Web Map Service Time (WMS-Time) zum zeitlichen Verlauf der Verkehrsinformationen der Polizei Hamburg und der Baustelleninformationen der BVM. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung
Der Straßenverkehr kann auf unterschiedlichen Ebenen untersucht werden. Die im folgenden beschriebenen Forschungsvorhaben betrachten das System Straßenverkehr aus einer mikroskopischen Sicht, also die der einzelnen Verkehrsteilnehmer und ihrer Fahrzeuge. Ein Schwerpunkt liegt in der Unterstützung der Koordination von Mobilität im individuellen Personenverkehr, da sich hier häufig eine geringe Effizienz der eingesetzten Ressourcen. Dies ist bspw. am durchschnittlichen Besetzungsgrad von Pkw im Berufsverkehr zu beobachten. Hier liegt also ein erhebliches Potenzial für den Einsatz von rechnerbasierten Vermittlungs- und Optimierungsverfahren vor. Dazu wird ein Modell der Mobilität im individuellen Personenverkehr als ganzzahliges lineares Programm erstellt, das sich als Grundlage für die Anwendung von Optimierungsverfahren eignet. Ziele der Optimierung sind global betrachtet die Steigerung der Effizienz, ausgedrückt etwa durch die Reduzierung der gefahrenen Kilometer, und individuell gesehen die Erfüllung des eigenen Mobilitätswunsches. Als Verfahren werden zum einen exakte Optimierungsmethoden, hier speziell Branch-und-Cut-Verfahren mit Spalten-Erzeugung, zum anderen praktisch einsetzbare, heuristische Online-Algorithmen verwendet. Dieser duale Ansatz erlaubt die Bewertung der entwickelten Heuristiken. Um das Vermittlungssystem auch praktisch einsetzen zu können, entsteht derzeit eine Internet-basierte Benutzungsoberfläche. Ein anderer Schwerpunkt liegt auf der simulativen Untersuchung von Straßenverkehr mittels individuenorientierter Modelle. Zur Erstellung derartiger Simulationsmodelle entsteht derzeit ein Framework, das die elementaren Modellbestandteile abstrakt enthält und für spezielle Fragestellungen weiterentwickelt und mit einer graphischen Benutzungsoberfläche versehen wird.
Die Luftqualität in Berlin hat sich in den letzten Jahrzehnten stark verbessert. Seit 2020 werden die aktuell geltenden Grenz- und Zielwerte für Luftschadstoffe stadtweit eingehalten – ein Erfolg für Umwelt und Gesundheit. Grundlage für den Rückgang der Luftbelastung sind die schrittweisen Verschärfungen von Grenzwerten zum Schadstoffausstoß von Kraftwerken, Industrie, Kleinfeuerungsanlagen und Fahrzeugen, die auf europäischer und nationaler Ebene festgelegt wurden und werden. Zusätzlich beigetragen haben Maßnahmen aus den Berliner Luftreinhalteplänen . Die Luftqualität in Berlin wird seit Mitte der 1970er Jahren kontinuierlich überwacht, um die Immissionsbelastung durch Luftschadstoffe zu dokumentieren. Seit 2002 erfolgen die Messungen gemäß den Vorschriften der Europäischen Luftqualitätsrichtlinien. Zur besseren Einordnung der Messwerte werden drei Belastungsregime unterschieden: Verkehr : Messstationen an Hauptverkehrsstraßen mit hoher Belastung Innerstädtischer Hintergrund : Messstationen in innerstädtischen Wohngebieten mit geringem direktem Verkehrseinfluss Stadtrand : Messstationen am Stadtrand zeigen die quellferne Belastungssituation und erlauben zudem auch die Beurteilung über den Eintrag von Luftschadstoffen von außerhalb des Stadtgebietes Die folgenden Abbildungen zeigen den langjährigen Verlauf der mittleren Luftbelastung einzelner Schadstoffe in diesen Belastungsregimen. Für Stickstoffdioxid NO₂, Feinstaub PM₁₀, PM₂ꓹ₅ und Ozon O₃ werden die langfristigen Entwicklungen basierend auf einem Differenzenmodell ermittelt, wie im Jahresbericht 2019 (PDF, 4,2 MB) beschrieben. Im Kern werden dabei die Differenzen der Jahresmittelwerte von einem zum darauffolgenden Jahr verwendet. Werte für die einzelnen Stationen nach Schadstoffen und sind verfügbar unter: Darstellung von Luftmessdaten | Berliner Luftgütemessnetz Ab 2030 müssen deutlich strengere EU-Grenzwerte gemäß der EU-Richtlinie 2024/2881 eingehalten werden, unter anderem für die Jahresmittelwerte von Stickstoffdioxid (20 statt 40 µg/m³), Partikel PM₁₀ (20 statt 40 µg/m³) und Partikel PM₂,₅ (10 statt 25 µg/m³). Diese künftigen Grenzwerte sind in den Abbildungen zusätzlich zu den derzeit geltenden Grenzwerten eingezeichnet. Stickstoffdioxid Schwebstaub / Partikel PM 10 Partikel PM 2,5 Ozon Polyzyklische aromatische Kohlenwasserstoffe (PAK) Schwefeldioxid Benzol Kohlenmonoxid Entwicklung der NO₂-Belastung in Berlin (1990 bis 2024) Die NO₂-Konzentrationen in Berlin sind in den vergangenen Jahrzehnten insgesamt deutlich zurückgegangen, wenn auch mit zeitweiligen Stagnationen. Seit 2020 werden die Grenzwerte an allen Stationen eingehalten. Die nebenstehende Grafik zeigt die langjährige Entwicklung der NO₂-Belastung der automatischen Messstellen sowie der acht beurteilungsrelevanten Passivsammlerstandorte (Passivsammler = PS). Die sehr kleinen Passivsammler befinden sich überwiegend an Straßen mit einer engen Randbebauung, in denen die Abgase der Fahrzeuge schlechter verdünnt werden. Daher liegt der Mittelwert über diese Passivsammler höher als der Mittelwert über die kontinuierlich messenden Verkehrsstationen. Hohe Stickstoffdioxidkonzentrationen werden überwiegend vom Straßenverkehr verursacht. Die höchsten NO₂-Werte treten an Hauptverkehrsstraßen auf. Dort waren die NO₂-Jahresmittelwerte bis 2019 etwa doppelt so hoch wie im städtischen Hintergrund und liegen heute im Mittel immer noch etwa ein Drittel höher als im städtischen Hintergrund. Überschreitungen der seit 2020 geltenden Grenzwerte traten daher nur an Hauptverkehrsstraßen auf. Der langfristige Verlauf zeigt: In den 1990er- bis 2010er-Jahren kam es zu einem Rückgang der NO₂-Belastung infolge technischer Maßnahmen, wie dem Einsatz von Katalysatoren in Otto-Pkw und die Ausrüstung von Kraftwerken mit Entstickungsanlagen. Auch die Einführung der Berliner Umweltzone – in zwei Stufen 2008 und 2010 – trug zur Verbesserung der Luftqualität bei. Insbesondere reduzierte sie die Zahl der Otto-Fahrzeuge ohne Katalysator im innerstädtischen Verkehr. Zwischen 2000 und 2015 blieben die NO₂-Jahresmittelwerte auf einem annähernd gleichbleibenden Niveau. Dabei kamen zwei Gründe zusammen. Zum einen stieg der Anteil an Diesel-Pkw mit hohen Stickoxidausstoß zulasten der Otto-Pkw mit Katalysator. Zum anderen wurde bei Diesel-Pkw der reale Stickoxidausstoß nicht im gesetzlich vorgeschriebenen Maße vermindert (Dieselabgasskandal von 2015). Erst mit der Einführung neuer Abgasvorschriften (Euro 6d-TEMP und Euro 6d) mit Abgasprüfungen im realen Straßenverkehr sowie Software-Updates und Nachrüstung von Diesel-Fahrzeugen konnte in den folgenden Jahren eine deutliche Reduzierung des Schadstoffausstoßes von Diesel-Pkw erreicht werden. Auffällig sind die erhöhten Jahresmittelwerte von 2006. Vor allem für die Straßenmessstellen zeigen diese hohen Jahresmittelwerte eindrucksvoll den Einfluss von meteorologischen Bedingungen auf die Konzentration von Luftschadstoffen. Denn das Jahr 2006 war geprägt durch eine hohe Anzahl windschwacher Hochdruckwetterlagen und ungünstigen meteorologischen Ausbreitungsbedingungen. Seit 2016 sind die NO₂-Werte insbesondere durch die verschärften Abgasvorschriften Kraftfahrzeuge in allen Belastungsbereichen wieder deutlich gesunken. Konkrete Messdaten belegen: An Hauptverkehrsstraßen gingen die NO₂-Werte zwischen 2016 und 2024 um etwa 55 % zurück. Der stärkste Rückgang wurde zwischen 2019 und 2020 beobachtet – begünstigt auch durch Maßnahmen der Berliner Luftreinhalteplanung wie die Nachrüstung und Modernisierung von Dieselbussen und Einführung von Elektro-Bussen durch die BVG , Tempo 30 auf hoch belasteten Hauptverkehrsstraßen , Ausweitung der Parkraumbewirtschaftung , sowie die Förderung des Umweltverbunds aus öffentlichem Nahverkehr , Rad- und Fußverkehr . Zusätzlich führten Lock-Down-Phasen während der Corona-Pandemie 2020-2022 zu Rückgängen des Verkehrs und verstärkten die Abnahme der NO₂-Belastung. Daraus resultiert weiterhin ein höherer Anteil von Home-Office mit einem dämpfenden Effekt auf den Berufsverkehr. 2023 und 2024 lagen die NO₂-Mittelwerte im Berliner Luftgüte-Messnetz (BLUME) je nach Standort zwischen 8 und 20 µg/m³, während Passivsammler 2024 im Mittel 28 µg/m³ zeigten Der zukünftige EU-Grenzwert von 20 µg/m³, der ab 2030 einzuhalten ist, wird noch an einigen hoch belasteten Straßen überschritten. Es besteht also weiterhin Handlungsbedarf, vor allem in der Verkehrsplanung, beim Umstieg auf emissionsarme Fahrzeuge und der Förderung nachhaltiger Mobilität. Auch die Umsetzung der Berliner Wärmestrategie trägt durch den schrittweisen Ersatz fossiler Heizsysteme zur Reduktion von Feinstaub- und Stickoxid-Emissionen bei. Weitere Informationen zur Definition und Messung von NO₂ bietet das Umweltbundesamt . Entwicklung der TSP- und PM₁₀-Belastung in Berlin (1987 bis 2024) Ende der 1990er Jahre wurde mit der Messung von Partikeln PM₁₀, also von einatembaren Teilchen kleiner als 10 Mikrometer (µm), begonnen. Sie ersetzte die Gesamtstaubmessung (TSP – total suspended particles), bei der auch grobe Teilchen > 10 µm erfasst wurden. Deshalb sind beide Reihen nicht direkt miteinander vergleichbar. Der sehr starke Rückgang der Gesamtstaubbelastung zwischen 1987 und 1997 beruht im Wesentlichen auf dem Umstieg von Kohleeinzelraumfeuerungen („Kachelöfen“) auf Gasheizungen und Fernwärme sowie der Modernisierung oder Stilllegung von Kraftwerken in den Gebieten der ehemaligen DDR. Die langfristige Entwicklung zeigt einen deutlichen Rückgang der PM₁₀-Konzentrationen in Berlin: Seit 2000 sanken die Werte an verkehrsnahen Standorten um ca. 40 %, in Wohngebieten und am Stadtrand um rund 30 %. Seit 2004 wird der gesetzliche Jahresmittelgrenzwert von 40 µg/m³ an allen Messstationen eingehalten. Die Zahl der Tage mit Überschreitungen des Tagesmittelgrenzwerts von 50 µg/m³ ist ebenfalls deutlich rückläufig. Die letzte Überschreitung der zulässigen Anzahl von 35 Überschreitungstagen wurde 2015 registriert (Station MC174 an der Frankfurter Allee mit 36 Tagen). Die Feinstaubbelastung ist stark witterungsabhängig: Kalte Winter mit hohem Heizbedarf führen häufig zu höheren Werten. Hochdruckwetterlagen mit geringen Windgeschwindigkeiten und Inversionswetter verhindern den Abtransport von Schadstoffen. Ferntransporte (z. B. großräumige Verfrachtung von Schadstoffen aus Kraftwerken und Holzfeuerungen, der Landwirtschaft oder Saharastaub ) können zusätzlich zur Belastung beitragen. Beispiele: Günstige Wetterjahre wie 2007, 2012, 2017, 2019, 2020, 2022, 2023 führten zu vergleichsweise niedrigen PM₁₀-Konzentrationen, ungünstige Wetterbedingungen in den Jahren 2003, 2006, 2010, 2011, 2014 und 2018 zu höheren Belastungen. Der langjährig rückläufige Trend der PM₁₀-Belastung ist auf gezielte Maßnahmen zurückzuführen: Rauchgasreinigung bei Kraftwerken und Abfallverbrennung, Ersatz von Kohleheizungen, Partikelfilter für Diesel-Fahrzeuge und Baumaschinen , sowie Förderung des Umweltverbunds aus öffentlichem Nahverkehr und Rad- und Fußverkehr und Tempo 30 auf hoch belasteten Hauptverkehrsstraßen. Der verkehrsbedingte Anteil an der PM₁₀-Belastung wurde seit den späten 1990er Jahren um rund 70 % reduziert. Ab 2030 gelten in der EU strengere Grenzwerte : Der Jahresmittelwert wird auf 20 µg/m³ gesenkt, ein Tagesmittelgrenzwert von 45 µg/m³ darf an höchstens 18 Tagen pro Jahr überschritten werden (bisher: 35 Tage mit 50 µg/m³). An vielen Berliner Messstationen werden diese Werte bereits eingehalten, an verkehrsnahen Standorten jedoch teils noch überschritten. Es besteht somit weiterer Handlungsbedarf – insbesondere im Straßenverkehr und bei häuslichen Emissionen. Weitere Informationen zur Definition und Messung von PM₁₀ bietet das Umweltbundesamt . Entwicklung der PM₂,₅-Belastung in Berlin (2004 bis 2024) Als Partikel PM₂ꓹ₅ werden sehr kleine Partikel bezeichnet, deren aerodynamischer Durchmesser kleiner als 2,5 µm ist. Sie können nachhaltig die Lunge schädigen, da sie tief in die Atemwege eindringen und länger dort verweilen. Außerdem können hohe PM₂ꓹ₅-Belastungen zu Herz- und Kreislauferkrankungen führen. Der enthaltene Ruß gilt als krebserregend. In den vergangenen zwei Jahrzehnten ist die PM₂,₅-Belastung in Berlin deutlich gesunken: An verkehrsnahen Messstationen um rund 45 %, im innerstädtischen Hintergrund um etwa 40 %. Der gesetzliche Jahresmittelgrenzwert von 25 µg/m³ wird seit seiner Einführung im Jahr 2015 an allen Berliner Messstellen zuverlässig eingehalten. Auch der gleitende Drei-Jahres-Mittelwert im städtischen Hintergrund liegt seit Jahren unter dem Zielwert von 20 µg/m³. Die PM₂,₅-Konzentrationen unterliegen jedoch starken witterungsbedingten Schwankungen. Kalte Winter mit erhöhtem Heizbedarf führen zu mehr Emissionen. Inversionslagen verhindern den Luftaustausch, sodass sich Schadstoffe anreichern. Ferntransporte – etwa Abgase aus Kraftwerken, Industrie oder Holzfeuerungen, Saharastaub oder landwirtschaftliche Quellen – tragen zusätzlich zur Belastung bei. Auch die sekundäre Partikelbildung – z. B. aus Stickoxiden, Schwefeldioxid oder Ammoniak – ist wetterabhängig. Günstige Wetterjahre mit viel Wind und Regen wie 2012, 2017, 2019, 2020, 2022 und 2023 führten zu niedrigeren PM₂,₅-Werten. In ungünstigen Jahren wie 2006, 2010, 2014, 2018 und 2024 wurden dagegen teils erhöhte Belastungen gemessen. Der Rückgang der PM₂,₅-Belastung ist auf eine Vielzahl von Luftreinhaltemaßnahmen zurückzuführen: strengere EU-Abgasnormen, der verstärkte Einsatz von Partikelfiltern für Dieselfahrzeuge, u.a. durch die Einführung der Berliner Umweltzone ab 2008, die Modernisierung veralteter Heizungsanlagen, der Umstieg auf emissionsärmere Energieträger und die Reduktion gasförmiger Vorläuferstoffe. Seit 2023 ergänzt die Informationskampagne „Richtig Heizen mit Holz“ das Berliner Maßnahmenpaket. Ab 2030 gelten in der EU deutlich strengere Grenzwerte : Der Jahresmittelgrenzwert für PM₂,₅ wird von 25 µg/m³ auf 10 µg/m³ gesenkt. Dieser Wert wird derzeit an Verkehrsmessstationen und teilweise auch im städtischen Hintergrund nicht eingehalten. Zudem wird ein neuer Tagesmittelgrenzwert von 25 µg/m³ eingeführt, der an höchstens 18 Tagen pro Jahr überschritten werden darf. Zusätzlich gilt ab 2030 eine Minderungsverpflichtung für die PM₂ꓹ₅-Belastung im städtischen Hintergrund. Zur Einhaltung der künftigen Grenzwerte sind zusätzliche Maßnahmen nötig – vor allem in den Bereichen Verkehrsplanung, emissionsarme Wärmeversorgung und umweltfreundliche Stadtentwicklung. Da circa 60 bis 70 % der in Berlin gemessenen Partikeln aus Quellen außerhalb Berlins stammen, muss die Partikelbelastung europaweit gesenkt werden. Weitere Informationen zur Definition und Messung von PM₂ꓹ₅ bietet das Umweltbundesamt . Dieser dreiatomige Sauerstoff ist ein natürlicher Bestandteil der Luft und wird nur selten direkt emittiert. Die Bildung von bodennahem Ozon geschieht über chemische Reaktionen aus Vorläuferstoffe unter dem Einfluss von UV-Strahlung. Der wichtigste Vorläuferstoff ist Stickstoffdioxid (NO₂). Aber auch flüchtige organische Verbindungen (VOC, volatile organic compounds) sind für die Ozonbildung von Bedeutung, da diese zur Umwandlung von Stickstoffmonoxid (NO) zum Ozonvorläuferstoff NO₂ beitragen. Abgebaut wird Ozon wiederum durch NO. Die höchsten Ozonkonzentrationen treten im Sommer während sonnigen Schönwetterperioden auf. Denn dann ist die UV-Einstrahlung hoch und zudem werden von der Vegetation bei hohen Temperaturen mehr VOCs freigesetzt. Entwicklung der O₃-Belastung in Berlin (1988 bis 2024) Die langfristige Entwicklung der Jahresmittelwerte zeigt zwei gegensätzliche Trends je nach Standorttyp: Im innerstädtischen Hintergrund ist seit Ende der 1980er Jahre ein nahezu kontinuierlicher Anstieg der mittleren Ozonkonzentrationen zu beobachten. Eine Regressionsanalyse ergibt eine Zunahme von etwa 0,4 µg/m³ pro Jahr. Am Stadtrand hingegen ist nach einem Rückgang Anfang der 1990er Jahre eine geringere Zunahme um rund 0,1 µg/m³ pro Jahr festzustellen. Die mittlere Ozonbelastung ist damit inzwischen im städtischen Hintergrund genauso hoch wie am Stadtrand. Für die verkehrsnahe Station MC174 liegen seit 2020 eigene Ozon-Messdaten vor, die deutlich niedrigere Werte zeigen – beispielsweise 42 µg/m³ im Jahr 2019, 43 µg/m³ 2020 und 47 µg/m³ 2024. Ursache dafür ist der direkte NO-Ausstoß aus dem Straßenverkehr, der Ozon effektiv reduziert. Die Jahresmittelwerte unterliegen darüber hinaus starken witterungsbedingten Schwankungen. Unterschiede von bis zu 7 µg/m³ zwischen zwei aufeinanderfolgenden Jahren sind nicht ungewöhnlich. Besonders hohe Ozonwerte wurden in den Jahren 2018 und 2019 gemessen – bedingt durch heiße, sonnige Sommer mit stabilen Hochdruckwetterlagen. Die Jahre 2023 und 2024 wiesen mit jeweils 52 bis 53 µg/m³ im innerstädtischen Hintergrund die höchsten je gemessenen Mittelwerte auf und bestätigen damit den langfristigen Trend. Der beobachtete Anstieg der mittleren Ozonwerte lässt sich vor allem auf die Reduktion der NO-Konzentrationen zurückführen, insbesondere im Sommer. Weniger NO bedeutet eine geringere Abbaurate von Ozon, wodurch sich O₃ länger in der Atmosphäre hält. Weitere Einflussfaktoren sind die Trockenheit und der Hitzestress der Vegetation – wie in den Jahren 2018 und 2019. Dies führt zu geringeren VOC-Emissionen, wodurch insbesondere die Bildung extremer Ozonspitzen reduziert wird. Zudem haben Emissionseinsparungen bei den Ozonvorläufern NOₓ und VOCs aus Verkehr, Industrie und privatem Gebrauch (etwa Farben, Lacke, Lösungsmittel) die Häufigkeit hoher Kurzzeitbelastungen deutlich reduziert. Kurzzeitige O₃-Belastungsspitzen sind gesundheitlich besonders relevant, da erhöhte Ozon-Konzentrationen zu Reizerscheinungen der Augen und Schleimhäute sowie Lungenschäden führen können. Deshalb wurden zum Zweck des Gesundheitsschutzes die Informationsschwelle von 180 µg/m³ und die Alarmschwelle von 240 µg/m³, jeweils als Mittelwert über eine Stunde, festgelegt. Diese Belastungsspitzen sind jedoch im Gegensatz zur mittleren O₃-Belastung seit Jahren rückläufig, selbst in Jahren mit eigentlich günstigen Bedingungen für Ozonbildung. So zeigen 2018, 2019, 2023 und 2024: Trotz hoher Temperaturen kam es nicht zu extremen Ozonspitzen, vermutlich infolge niedriger NO₂-Werte und verringerter VOC-Emissionen durch Trockenheit. Weitere Informationen zur Definition und Messung von Ozon bietet das Umweltbundesamt . Ein Zukunftsausblick: Für Ozon gibt es bislang keine EU-Grenzwerte für Jahresmittelwerte, aber die Einhaltung der Informations- und Alarmschwellen bleibt essenziell. Mit dem Klimawandel – mehr Hitzetage und längere Trockenperioden – wird die Bedeutung der Ozonbelastung weiter zunehmen. Eine wirksame Reduktion von Vorläuferstoffen bleibt daher entscheidend, um Gesundheit und Umwelt langfristig zu schützen. Entwicklung der Benz[a]pyren-Belastung in Berlin (1993 bis 2022) Polyzyklische aromatische Kohlenwasserstoffe (PAK) gelten als krebserregende organische Verbindungen. Diese Stoffe entstehen überwiegend bei schlechter (unvollständiger) Verbrennung von Öl, Kohle oder Holz. Wichtige Quellen sind in Berlin Holzverbrennung in Kleinfeuerungsanlagen und Dieselmotoren ohne Filter. Als wichtigste Messgröße wird dabei Benzo(a)pyren (B(a)P) verwendet. Bereits Mitte der 1990er Jahre gab es erste orientierende Messungen von Benzo(a)pyren an der Messstelle Nansenstraße in Neukölln. Seit 2006 werden regelmäßige Messungen an vier verschiedenen Standorten (Hauptverkehrsstraßen, Wohngebiete und städtischer Hintergrund) durchgeführt. Damit wird die Einhaltung des gesetzlich festgelegten Zielwerts für Benzo(a)pyren von 1 ng/m³ als Jahresmittelwert überwacht. Ein Blick auf die langfristige Entwicklung zeigt: Im städtischen Wohngebiet ist die Belastung seit den 1990er Jahren um den Faktor fünf gesunken. In den Jahren 2006 und 2010 wurde an der Messstation im innerstädtischen Wohngebiet Neukölln sowie an der Hauptverkehrsstraße Schildhornstraße der Grenzwert von 1 ng/m³ erreicht. Dieser Anstieg wird unter anderem auf besonders kalte Winter und den damit einhergehenden erhöhten Verbrauch von Kohle und Holz in privaten Feuerungsanlagen zurückgeführt – wie Kohleheizungen, Holzöfen und Kaminen. Seit 2012 liegen die gemessenen PAK-Konzentrationen an allen Messstellen nahe beieinander und deutlich unter dem Grenzwert. Zwischen 2012 und 2021 bewegten sich die Jahresmittelwerte an allen Stationen zwischen etwa 0,3 und 0,5 ng/m³, 2022 sank die Belastung auf den niedrigsten bisher gemessenen Wert von 0,1 ng/m³. Entwicklung der SO₂-Belastung in Berlin (1988 bis 2019) Die Luftbelastung durch die meisten direkt emittierten Schadstoffe ist in den letzten 20 Jahren stark gesunken. Beim Schwefeldioxid, das hauptsächlich aus Kraftwerken, Industrie und Kohleöfen stammte, ist dieser Rückgang am deutlichsten. Die Entwicklung der SO₂-Belastung in Berlin ist in der Abbildung für den Zeitraum von 1976 bis 2019 dargestellt. Die blau gestrichelte Linie beruht auf Daten, welche bis 2000 im Jahresbericht des BLUME (Senatsverwaltung für Stadtentwicklung, 2001) als SO₂-Gebietsmittel veröffentlicht wurden, jedoch nicht in digitaler Form vorliegen. Seit 1989 liegen die als Punkte dargestellten Jahresmittelwerte der einzelnen Messstationen in digitaler Form in der Datenbank des BLUME vor. Auf Grundlage dieser Daten wurde unter Anwendung der Differenzenmethode der mittlere Verlauf der SO₂-Entwicklung aller Messstationen (rote Linie) und der Messstationen des städtischen Raums (innerstädtischer Hintergrund und Verkehr, gelbe Linie) berechnet. Die Emissionen sind durch die Sanierung oder Stilllegung von Industrieanlagen und die Installation von Rauchgasentschwefelungsanlagen in Kraftwerken Ende der 80er Jahre in West-Berlin und nach 1990 auch in den neuen Bundesländern und osteuropäischen Nachbarländern stark gesunken. Auch der fast vollständige Ersatz von Kohleheizungen durch Gasheizungen oder Fernwärme und der Einsatz von schwefelarmem Kraftstoff haben zur Verbesserung der Luftqualität beigetragen. Zwischen 2004 und 2014 lag die Schwefeldioxidimmission im gesamten Stadtgebiet, sowohl in der Innenstadt als auch in den Außenbezirken auf Jahresmittelwerte zwischen 1-4 µg/m³ . Seit 2015 liegt sie im Bereich von 1-2 µg/m³. Damit ist die Konzentration von Schwefeldioxid im Vergleich zu 1989 um fast 99 % zurückgegangen. Das heutige Konzentrationsniveau liegt mit Tagesmittelwerten von maximal 6 µg/m³ an drei Tagen im Jahr 2019 weit unterhalb der unteren Beurteilungsschwelle der 39. BImSchV von 50 µg/m³ an höchstens drei Tagen im Jahr. Die Messungen wurden daher im Jahr 2020 eingestellt. Entwicklung der Benzol-Belastung in Berlin (1993/94 bis 2022) Benzol gehört zu den krebserregenden Stoffen und kann Leukämie (Blutkrebs) verursachen. Benzol wird vorwiegend von Pkw mit Ottomotor emittiert. Durch den Einsatz des geregelten Katalysators, verbesserter Motortechnik, besserer Kraftstoffe und den Einsatz von Gaspendelsystemen an Tankstellen sowie in Tanklagern konnte die Emission dieses Schadstoffes in den letzten Jahren deutlich verringert werden. Entsprechend hat auch die Immissionsbelastung durch Benzol in den vergangenen Jahren in Berlin stark abgenommen. Die Benzolwerte im Jahr 2010 waren an den Hauptverkehrsstraßen nur ein Fünftel und im innerstädtischen Hintergrund nur noch ein Drittel so hoch wie 1993. Zwischen 2010 und 2022 hat sich die Belastung an der Verkehrsmessstation noch mal halbiert. Der seit 2010 einzuhaltende Grenzwert von 5 µg/m³ wird bereits seit dem Jahr 2000 unterschritten. In den letzten drei Jahren lag auch die straßennahe Benzolkonzentration im Jahresmittel unter 2 µg/m³. Ab 2030 gilt für Benzol ein Grenzwert von 3,4 µg/m³. Auch dieser Wert wird bereits deutlich unterschritten. Kohlenmonoxid (CO) entsteht bei der unvollständigen Verbrennung von kohlenstoffhaltigen Brennstoffen, insbesondere in Kleinfeuerungsanlagen (Holz, Kohle), schlecht eingestellten Ölheizungen und Verbrennungsmotoren. In den letzten drei Jahrzehnten nahm die Kohlenmonoxid-Belastung an den Hauptverkehrsstraßen und im innerstädtischen Hintergrund um jeweils ca. 80 % ab. Der starke Rückgang der Kohlenmonoxid-Belastung beruht zum einen auf der Einführung des geregelten Katalysators und effizienterer Motoren in Kraftfahrzeugen. Zum anderen hat auch der fast vollständige Ersatz von Kohleheizungen durch Gasheizungen oder Fernwärme dazu beigetragen. Dadurch wurde auch der seit 2005 einzuhaltende Kohlenmonoxid-Grenzwert zum Schutz der menschlichen Gesundheit von 10 mg/m³ als höchster 8-Stunden-Mittelwert eines Tages an allen Messstationen nie überschritten.
Zweiräder mit Elektroantrieb sind ein wichtiger Baustein der E-Mobilität in der Region Berlin-Brandenburg. Pedelecs, also Elektrofahrräder, die durch einen Elektroantrieb unterstützt werden, haben ein erhebliches Potential, die verkehrlichen und umweltseitigen Folgen der zunehmenden Arbeitswege zu reduzieren, für die das Auto genutzt wird: Auf einem Parkplatz für Pkw können sechs Elektroräder geparkt werden, die Räder sind leise, abgasfrei und schonen das Klima. Kaum eine andere verkehrs- und umweltpolitische Strategie eröffnet im Stadtverkehr vergleichbare Potentiale in vergleichbar kurzer Zeit zu vergleichbar geringen Kosten. Pendlerinnen und Pendler können ihre Haushaltskasse durch den Umstieg auf Pedelec spürbar entlasten: Der Weg zur Arbeit ist mit dem Elektrorad im Vergleich mit der Autofahrt unschlagbar kostengünstig. Im Projekt “EBikePendeln” wurden im Südwesten der Stadt und den angrenzenden Umlandkommunen Teltow, Kleinmachnow und Stahnsdorf die Potentiale einer Verlagerung des Berufsverkehrs vom Pkw zum Elektrofahrrad untersucht. Beschäftigte von 33 Unternehmen, Einrichtungen und Behörden in diesem Raum erhielten über einen Zeitraum von jeweils acht Wochen ein Pedelec, das sie im Alltagsverkehr testeten. Die Teilnehmer und Teilnehmerinnen wurden in vier Testphasen wissenschaftlich begleitet. Bis zum Projektende hatten 324 Teilnehmende in den beiden Jahren rund 150.000 km insgesamt und durchschnittlich 25.500 km pro Woche mit den Pedelecs zurückgelegt und 6.600 Wege protokolliert. Im Ergebnis ersetzte das Pedelec bei fast 60 % der Wege ein Auto. Im Entfernungsbereich bis ca. 15 km war das Pedelec attraktiver als das Auto. Das entspricht einer Fahrzeit von knapp einer Stunde. Überraschend: das Pedelec wurde als Ganzjahres-Verkehrsmittel erkannt, nur Eis und Schnee konnten die Teilnehmer von einer Pedelec-Fahrt abhalten. Ermöglicht wurde das Projekt durch finanzielle und personelle Unterstützung mehrerer Unternehmen, die im Zeitraum Juli 2014 bis September 2015 Pedelecs und Zubehör zur Verfügung stellten.
Am vergangenen Wochenende wurde die Uhr von Sommerzeit wieder auf Normalzeit umgestellt. Die Zeitumstellung verlängert die Zeit, in der der Berufspendlerverkehr in der Dämmerung stattfindet. Das Zusammenfallen der Aktivitätsphasen des Wildes in der Dämmerung und des Berufsverkehrs erhöht das Risiko von Wildunfällen. Grundsätzlich ist das ganze Jahr über Vorsicht geboten. Im Herbst sind nasse Straßen und schlechte Sicht häufig zusätzliche Risikofaktoren, für Wildtiere genauso wie für Menschen hinter dem Steuer. Eine angepasste Geschwindigkeit und aufmerksames Beobachten der Straßenränder helfen, Unfälle zu vermeiden. Quert ein Reh oder Wildschein bereits die Fahrbahn, folgen in der Regel noch weitere. Fernlicht bei Sichtung von Wildtieren ausschalten, da das grelle Licht Wildtieren die Orientierungsmöglichkeiten nehmen kann. Sollte ein Tier angefahren werden, die Unfallstelle absichern und die Polizei oder einen für das Gebiet verantwortlichen Jäger informieren. Die Jagdstatistik für Nordrhein-Westfalen weist für das Jagdjahr 2022/2023 über 33.000 Fälle von Fallwild in den relevanten Tierarten aus. Zum Fallwild zählen alle verendeten oder verunfallten Tiere. Der größte Anteil mit über 31.000 Tieren wurde bei Rehwild verzeichnet, es folgen etwa 1200 Fälle bei Schwarzwild und rund 700 Bei Dam- und Rotwild. Das nicht jeder Wildunfall angezeigt wird zeigt der NRW-Fallwildbericht der LANUV-Forschungsstelle für Jagdkunde und Wildschadenverhütung. In der Saison 2022/23 wurden über die Chemischen- und Veterinäruntersuchungsämter (CVUA) in Nordrhein-Westfalen 985 Kadaver verendeter Wildtiere untersucht. 34 Kadaver von Wildschweinen wiesen auf Verkehrsunfälle als Todesursache hin. Dies entspricht einem Viertel aller untersuchten Wildschweinkadaver. Von 90 untersuchten Rehen wiesen circa 12 Prozent schwere Verletzungen auf, die auf Verkehrsunfälle schließen lassen. Die Fallwildberichte und Statistiken zur Jagdstrecke sind zu finden unter: https://www.lanuv.nrw.de/natur/jagd/forschungsstelle-fuer-jagdkunde-und-wildschadenverhuetung-1 https://www.mlv.nrw.de/themen/jagd-und-fischerei/jagd/jagdstrecken-statistik/ Die wichtigsten Informationen zum Verhalten bei einem Unfall mit einem Wildtier hat der ADAC zusammengefasst: https://www.adac.de/verkehr/verkehrssicherheit/tiere/wildunfaelle/ zurück
Die Stadtreinigung Hamburg führt den Winterdienst für den Radverkehr im Rahmen ihrer Leistungsfähigkeit auf einem ausgewählten Streckennetz durch, das durch die Behörde für Verkehr und Mobilitätswende festgelegt wurde. Das Streckennetz besteht aus verschiedenen Radverkehrsanlagen wie z.B. baulich abgesetzte Radwege, gemeinsame Geh- und Radwege, Radfahrstreifen, Schutzstreifen, Protected Bike Lanes sowie Fahrradstraßen. Auf den übrigen Radverkehrsanlagen findet kein regelhafter Winterdienst durch die Stadtreinigung Hamburg statt. Die Anliegerinnen und Anlieger sind nicht zum Winterdienst auf ausschließlich dem Fahrradverkehr dienenden Flächen zuständig. Die SRH sichert bauliche Radwege gemäß den Vorgaben des Hamburgischen Wegegesetzes mit abstumpfenden Streumitteln, vorrangig feinkörniger Kies. Der Einsatz von Feuchtsalz bzw. Salz kann gemäß der gesetzlichen Regelung nur für Strecken auf Fahrbahnniveau erfolgen, wie z.B. Fahrradstraßen, Radfahr- und Schutzstreifen etc. Dies erfolgt überall dort, wo es betrieblich und logistisch möglich ist. Der Winterdienst erfolgt maschinell mit großen und kleinen Streufahrzeugen. Alle Strecken werden zweimalig und (soweit betrieblich möglich) auch durchgängig bearbeitet. Die Bearbeitung startet so frühzeitig, dass der 1. Bearbeitungsdurchgang vor Beginn des Berufsverkehrs bzw. der Hauptnutzungszeit durchgeführt wird. Neben den Radverkehrsanlagen ist die Stadtreinigung Hamburg für den Winterdienst auf Fahrbahnen verantwortlich. Es werden zunächst wichtige Hauptverkehrsstraßen, Strecken mit Buslinienverkehr bearbeitet. Danach werden die Verbindungsstrecken zwischen diesen Straßen gesichert.
Die SBM Maschinen GmbH, In der Lache 9, 87657 Görisried, beantragte mit Schreiben vom 15.03.2021 die Erteilung der Genehmigung der Anlage und des Betriebs eines Hubschrauber-sonderlandeplatzes (Bodenlandeplatz) auf den Grundstücken Fl.Nrn. 137/17 und 260/6 der Gem. Görisried im „Gewerbegebiet westlich der Marktoberdorfer Straße“ in Görisried nach § 6 LuftVG. Antragsgemäß sollen auf dem Hubschraubersonderlandeplatz Starts und Landungen nach Sichtflugregeln bei Tage in einem Umfang von max. 250 Starts und 250 Landungen (500 Flugbewegungen) sowie max. 250 bodengebundene Probeläufe mit eingebautem Triebwerk, jeweils pro Kalenderjahr, durchgeführt werden. Als Zweckbestimmung für den Landeplatz be-nennt die Antragstellerin den Werks- und Geschäftsreiseverkehr. Dementsprechend soll Flug-betrieb ausschließlich an Werktagen stattfinden.
| Origin | Count |
|---|---|
| Bund | 87 |
| Land | 20 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Daten und Messstellen | 3 |
| Förderprogramm | 78 |
| Text | 8 |
| Umweltprüfung | 1 |
| unbekannt | 12 |
| License | Count |
|---|---|
| geschlossen | 10 |
| offen | 92 |
| Language | Count |
|---|---|
| Deutsch | 96 |
| Englisch | 10 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Datei | 1 |
| Dokument | 5 |
| Keine | 61 |
| Webdienst | 11 |
| Webseite | 35 |
| Topic | Count |
|---|---|
| Boden | 61 |
| Lebewesen und Lebensräume | 82 |
| Luft | 62 |
| Mensch und Umwelt | 102 |
| Wasser | 35 |
| Weitere | 100 |