 150 core sites from both oceans will verify the experimental results.

Exzellenzcluster 80 (EXC): Ozean der Zukunft

Das Projekt "Exzellenzcluster 80 (EXC): Ozean der Zukunft" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie, Forschungseinheit Marine Geosysteme durchgeführt. The existing O2 Eddy Correlation (EC) systems will be modified to log in a fully non-invasive way, besides dissolved oxygen (DO) and velocity, also rapid temperature fluctuations. The coupling of heat flux and DO flux will be used to determine if, and to which extend, DO fluctuations are indeed due to active turbulence or to non-active (fossil) signals. We will gain knowledge of temperature dependencies of DO fluxes and we expect to be able to express the DO fluxes as a function of the heat fluxes and predict DO fluxes for varying benthic temperatures. By integrating also water column microstructure profiler data we will obtain important information on the oxygen dynamics.

Exzellenzcluster 80 (EXC): Ozean der Zukunft

Das Projekt "Exzellenzcluster 80 (EXC): Ozean der Zukunft" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 1: Ozeanzirkulation und Klimadynamik, Forschungseinheit Paläo-Ozeanographie durchgeführt. Foraminifera dwelling in the Baltic Sea are especially sensitive to ocean acidification due to the low carbonate saturation levels. An enhanced shell loss in living benthic foraminifera was observed in Flensburg Fjord during summer 2006. This project aims (1) to better constrain the factors influencing carbonate saturation and foraminiferal shell loss and (2) to establish the reaction of the foraminifer Ammonia beccarii to different pCO2 in seawater. For these purposes seasonal changes in pH, total alkalinity (TA) and foraminiferal communities will be monitored over the year 2009. We also will culture A. beccarii in order to determine their calcification rates under different pCO2, and to establish the critical thresholds for calcification and growth.

Exzellenzcluster 80 (EXC): Ozean der Zukunft

Das Projekt "Exzellenzcluster 80 (EXC): Ozean der Zukunft" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie, Forschungseinheit biologische Ozeanographie durchgeführt. Recent measurements of surprisingly high summer pCO2values above 1,000 ìatm in surface waters of the inner Kiel Fjord prompt us to investigate the carbonate chemistry of this region in more detail. We propose to follow the Kiel Bay carbonate system over an entire seasonal cycle. In order to assess the effects of fluctuating pH/pCO2 on key marine organisms in affected surface waters, we plan to simultaneously study acid-base status and calcification performance of the dominant benthic invertebrate, the blue mussel, Mytilus edulis.

The Cumacea of the Antarctic deep-sea expeditions ANDEEP I to III

Das Projekt "The Cumacea of the Antarctic deep-sea expeditions ANDEEP I to III" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Biozentrum Grindel und Zoologisches Museum durchgeführt. During the Antarctic expeditions ANDEEP I and II (January to April 2002) and ANDEEP III (January to April 2005) epibenthic sledge (EBS) samples were taken from different Antarctic deep-sea basins. In total 7026 specimens of Cumacea were sorted from the epibenthic sledge samples of the ANDEEP I to III expeditions, and from all samples of the ANT XV/3 expedition. The DIVA-1 project (Meteor Expedition Me 48/1 to the Angola Basin, July 2000) investigated the deep-sea basin off Angola and resulted in 41 new species of the order Cumacea. Only one species was already known (Mühlenhardt-Siegel 2003, 2005 a, b, c, d, e). It seems therefore reasonable to expect many new species from the deep-sea basins of the Southern Ocean. Cumacea were frequently found in the benthic community of the deep-sea basins; within the peracarid crustaceans they ranked third in abundance after Amphipoda and Isopoda. The Cumacea are an important subject for biogeographical studies, as well as for diversity, distribution, faunal overlap and colonisation of the Atlantic sector of the Southern Ocean and the adjacent deep-sea basins because they have a benthic life style and - as all peracarids - no free larvae, resulting in a limited active and passive distribution.

Exzellenzcluster 80 (EXC): Ozean der Zukunft

Das Projekt "Exzellenzcluster 80 (EXC): Ozean der Zukunft" wird vom Umweltbundesamt gefördert und von Universität Kiel, Institut für Ökosystemforschung, Abteilung Polarökologie durchgeführt. Sea temperature is a major environmental factor controlling the distribution and metabolism of benthic organisms. It is well established that cold-water species from both deepsea and polar regions are adapted to low ambient temperatures but mostly exhibit a rather narrow physiological temperature tolerance (Clarke & Fraser 2004). Hence, even small changes in temperature are likely to have a large effect on the metabolism of those species and, at a community level, might alter the partitioning of the benthic carbon and energy flow pattern at a community level (Piepenburg et al. 1996). Moreover, as climate change will not only lead to a pronounced temperature rise but also to a significant decrease in pH (ocean acidification) and, at local scales, salinity (e.g., the temperatureinduced freshwater release), the synergetic impacts of these interacting abiotic parameters on one or a few leverage species are expected to cause sweeping community-level changes (Harley et al. 2006). As such shifts are difficult to study and predict at this level, particularly in remote cold-water environments, we propose to start with examining the short-term response (at a level of hours to days) of the metabolism of benthic organisms to changes in temperature, salinity and pH, combining an experimental approach and a small-scale field study.

DNA barcoding of benthic invertebrates from Lake Sevan (Armenia)

Das Projekt "DNA barcoding of benthic invertebrates from Lake Sevan (Armenia)" wird vom Umweltbundesamt gefördert und von Zoologisches Forschungsmuseum Alexander König - Leibniz-Institut für Biodiversität der Tiere durchgeführt. Lake Sevan, the only large water reservoir within the South Caucasus, is under severe ecological pressure, and understanding the species composition of the lake and especially the rivers of its drainage basin is of central importance to inform natural resource management decisions in Armenia. Due to the limited capacity in the area for exact and fast taxonomic identification of benthic invertebrates, we started to compile a DNA barcode reference database of aquatic arthropods from the Lake Sevan drainage basin, spearheaded by Dr. Marine Dallakyan from Yerevan's Scientific Center of Zoology and Hydroecology (Armenian Academy of Sciences), whose first visit to ZFMK has been financed by DAAD. The project is closely linked to the efforts undertaken and planned within the GGBC(link is external) project. The project results are aimed at making future standardized assessment of aquatic biodiversity monitoring in Armenia and the Caucasus easier, faster, and more reliable.

Einfluss des Klimawandels auf marine Organismen

Das Projekt "Einfluss des Klimawandels auf marine Organismen" wird vom Umweltbundesamt gefördert und von National Center of Ecological Analysis and Synthesis durchgeführt. We addressed key questions concerning the vulnerability of marine systems to climate change: 1. What are the similarities and differences between marine and terrestrial systems in terms of types and rates of responses? 2. Which marine species, taxonomic groups and systems (e.g., pelagic, benthic, rocky shore, sandy beach, coral reef) are most sensitive? 3. What are the similarities and differences in the types and rates of responses in tropical, temperate and polar seas? 4. Do multiple human stresses increase vulnerability of species and habitats to climate change? 5. Can we attribute change in marine ecosystems to climate change? To answer these key questions, we undertook three tasks: Task 1: Database assembly - Build a marine climate impacts database employing an innovative tiered approach to classify impacts. The database is publicly-accessible through the NCEAS data repository, enabling researchers to validate entries and upload new results. Task 2: Impacts analysis - Address the first 4 key questions above by applying robust meta-analytic techniques (e.g., Parmesan & Yohe 2003) to the marine climate impacts database. Task 3: Attribution - Employ the analytical techniques of the IPCC (2007) and Rosenzweig et al. (2008) to attribute changes in marine biological ecosystems to global warming with a high degree of certainty (key question 5).

1 2 3 4 526 27 28