API src

Found 15 results.

COOREFLEX-Turbo, 4.1.12 AG Turbo COOREFLEX-turbo: Teilverbundprojekt 4: Expansion; Vorhaben-Gruppe 4.1: Dampfturbinen-Schaufelentwicklung; Vorhaben 4.1.12: Industriedampfturbine

Das Projekt "COOREFLEX-Turbo, 4.1.12 AG Turbo COOREFLEX-turbo: Teilverbundprojekt 4: Expansion; Vorhaben-Gruppe 4.1: Dampfturbinen-Schaufelentwicklung; Vorhaben 4.1.12: Industriedampfturbine" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Siemens AG.Das Vorhaben umfasst Projekte zur Optimierung von Gas- und Dampfturbinen sowie Industriedampfturbinen. Letztere werden als Kompressorantriebsturbinen im CO2-Abscheidung und -Speicherung (CCS)-Strang eingesetzt, aber auch in kompakten dezentralen Kraftwärmekoppelungs(KWK)-Anlagen kommunaler Betreiber und der Industrie. Die Turbinen sollen weitere Wirkungsgradsteigerungen bei gleichzeitiger Kostenoptimierung erfahren. Ebenfalls müssen unter Berücksichtigung höherer zulässiger Lastwechselzahlen und Lastwechselgeschwindigkeiten ausgelegt werden, um fluktuierende Einspeisung von Wind- und Solarstrom bedingte Schwankungen ausgleichen zu können. Neben der Erhöhung der Startzahlen, geht es hier auch um den effizienteren Betrieb der Turbinen im unteren Lastbereich und um größere Lastgradienten.

COOREFLEX-Turbo, 4.1.3B Teilprojekt: Dampfturbinen-Schaufelpfad hoher Leistungsdichte

Das Projekt "COOREFLEX-Turbo, 4.1.3B Teilprojekt: Dampfturbinen-Schaufelpfad hoher Leistungsdichte" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Siemens AG.Das Vorhaben umfasst Projekte zur Optimierung von Gas- und Dampfturbinen sowie Industriedampfturbinen. Letztere werden als Kompressorantriebsturbinen im CO2-Abscheidung und -Speicherung (CCS)-Strang eingesetzt, aber auch in kompakten dezentralen Kraftwärmekoppelungs(KWK)-Anlagen kommunaler Betreiber und der Industrie. Die Turbinen sollen weitere Wirkungsgradsteigerungen bei gleichzeitiger Kostenoptimierung erfahren. Ebenfalls müssen unter Berücksichtigung höherer zulässiger Lastwechselzahlen und Lastwechselgeschwindigkeiten ausgelegt werden, um fluktuierende Einspeisung von Wind- und Solarstrom bedingte Schwankungen ausgleichen zu können. Neben der Erhöhung der Startzahlen, geht es hier auch um den effizienteren Betrieb der Turbinen im unteren Lastbereich und um größere Lastgradienten.

COOREFLEX-Turbo, 4.1.3a: Teilprojekt: Innovativer Dampfturbinen-Schaufelpfad für hohe Leistungsdichten

Das Projekt "COOREFLEX-Turbo, 4.1.3a: Teilprojekt: Innovativer Dampfturbinen-Schaufelpfad für hohe Leistungsdichten" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Turbomaschinen und Fluid-Dynamik.Dieses Vorhaben ist Teil des Verbundprojektes AG Turbo COOREFLEX-turbo. Durch die bevorzugte Einspeisung von Strom aus regenerativer Energiegewinnung steigt die Anforderung an die Betriebsflexibilität von konventionellen Kraftwerken hinsichtlich größerer Laständerungsgeschwindigkeiten und effizienterem Teillastbetrieb. Ziel dieses Vorhabens ist es durch Optimierungsverfahren, die Leistungsdichte in den einzelnen Stufen der Beschaufelung von Dampfturbinen im Vergleich zu einer wirkungsgradoptimalen Auslegung nach Stand der Technik zu erhöhen, um die Anzahl der Stufen einer Teilturbine zu reduzieren. Die dadurch erreichte kompaktere Bauweise weist eine geringere thermische Trägheit auf, mit der sich größere Lastgradienten realisieren lassen. Die für diesen Zweck optimierte Beschaufelung mit Seitenwandkontur wird durch Messungen in der mehrstufigen Versuchsturbine des TFD in Hannover untersucht und die Auslegungsregeln auf Basis der experimentellen und numerischen Ergebnisse validiert. Neben globalen Kenngrößen wie dem Wirkungsgrad werden insbesondere auch lokale Effekte wie die Ausbildung der Sekundärströmung im Voll- und Teillastbetrieb analysiert. 1) Vorbereitung und Durchführung der Messkampagne für die nach dem Stand der Technik ausgelegte Referenzbeschaufelung. 3) Auslegung und Optimierung einer Turbinenstufe mit Seitenwandkontur. 4) Vorbereitung und Durchführung der Messkampagne mit optimierter Beschaufelung. 5) Auswertung und Analyse der Ergebnisse.

Teilprojekt 3.6: Fertigungstechnologie und Bau von Erprobungsmustern hydrokinetischer Turbinen - HKT^Wachstumskern Fluss-Strom Plus VP3: Technologieentwicklung für kleine Wasserkraftmaschinen^Teilprojekt 3.5: Strömungs- und Maschinentechnik der hydrokinetischen Turbinen^Teilprojekt 3.4: Technologieentwicklung für Horizontal-Wasserräder, Teilprojekt 3.3: Reaktive Textilien zur optimalen Anpassung an variable Strömungsbedingungen bei Wasserrädern

Das Projekt "Teilprojekt 3.6: Fertigungstechnologie und Bau von Erprobungsmustern hydrokinetischer Turbinen - HKT^Wachstumskern Fluss-Strom Plus VP3: Technologieentwicklung für kleine Wasserkraftmaschinen^Teilprojekt 3.5: Strömungs- und Maschinentechnik der hydrokinetischen Turbinen^Teilprojekt 3.4: Technologieentwicklung für Horizontal-Wasserräder, Teilprojekt 3.3: Reaktive Textilien zur optimalen Anpassung an variable Strömungsbedingungen bei Wasserrädern" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Textilforschungsinstitut Thüringen-Vogtland e.V..Ziel im TP 3.3 ist die Entwicklung eines reaktiven Textils zur Leistungssteigerung beim neuartigen Staudruckwasserrad, welche die Eigenschaften herkömmlicher Wasserrad-schaufeln aus Stahl oder Aluminium um flexible Eigenschaften erweitert. Zur Erzielung der maximalen Energieerträge sind Anforderungsparameter wie z.B. die lastabhängige Verformungsfähigkeit, wasser- und schmutzabweisend zu erreichen. Es werden verschiedene Varianten der Beschaufelung - Konventionelle Stahl-/ Aluminiumkonstruktionen) und Reaktive Membranen als Anströmfläche entwickelt und auf ihre Wirksamkeit untersucht. Das TITV e. V. Greiz erarbeitet in diesem Teilprojekt Varianten textiler Flächenstrukturen für den Einsatz der Beschaufelung von Wasserrädern. Schwerpunktmäßig ist die Verwendung von gestickten Flächen mit unterschiedlichen Strukturierungsmöglichkeiten in Kombination mit Beschichtungs- und Kaschiertechnologie zu untersuchen. Mit der Sticktechnologie können bei Bedarf zweidimensionale textile Flächen dreidimensional ausgebildet und mittels Beschichtung unterschiedliche Oberflächenstrukturierungen erzielt werden. Diese Vorteile sollen für die bestehenden strömungstechnischen Anforderungen genutzt und getestet werden. Zur Integration des Textils im Wasserrad ist der Materialeinsatz bzgl. Eignung zur Funktionstüchtigkeit im Wasserrad, die Erarbeitung verschiedener Strukturierungsgeometrie, das Handling im Anwendungsfall sowie die Erprobung in der Praxis zu untersuchen.

COOREFLEX-Turbo, Teilvorhaben 1.3.5 Instationäre Auslegung transonischer Axialverdichter für Gasturbinen

Das Projekt "COOREFLEX-Turbo, Teilvorhaben 1.3.5 Instationäre Auslegung transonischer Axialverdichter für Gasturbinen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Antriebstechnik.Ziel dieses Vorhabens ist es, eine hoch belastete, für hohen Wirkungsgrad und hohe Stabilität optimierte Konfiguration eines transsonischen Verdichters unter dem Aspekt der instationären Aerodynamik und der Aeroelastik zu untersuchen. Die Inhalte dieses Vorhabens stehen in engem Zusammenhang zu den Vorhaben 1.2.6a und b, welche auf die experimentelle Untersuchung abzielen. Zum Einen sollen die Ergebnisse bei der Auslegung der Beschaufelung berücksichtigt werden, zum Anderen sollen sie bei der Durchführung der Messaufgaben unterstützen. 1) In der ersten Phase soll die stationär optimierte Geometrie mit instationären Modellen im Auslegungspunkt analysiert werden. Der Fokus liegt auf der Untersuchung der für den Wirkungsgrad im Auslegungspunkt relevanten Interaktionseffekte. 2) Erweiterung auf die Bewertung der aerodynamischen Stabilität, hierzu sind Drehzahl Kennlinien bei verschiedenen Drehzahlen und IGV-Stellung zu berechnen und die, die Stabilität bestimmenden Effekte im Vergleich zu den stationären Modellen zu analysieren. 3) Analyse des aeroelastischen Verhaltens der Beschaufelung und gegebenenfalls entsprechende Modifikation des Designs mittels AP4. 4) Implementierung einer effizienten Aeroelastik Prozesskette in die automatisierte Optimierung 5) Verbesserung von Modellen zur effizienten zeitgenauen Berechnung der Schaufelreihen-Interaktion.

COOREFLEX-Turbo, Vorhaben 1.3.1B 'Robustes Aerodesign'

Das Projekt "COOREFLEX-Turbo, Vorhaben 1.3.1B 'Robustes Aerodesign'" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: MTU Aero Engines AG.Dieses Vorhaben wird im Rahmen des Verbundvorhabens COOREFLEX-turbo durchgeführt. Das übergeordnete Ziel besteht in der Erreichung einer robusten Wirkungsgradmaximierung im Hochdruckverdichter unter Berücksichtigung von Geometrieabweichungen am Profil. Unter Einsatz von Optimierungsprozessen sowie von probabilistischen Prozessen soll eine Profilgeometrie gefunden werden, bei welchem das Wirkungsgradintegral über den Lebenszyklus hinweg maximiert wird, bzw. Bauteilabweichungen welche aus der Fertigung kommen toleriert werden können. Demnach soll die Beschaufelung tolerant gegenüber Fertigungsabweichungen und Verschleißmerkmalen ausgelegt werden. Das Vorhaben gliedert sich in drei Hauptarbeitspakete. Im Arbeitspaket zwei soll der Optimierungsprozess bearbeitet werden. Das Arbeitspaket drei behandelt optimierungstechnische und probabilistische Verfahren zur stabilen Optimierung auf die durch die Bauteilabweichungen gegebenen Sensitivitäten. Im Arbeitspaket vier sollen die gewonnenen Erkenntnisse validiert werden und somit deren Anwendbarkeit auf ein großes Spektrum an Verdichterprofilen sichergestellt werden. Im komplementär aufgestellten Vorhaben 1.3.1A des Projektpartners IST, werden neben weiterführenden Entwicklungen des Optimierungsprozesses vor allem Validierungen durchgeführt, welche schlussendlich zu einem validierten und später industriell anwendbaren Ergebnis führen sollen. Somit ist in jedem der Arbeitspakete eine entsprechende Übertragbarkeit der Ergebnisse auf produktrelevante Anwendungen sichergestellt.

COOREFLEX-Turbo, Robustes Aero-Design

Das Projekt "COOREFLEX-Turbo, Robustes Aero-Design" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Strahlantriebe und Turboarbeitsmaschinen.Dieses Vorhaben wird im Rahmen des Verbundvorhabens COOREFLEX-turbo durchgeführt. Das übergeordnete Ziel besteht in der Erreichung einer robusten Wirkungsgradmaximierung im Hochdruckverdichter. Es sollen einzelne Topologien der Beschaufelungen gefunden werden, die nicht notwendigerweise den Wirkungsgrad des ideal gefertigten neuen Verdichters unter Designbetriebsbedingungen maximieren, sondern solche, bei denen das Wirkungsgradintegral über den Lebenszyklus hinweg maximiert wird. Demnach soll die Beschaufelung tolerant gegenüber Fertigungsabweichungen und Verschleißmerkmalen ausgelegt werden. Zudem soll sie unter deutlich stärkerem Teillastanteil als im bisherigen Betrieb im Integral über alle Betriebsbedingungen optimale Eigenschaften aufweisen. Das Teilvorhaben gliedert sich in zwei Hauptarbeitspakete. In Arbeitspaket 4 sollen die Methoden und das notwendige Wissen erarbeitet werden, welche eine robuste Optimierung ermöglichen. Enthalten sind hier auch die deterministischen numerischen Verfahren zur Berechnung der strömungsmechanischen Eigenschaften. Die zur Validierung nötigen Kaskadenversuche werden im Arbeitspaket 5 am Kaskadenprüfstand des Institutes durchgeführt. Dabei sollen verschiedene Profile in Vergleichsmessungen gegeneinander gehalten werden.

COOREFLEX-Turbo, Nr. 4.1.11 Analyse des Schwingungsverhaltens unterschiedlich gekoppelter drehzahlvariabler Turbinen-Schaufeln

Das Projekt "COOREFLEX-Turbo, Nr. 4.1.11 Analyse des Schwingungsverhaltens unterschiedlich gekoppelter drehzahlvariabler Turbinen-Schaufeln" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: MAN Diesel & Turbo SE.

Teilvorhaben 2.2.1B Robustes Hochtemperaturverbrennungssystem mit erweitertem Betriebsbereich (HTV-EB)^Teilprojekt 3.2.4; Wärmeübergang und Filmkühleffektivität auf dreidimensional konturierter Seitenwand^Generierung pulsierender Prallstrahlen zur Erhöhung der Kühleffektivität im Turbinengehäuse^1.1.8 Detaillierte experimentelle und numerische Untersuchungen der Strömung in einer Radialverdichterstufe mit Rückführung^1.1.6b Effiziente Laufschaufelgestaltung mit Gehäusestrukturierung^Projekt 1.1.10 Effiziente, robuste Optimierungsstrategien in hoch dimensionalen Räumen (Antwortflächenverfahren)^3.1.6 Flächenhafte Messung der internen Wärmeübergänge für Kühlsysteme von Turbinenlaufschaufeln unter maschinenähnlichen Betriebsbedingungen^COORETEC-Turbo 2020^1.3.5 Probabilistische Untersuchung und Detailoptimierung von Verdichterrotoren für Turbomaschinen (AG TURBO 2020)^1.3.1 Anlagentechnik und Automatisierung von CCS-Strängen^2.1.7: Methodenentwicklung und Aufbau eines Prüfstands für schadstoffarme Brennerkonzepte für mittelgroße Industriegasturbinen^Wärmeübergangsintensivierung in konvektiven Kühlsystemen mit optimierten Oberflächenstrukturen^3.2.11.: Ausführung und Validierung eines Prüfstandes zur Untersuchung von Seitenwandeinflüssen filmgekühlter Schaufelreihen einer Industriegasturbine^Teilvorhaben 4.5.9: Erweiterte Werkstoff-und Lebensdauerkonzepte auf Basis komplexer Versuche^2.3.2B Modellierung thermoakustischer Rückkoppelungen für Mage Verbrennungskonzepte^Vorhaben-Gruppe 4.1.5, Optimierung von linearen Simulationstechniken für die aeroelastische Auslegung gekoppelter Turbinenschaufeln, 4.1.7 Neuartige Seitenwandprofile zur Wirkungsgradverbesserung

Das Projekt "Teilvorhaben 2.2.1B Robustes Hochtemperaturverbrennungssystem mit erweitertem Betriebsbereich (HTV-EB)^Teilprojekt 3.2.4; Wärmeübergang und Filmkühleffektivität auf dreidimensional konturierter Seitenwand^Generierung pulsierender Prallstrahlen zur Erhöhung der Kühleffektivität im Turbinengehäuse^1.1.8 Detaillierte experimentelle und numerische Untersuchungen der Strömung in einer Radialverdichterstufe mit Rückführung^1.1.6b Effiziente Laufschaufelgestaltung mit Gehäusestrukturierung^Projekt 1.1.10 Effiziente, robuste Optimierungsstrategien in hoch dimensionalen Räumen (Antwortflächenverfahren)^3.1.6 Flächenhafte Messung der internen Wärmeübergänge für Kühlsysteme von Turbinenlaufschaufeln unter maschinenähnlichen Betriebsbedingungen^COORETEC-Turbo 2020^1.3.5 Probabilistische Untersuchung und Detailoptimierung von Verdichterrotoren für Turbomaschinen (AG TURBO 2020)^1.3.1 Anlagentechnik und Automatisierung von CCS-Strängen^2.1.7: Methodenentwicklung und Aufbau eines Prüfstands für schadstoffarme Brennerkonzepte für mittelgroße Industriegasturbinen^Wärmeübergangsintensivierung in konvektiven Kühlsystemen mit optimierten Oberflächenstrukturen^3.2.11.: Ausführung und Validierung eines Prüfstandes zur Untersuchung von Seitenwandeinflüssen filmgekühlter Schaufelreihen einer Industriegasturbine^Teilvorhaben 4.5.9: Erweiterte Werkstoff-und Lebensdauerkonzepte auf Basis komplexer Versuche^2.3.2B Modellierung thermoakustischer Rückkoppelungen für Mage Verbrennungskonzepte^Vorhaben-Gruppe 4.1.5, Optimierung von linearen Simulationstechniken für die aeroelastische Auslegung gekoppelter Turbinenschaufeln, 4.1.7 Neuartige Seitenwandprofile zur Wirkungsgradverbesserung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Rheinisch-Westfälische Technische Hochschule Aachen University, Lehrstuhl und Institut für Kraftwerkstechnik, Dampf- und Gasturbinen.Das Ziel des Vorhabens ist eine quantitative Bewertung der Verbesserung der Strömung im Hinblick auf die nachstehend genannten Ziele durch einen Vergleich zwischen 3D- und seitenwandkonturierten zylindrischen Schaufeln sowie zw. Labyrinth- und Bürstendichtungen: Reduzierung des Leckagemassenstroms und damit der Strömungsverluste in den Kavitäten; Reduzierung der Strömungsverluste im Hauptströmungskanal, insbesondere im seitenwandnahen Bereich; Reduzierung der durch die Interaktion zwischen Deckbandströmung und Hauptströmung verursachten Strömungsverluste; Ermittlung des Axialabstand-Einflusses zwischen Leit- und Laufrad. Die Untersuchungen liefern eine umfangreiche und fundierte Datenbasis der Strömungsfelder. Experiment: Konstruktion und Fertigung selbstentwickelter und -gefertigter Messtechnik - Vorbereitung der Versuchsturbine und Installation der Messtechnik incl. Anpassung des Betriebssteuerungs- und Messwerterfassungssystems - Untersuchungen an der seitenwandkonturierten zylindrischen Beschaufelungen - Untersuchungen der seitenwandkonturierten 3D-Beschaufelung - Datenaufbereitung und Analyse. Numerik: Erstellung eines Konzeptes zur Simulation der Leckageströmung - Geometrieerstellung der 3D-Beschaufelung unter Berücksichtigung der verschiedenen Axial-Abstände - Gittergenerierung - Durchführung stationärer und instationäre Rechnungen - Untersuchung der Leckageströmungs-Hauptströmungsinteraktion - Modellierung der Bürstendichtung - Postprocessing und Analyse der Ergebnisse.

4.2.8: Einfluss von Stützrippen auf die Sekundärströmung in Turbinendiffusoren^2.1.3 Teilverbundprojekt Gasturbine, Verbrennung; Vorhaben 2.1.3 Erweiterung des Brennstoffspektrums für ein NOx-armes Verbrennungssystem^2.3.2: Thermoakustisches Stabilitätsverhalten von mager betriebenen Brennkammern^Vorhaben Nr. 1. 3. 6: Fortschrittlicher HCF Bauteiltest^1.3.7 ;Verbesserung des Verständnisses der Strömung in Radseitenräumen von Radialverdichtern für CO2-Hochdruckanwendungen^4.1.12B: Akustische Schaufelschwingungsanregung im rotierenden System^4.2.9B Erweiterte Werkstoff- und Lebensdauerkonzepte auf Basis komplexer Versuche^COORETEC-Turbo 2020^4.1.2 Probabilistische Lebensdauerberechnung für Design bei extremen Temperaturen^2.1.4 Industriegasturbinenbrenner für alternative Brenngase (IGAB)^Teilverbundprojekt Expansion, Vorhaben-Gruppe Ventile, Gehäuse, Ein- und Ausströmungen, Vorhaben 4.2.2 Verbesserung des Druckrückgewinnes in axialen Kraftwerksdiffusoren^1.1.3; 'Verbesserung des Strömungsverhaltens von subsonischen Verdichterstufen in Axialverdichtern mit großen Radialspaltweiten'^4.1.6b 'Experimentelle und numerische Untersuchungen der Robustheit von 3D-Schaufelkanalgestaltungen'^2.1.6 Teilverbundprojekt Gasturbine, Verbrennung; Vorhaben 2.1.6 Neue Brennerkonzepte für Brennstoffe mit hohem Wasserstoffanteil und minimaler Verdünnung^4.1.12 Akustische Schaufelschwingungsanregung im rotierenden System^Teilverbundprojekt Kühlung, Vorhaben-Gruppe Kühlmittelführung und Schaufelinnenkühlung - Teilvorhaben 3.2.3 Optimierung einer dreidimensionalen Seitenwandkonturierung unter Berücksichtigung von Filmkühlung und Leckageluft, Expansion - Teilvorhaben: 4.1.8 Innovative 3D Schaufelgeometrien

Das Projekt "4.2.8: Einfluss von Stützrippen auf die Sekundärströmung in Turbinendiffusoren^2.1.3 Teilverbundprojekt Gasturbine, Verbrennung; Vorhaben 2.1.3 Erweiterung des Brennstoffspektrums für ein NOx-armes Verbrennungssystem^2.3.2: Thermoakustisches Stabilitätsverhalten von mager betriebenen Brennkammern^Vorhaben Nr. 1. 3. 6: Fortschrittlicher HCF Bauteiltest^1.3.7 ;Verbesserung des Verständnisses der Strömung in Radseitenräumen von Radialverdichtern für CO2-Hochdruckanwendungen^4.1.12B: Akustische Schaufelschwingungsanregung im rotierenden System^4.2.9B Erweiterte Werkstoff- und Lebensdauerkonzepte auf Basis komplexer Versuche^COORETEC-Turbo 2020^4.1.2 Probabilistische Lebensdauerberechnung für Design bei extremen Temperaturen^2.1.4 Industriegasturbinenbrenner für alternative Brenngase (IGAB)^Teilverbundprojekt Expansion, Vorhaben-Gruppe Ventile, Gehäuse, Ein- und Ausströmungen, Vorhaben 4.2.2 Verbesserung des Druckrückgewinnes in axialen Kraftwerksdiffusoren^1.1.3; 'Verbesserung des Strömungsverhaltens von subsonischen Verdichterstufen in Axialverdichtern mit großen Radialspaltweiten'^4.1.6b 'Experimentelle und numerische Untersuchungen der Robustheit von 3D-Schaufelkanalgestaltungen'^2.1.6 Teilverbundprojekt Gasturbine, Verbrennung; Vorhaben 2.1.6 Neue Brennerkonzepte für Brennstoffe mit hohem Wasserstoffanteil und minimaler Verdünnung^4.1.12 Akustische Schaufelschwingungsanregung im rotierenden System^Teilverbundprojekt Kühlung, Vorhaben-Gruppe Kühlmittelführung und Schaufelinnenkühlung - Teilvorhaben 3.2.3 Optimierung einer dreidimensionalen Seitenwandkonturierung unter Berücksichtigung von Filmkühlung und Leckageluft, Expansion - Teilvorhaben: 4.1.8 Innovative 3D Schaufelgeometrien" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Siemens AG.Das übergeordnete Ziel des Vorhabens ist die Wirkungsgradsteigerung bei Dampfturbinen von fossil befeuerten Kraftwerken für eine effektivere Nutzung der Primärenergieträger und damit einem reduzierten Ausstoß von CO2. Dies soll durch eine sog. Seitenwandkonturierung im Schaufelpfad von Dampfturbinen erreicht werden. Hierfür wird in diesem Vorhaben der Einfluss der Seitenwandkonturierung auf die Sekundärströmungsverluste einer für den Dampfturbinenbau typischen Beschaufelung experimentell und numerisch untersucht. Es wird erwartet, dass die Ergebnisse zu einem tieferen Verständnis über die maßgeblichen Einflussfaktoren zur Verringerung der Sekundärströmungsverlusten beitragen. Die Ergebnisse des Vorhabens sind Voraussetzung für eine spätere Einführung der Seitenwandkonturierung im Dampfturbinenbau. Nach Vorbereitung und Qualifizierung des am Institut für Turbomaschinen und Fluid-Dynamik (TFD) der Leibniz-Universität Hannover betriebenen Turbinenprüfstands, werden im Rahmen von zwei Messkampagnen die Unterschiede in der Strömungstopologie bei einer mit Seitenwandkonturierung ausgeführten Beschaufelung und einer herkömmlichen Beschaufelung gemessen und analysiert. Erforderliche Arbeiten an Rotor und Beschaufelung sowie Auslegung, Beschaffung und Wuchten eines zweiten Rotors werden durch den Antragsteller ausgeführt. Arbeiten am Turbinenprüfstand und die Durchführung der Experimente obliegt dem TFD. Unterstützend sollen numerische Studien durchgeführt werden.

1 2