Nitrogen deposition in tropical areas is projected to increase rapidly in the next decades due to increase in N fertilizer use, fossil fuel consumption and biomass burning. As tropical forest ecosystems cover about 17 percent of the land surface and are responsible for about 40 percent of net primary production, even small changes in N (and consequently C) cycling can have global consequences. Until now studies an consequences of enhanced N input in tropical forest ecosystems have been very limited and even very rarely addressed its deleterious effects to the environment. There is undoubtedly a huge discrepancy between the expected increase in N deposition in the tropics and the present knowledge an how tropical forest ecosystems will react to this extra input of reactive N. Our research aims at quantifying the changes in processes of N retention (plant growth, biotic and abiotic N immobilization in the soil) and losses (gaseous N losses, nitrification, denitrification, leaching of different forms of dissolved N). Implementation of policy and management tools, like the international trading of carbon credits under the Kyoto Protocol, need researches that allow us to better understand the consequences of environmental change (N deposition) an forest productivity. Our research will have important implications for predicting future responses of forest C cycle to changes in N deposition, and for the role of N deposition in tropical forests to affect potential feedback mechanisms of CO2 fertilization and climate change.
Die Bergwälder der Ostanden gehören zu den artenreichsten terrestrischen Ökosystemen der Erde, zugleich stehen sie unter immensem Nutzungsdruck (Abholzung, Umwandlung in Weideland). In einem multidiszilinären Ansatz aus Bio-, Geo-, Forst- und Agrarwissenschaften - von der Ebene des Organismus ausgehend bis hin zur Landschaftsebene - wollen wir an einem ausgewählten, für Forschungen zugänglichen ostandinen Bergwald in Südecuador ein solches Ökosystem, sowie seine gebietstypischen, durch menschliches Wirtschaften entstandenen Ersatzformationen beispielhaft analysieren. Dabei gilt es im ersten Schritt wichtige geowissenschaftliche und biologische Eigenschaften des Systems (Klima, Boden, Verfügbarkeit von Wasser und Nährelementen, Struktur und Artenzusammensetzung der Vegetation sowie Vorkommen und Vielfalt tierischer und pilzlicher Schlüsselorganismen: Pollinatoren, Samenverbreiter, Herbivore und Destruenten) zu erfassen. Im zweiten Schritt wird die Funktionsweise wichtiger Teilsystem erschlossen (Stoffflüsse zwischen wichtigen Kompartimenten, Dynamik und Regenrationspotentiale der Vegetation in Wechselwirkung mit der Fauna und den abiotischen Randbedingungen). Darauf aufbauend wollen wir drittens Optionen entwickeln bzw. überprüfen für eine nachhaltige Nutzung, Erhaltung und - soweit möglich - Rehabilitation des Waldes. Diese Erkenntnisse werden über das Untersuchungsgebiet hinaus für das ökosystemare Verständnis und Management tropischer Bergwälder von genereller Bedeutung.
Herbivore Insekten stellen eine wesentliche Komponente des Artenreichtums terrestrischer Ökosysteme und spielen zugleich als Bindeglied verschiedener Trophie-Ebenen eine wichtige Rolle in Stoffflüssen. Insbesondere für artenreiche Herbivorengemeinschaften ist bis heute unklar, ob Pflanzenartenreichtum oder eher Strukturparameter der Vegetation (neben abiotischen Faktoren wie Klima und Nährstoffangebot) die Diversität der Pflanzenfresser entscheidend determinieren. Am Beispiel mehrerer artenreicher Schmetterlings-Taxozönosen soll in einem südecuadorianischen Bergwaldgebiet diese Frage beantwortet werden, wobei Datensätze aus botanischer, bodenkundlicher und klimatologischer Forschung mit quantitativen Erhebungen zur Struktur und Vielfalt der Insekten-Artengemeinschaften zusammengeführt werden. Dabei stehen zunächst Taxozönosen in einem ausgeprägten Höhengradienten zur Analyse an, während in einem zweiten Schritt auch Muster und Mechanismen der Besiedlung anthropogen degradierter Landschaften (Weiden, Brache- und Sukzessionsflächen unterschiedlichen Alters, Aufforstungen) durch diese Herbivorentaxa bearbeitet werden.
Bis heute ist die Wirkung von Waldstrukturen auf eine breite Biodiversität im Wald kaum verstanden. Seit MacArthur & MacArthur in den 1960er Jahren gezeigt haben, dass die Vogel-Diversität mit steigender vertikaler Heterogenität des Waldes ansteigt, wurden kaum konzeptionelle Fortschritte gemacht. Bis heute ist für viele Taxa noch nicht einmal geklärt, ob eher die Struktur eines Waldes oder die Artenzusammensetzung der Vegetation entscheidender ist. Da aber Waldmanagement fundamental die Struktur von Wäldern verändert, ist das Wissen um die Rolle der Waldstruktur als Treiber der Artenvielfalt essentiell, insbesondere wenn bei der Forstnutzung Biodiversität gefördert werden soll. Fortschritte in der Fernerkundung und die Entwicklung von Eigenschaftsdatenbanken und Stammbäumen auch für artenreiche Gruppen wie Insekten und Pilze in den letzten Jahren, eröffnen heute, bei geeignetem Design, neue Möglichkeiten. Die Biodiversitäts-Exploratorien stellen hier eine ideale und global einmalige Forschungsplattform dar, um die Rolle von Waldstruktur, geformt von der Landnutzung in temperaten Wäldern, zu erforschen. Unser Konsortium beabsichtigt die wichtigsten Treiber für Biodiversität in temperaten Wäldern zu identifizieren, die Mechanismen hinter der Veränderung in der Artenzusammensetzung zu verstehen, und ein generelles Framework für die Beziehung der 3-D Struktur und der Biodiversität zu erstellen. Unsere Ziele sind, i) existierende Daten zu 8 taxonomischen Gruppen in den Exploratorien zusammenzustellen; ii) funktionale und phylogenetische Distanzen für diese Taxa zu entwickeln bzw. bestehende zu erweitern; iii) eine Reihe von Waldstrukturen entlang der wichtigsten Achsen der Waldstruktur-Heterogenität auf Basis von LiDAR Daten zu berechnen; iv) mit Hilfe von RADAR Daten wichtige Heterogenitäts-Metriken auf die Regionale Landschaftsebene zu skalieren; v) den Einflusses von lokalen und regionalen Landschaftsstrukturen auf die Artenvielfalt zu ermitteln; und vi) diese Untersuchungen auf zwei weitere Waldgebiete mit einmaligen Landnutzungsgradienten in collinen Buchenwäldern und montanen bis hochmontanen Bergwäldern in Mitteleuropa auszudehnen.
Methodenentwicklung zur Abschaetzung von Risiken fuer den Schutzwald aufgrund von Standorts- und Vegetationsmerkmalen meteorologischer Verhaeltnisse und luftchemischer Eintraege. Erstellung von Risikokarten unter Einbezug vorhandener Datenmaterialien und eigener Messungen an ausgewaehlten Standorten im oberen Reusstal. Stuetzung der Messungen durch numerische Modelle mit geeigneter Parametrisierung, vor allem zur Bestimmung des Eintrags und der Deposition anthropogener Schadstoffe. Das Projekt laeuft unter dem gesamtschweizerischen Grossprojekt POLLUMET.
Auf Blatt Hannover wird das Norddeutsche Tiefland nach Süden von Bergzügen mesozoischer Sedimentgesteine begrenzt, wie Weser- und Wiehengebirge, Ith, Süntel, Deister, Osterwald, Hildesheimer Wald, Rehburger Berge und Bückeberge. Die Morphologie des Norddeutschen Tieflandes ist eiszeitlich geprägt. Die quartäre Deckschicht des Kartenblattes wird von Geschiebelehmen/-mergeln der saalekaltzeitlichen Grundmoräne dominiert. Häufig finden sich Überlagerungen durch äolische Löss- und Flugsande der Weichselkaltzeit. In den Flussniederungen von Weser, Aue, Aller, Leine, Wietze und ihrer Nebenflüsse lagern zudem fluviatile Sande und Kiese des Pleistozäns und holozäne Auesedimente. Im Raum Hannover begrenzen mesozoische Bergzüge das Norddeutsche Tiefland nach Süden. Vom Oberen Jura bis ins Tertiär unterlagen sie schubweise tektonischen Deformationen, bei denen sich zahlreiche Störungen und ein typischer Bruchschollenbau herausbildeten. Als Folge der Schichtverstellungen treten in den Bergzügen unterschiedliche mesozoische Schichten zu Tage, z. B. Hildesheimer Wald mit Buntsandstein und Muschelkalk; Weser- und Wiehengebirge mit Dogger und Malm; Rehburger Berge, Deister, Osterwald und Süntel mit Malm und Unterkreide. In den Senken wird das Mesozoikum von känozoischen Lockersedimenten, vorwiegend äolischen und glazifluviatilen Sanden des Pleistozäns sowie holozänen Auesedimenten, überlagert. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewährt ein geologisches Profil Einblicke in den Aufbau des Untergrundes. Der Süd-Nord-Schnitt verdeutlicht das leichte Einfallen der mesozoischen Sedimentschichten, den Bruchschollenbau sowie das Aufbeulen der Zechstein-Salze.
Die naturnahe Waldwirtschaft fördert zwar vertikal strukturierte Waldbestände, offene Störungsflächen und Strukturen der Alters- und Zerfallsphasen sind jedoch rar. Waldarten, die an solche defizitären Strukturen gebunden sind, sind daher häufig gefährdet. Zur Struktur- und Biodiversitätsförderung im Wald kommen daher unterschiedliche Naturschutzinstrumente zum Einsatz, die gleichzeitig einen Gradienten der forstlichen Nutzungsintensität repräsentieren: von Nicht-Nutzung in großen Naturwaldreservaten bis hin zur Strukturförderung durch intensive forstliche Eingriffe. Doch welche Artengruppen profitieren wovon? Wie lange dauert es, bis sich die gewünschten Lebensraumstrukturen einstellen? Und kann durch einen kombinierten Einsatz verschiedener, komplementärer Instrumente die Waldbiodiversität auf Landschaftsebene erhöht werden? Um diese Fragen zu beantworten werden im montanen und hochmontanen Bergmischwald drei Flächentypen miteinander verglichen: je eine Prozessschutzfläche, eine naturnah bewirtschaftete Fläche und eine Fläche, auf der im Jahr 2018 eine starke Auflichtungsmaßnahme (mindestens 0.5 ha) erfolgte. Auf 15 dieser ‘Flächen-Triplets‘ werden Waldstruktur, Bodenvegetation sowie mehrere faunistische Artengruppen über mehrere Jahr hinweg untersucht. Das Projekt liefert Grundlagen für den effizienten Einsatz der Waldnaturschutzinstrumente sowie strukturelle Zielwerte für die Arten- und Biodiversitätsförderung.
Der Kilimanjaro weist zur Zeit noch einen weitgehend geschlossenen Waldgürtel auf. Durch eine stark unterschiedliche Niederschlagsverteilung einerseits und eine ausgeprägte Höhenzonierung andererseits ergibt sich eine hohe Diversität der Waldbestände im Hinblick auf Artenzusammensetzung, Schichtung und Lebensformen. Insbesondere der Bergwald des Südhanges ist in seiner Vielfalt nicht nur wegen seines Epiphyten- und Farnreichtums einzigartig in Ostafrika. Hier finden sich große Gebiete, die aufgrund ihrer Unzugänglichkeit noch unberührt sind. Somit bietet sich die einmalige Gelegenheit, diesen interessanten Lebensraum in natürlicher Ausprägung zu studieren. Dies wurde vom Antragsteller in einem vorangegangenen DFG-Projekt begonnen. Im Rahmen des hier beantragten Habilstipendiums soll dieses umfangreiche Projekt abgeschlossen werden. Erstes Ziel ist die Vervollständigung der vegetationskundlich ökologischen Bestandserfassung aller Waldtypen und ihrer Regeneration. Im Anschluss daran eine Vegetationskarte erstellt werden. Mit diesen Arbeiten wird eine wissenschaftliche Grundlage für die immer dringlicher werdenden gezielten Schutzmaßnahmen geschaffen.
Ermittlung der natuerlichen Entwicklungstendenzen und der anthropogenen reversiblen oder irreversiblen Stoerungen; Untersuchung der Klimaabhaengigkeit des Baumwuchses und des Naehrstoffhaushaltes.
Untersuchungen zur Oekologie der Berg- und Trockenwaelder von Suedecuador. - Erarbeitung von integrierten Schutz- und Nutzungskonzepten, - Umwelterziehungsmassnahmen.
| Origin | Count |
|---|---|
| Bund | 313 |
| Kommune | 2 |
| Land | 39 |
| Wissenschaft | 2 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Ereignis | 2 |
| Förderprogramm | 299 |
| Lehrmaterial | 1 |
| Taxon | 2 |
| Text | 16 |
| Umweltprüfung | 4 |
| unbekannt | 26 |
| License | Count |
|---|---|
| geschlossen | 44 |
| offen | 303 |
| unbekannt | 3 |
| Language | Count |
|---|---|
| Deutsch | 304 |
| Englisch | 80 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Bild | 1 |
| Datei | 3 |
| Dokument | 29 |
| Keine | 254 |
| Webdienst | 2 |
| Webseite | 68 |
| Topic | Count |
|---|---|
| Boden | 308 |
| Lebewesen und Lebensräume | 350 |
| Luft | 210 |
| Mensch und Umwelt | 347 |
| Wasser | 194 |
| Weitere | 339 |