Bestandteile in Ensembles. Unterschutzstellung als Teil von Mehrheiten unbeweglicher Sachen, die aufgrund eines übergeordneten Bezugs Kulturdenkmäler sind, ohne dass jeder einzelne Bestandteil die Voraussetzungen des Satzes 1 erfüllen muss (Ensembles), wie Orts-, und Platzgefüge, Siedlungen oder Straßenzüge (§ 2 Absatz 2 Nr. 2 DSchG).
Ziel: The objective of our project is to investigate the impact of different natural and anthropogenic environmental and climatic parameters (CO2, ozone, UV-B, drought, nanoparticles, soil and airborne pollutants) on the potentiality for increases of allergenic components in Ragweed pollen. Methode: Acquisition of the complete transcriptome/proteome under constant and the different climatic parameters listed above will be carried out. In addition secondary metabolite analyses and electron microscopy will be performed. In addition secondary metabolite analyses and electron microscopy will be performed.
Ziel des Projektes ist eine Bestandsaufnahme der Wassermassenverteilung und der Zirkulation im Arktischen Ozean. Stabile Sauerstoffisotopen (delta18O) des Wassers ist ein konservativer Tracer und werden zusammen mit hydrochemischen Daten dazu verwendet das vom Schelf stammende Süßwasser (Flusswasser und Meereis-Schmelze oder Bildung) und die aus dem Pazifik stammende Komponente zu untersuchen. Auf diese Weise wird der Einfluss dieser Wassermassen in der arktischen Salzgehaltsschichtung (Halokline), dem Atlantischen Zwischenwasser und dem Tiefen- und Bodenwasser des Arktischen Ozeans quantifiziert werden. Es ist bekannt, dass die Verteilung der Pazifischen Komponente starken Veränderungen auf dekadischen Zeitskalen unterliegt aber auch in den Süßwasserverteilungen im Transpolaren Drift Strom wurden 2007 starke Variationen beobachtet welche somit auf zusätzliche jährliche Variationen hinweisen. Es ist nicht bekannt ob die 2007 beobachteten Variationen ein permanentes Phänomen sind und ob diese mit dem weitgehenden Fehlen des Pazifischen Wassers in diesem Zeitraum zusammenhängen. Die geplante flächendeckende und quantitative Erfassung der Süßwasserverteilung und des Pazifischen Wassers werden daher dazu beitragen, den Einfluss und die möglichen Rückkopplungsmechanismen der arktischen Hydrographie auf den arktischen und globalen Klimawandel weitergehend zu verstehen.
Flowering time (FTi) genes play a key role as regulators of complex gene expression networks, and the influence of these networks on other complex systems means that FTi gene expression triggers a cascade of regulatory effects with a broad global effect on plant development. Hence, allelic and expression differences in FTi genes can play a central role in phenotypic variation throughput the plant lifecycle. A prime example for this is found in Brassica napus, a phenotypically and genetically diverse species with enormous variation in vernalisation requirement and flowering traits. The species includes oilseed rape (canola), one of the most important oilseed crops worldwide. Previously we have identified QTL clusters related to plant development, seed yield and heterosis in winter oilseed rape that seem to be conserved in diverse genetic backgrounds. We suspect that these QTL are controlled by global regulatory genes that influence numerous traits at different developmental stages. Interestingly, many of the QTL clusters for yield and biomass heterosis appear to correspond to the positions of meta-QTL for FTi in spring-type and/or winter-type B. napus. Based on the hypothesis that diversity in FTi genes has a key influence on plant development and yield, the aim of this study is a detailed analysis of DNA sequence variation in regulatory FTi genes in B. napus, combined with an investigation of associations between FTi gene haplotypes, developmental traits, yield components and seed yield.
The formation of biogeochemical interfaces in soils is controlled, among other factors, by the type of particle surfaces present and the assemblage of organic matter and mineral particles. Therefore, the formation and maturation of interfaces is studied with artificial soils which are produced in long-term biogeochemical laboratory incubation experiments (3, 6, 12, 18 months. Clay minerals, iron oxides and charcoal are used as major model components controlling the formation of interfaces because they exhibit high surface area and microporosity. Soil interface characteristics have been analyzed by several groups involved in the priority program for formation of organo-mineral interfaces, sorptive and thermal interface properties, microbial community structure and function. Already after 6 months of incubation, the artificial soils exhibited different properties in relation to their composition. A unique dataset evolves on the development and the dynamics of interfaces in soil in the different projects contributing to this experiment. An integrated analysis based on a conceptual model and multivariate statistics will help to understand overall processes leading to the biogeochemical properties of interfaces in soil, that are the basis for their functions in ecosystems. Therefore, we propose to establish an integrative project for the evaluation of data obtained and for publication of synergistic work, which will bring the results to a higher level of understanding.
Dieser Darstellungsdienst (WMS) stellt Daten zum INSPIRE-Thema Schutzgebiete in der Freien Hansestadt Bremen (FHB) dar. Der Dienst umfasst die Einzeldenkmäler, die Ensembles und die Bestandteile in Ensembles. - Dieser Dienst ist in der Bearbeitung und zurzeit nicht funktionstüchtig. -
Subproject 3 will investigate the effect of shifting from continuously flooded rice cropping to crop rotation (including non-flooded systems) and diversified crops on the soil fauna communities and associated ecosystem functions. In both flooded and non-flooded systems, functional groups with a major impact on soil functions will be identified and their response to changing management regimes as well as their re-colonization capability after crop rotation will be quantified. Soil functions corresponding to specific functional groups, i.e. biogenic structural damage of the puddle layer, water loss and nutrient leaching, will be determined by correlating soil fauna data with soil service data of SP4, SP5 and SP7 and with data collected within this subproject (SP3). In addition to the field data acquired directly at the IRRI, microcosm experiments covering the broader range of environmental conditions expected under future climate conditions will be set up to determine the compositional and functional robustness of major components of the local soil fauna. Food webs will be modeled based on the soil animal data available to gain a thorough understanding of i) the factors shaping biological communities in rice cropping systems, and ii) C- and N-flow mediated by soil communities in rice fields. Advanced statistical modeling for quantification of species - environment relationships integrating all data subsets will specify the impact of crop diversification in rice agro-ecosystems on soil biota and on the related ecosystem services.
Die Bildung der Eis Phase in der Troposphäre stellt einen wichtigen Fokus der aktuellen Atmosphärenforschung dar. Durch heterogene Nukleation entstehen bei Temperaturen oberhalb von -37°C primäre Eiskristalle an sogenannten eiskeimbildenden Partikeln (INP, engl, ice nucleating particles). Die räumliche Verteilung der INP und deren Quellen variieren stark. In der Atmosphäre finden sich INP nur in sehr geringer Anzahlkonzentration, oft weniger als ein Partikel pro Liter, und sie stellen nur eine kleine Untergruppe des gesamten atmosphärischen Aerosols dar. Ziel dieses Antrages ist es die Anzahlkonzentrationen von eiskeimbildenden Partikeln und deren Variabilität in der Atmosphäre zu messen. Außerdem sind Laborstudien geplant, in denen unser Verständnis über die chemischen und biologischen Eigenschaften der Partikel, die die Eisbildung initiieren, verbessert werden soll. Mit dem von unserer Arbeitsgruppe entwickelten Eiskeimzahler FINCH (Fast Ice Nucleaus CHamber) sollen die atmosphärischen Anzahlkonzentrationen von INP bei verschiedenen Gefriertemperaturen und Übersättigungen an mehreren Standorten gemessen werden. Die Kopplung von FINCH mit einem virtuellen Gegenstromimpaktor (CVI, engl, counter-flow virtual impactor, Kooperation mit RP2), die während lNUIT-1 entwickelt und getestet wurde, soll nun weiter charakterisiert und Messungen damit fortgesetzt werden. Bei dieser Methode werden die Eispartikel, die in FINCH gebildet werden, von den unterkühlten Tröpfchen und inaktivierten Partikeln separiert und mit weiteren Messmethoden untersucht. In Kooperation mit RP2 und RP8 planen wir hierbei die Charakterisierung der INP mittels Größen- und Aerosolmassenspektrometer sowie die Sammlung der INP auf Filtern oder Impaktorplatten zur anschließenden Analyse mit einem Elektronenmikroskop (ESEM, engl. DFG fomi 54.011 -04/14 page 3 of 6 Environmental Scanning Electron Microscopy). Die Feldmessdaten werden von umfangreichen Laborstudien an den Forschungseinrichtungen AIDA (RP6) und LACIS (RP7) ergänzt. Dort soll das Immersionsgefrieren von verschiedenen Testpartikeln aus biologischem Material (z.B. Zellulose), porösem Material (z.B. Zeolith) und Mineralstaub mit geringem organischem Anteil im Detail untersucht werden. Des Weiteren planen wir Labormessungen, bei denen eine verbesserte Charakterisierung der Messunsicherheiten von FINCH erarbeitet werden soll. Außerdem werden regelmäßige Tests und Kalibrierungen mit FINCH durchgeführt, für die Standardroutinen festgelegt werden sollen. Um die Rolle der INP bei der Wolken- und Niederschlagsbildung sowie bei den Wolkeneigenschaften abzuschätzen, werden die gewonnenen Messergebnisse am Ende als Eingabeparameter für erweiterte Wolkenmodelle (Kooperation mit WP-M) dienen.
Unsere Motivation ist es, die Rolle von gelöstem organischem Material (DOM) in marinen Oberflächenfilmen (SML) als eine Schlüsselkomponente zu verstehen, die den Gasaustausch zwischen Atmosphäre und Meer, die Karbonatchemie, sowie die Ökophysiologie der assoziierten Organismen beeinflusst (Engel et al., 2017). Während unserer Vorarbeiten haben wir Hinweise auf einen bisher unbekannten Zusammenhang zwischen DOM und Karbonatchemie in der SML gefunden, sowie auf eine hohe räumlich-zeitliche Dynamik in der DOM-Zusammensetzung. Obwohl die hohe Heterogenität des SML-DOM-Geometabolom (d.h. die Gesamtheit des DOM-Pools, der durch biotische und abiotische Prozesse produziert und modifiziert wird) bekannt ist, gibt es wenige detaillierte Studien darüber. Insgesamt gibt es noch kein mechanistisches Verständnis darüber, unter welchen Bedingungen DOM in der SML in verschiedene chemische Fraktionen aufgeteilt wird. Dies liegt an der derzeit geringen Verfügbarkeit von Daten von einer größeren Anzahl von Untersuchungsstandorten unter unterschiedlichen Umwelt- und Versuchsbedingungen, sowie an einen Mangel an interdisziplinären Studien, die Physik, Geochemie und Biologie kombinieren. Mit anderen Worten, uns fehlen grundlegende (organo-)geochemische Informationen von der größten Luft-Wasser-Grenzfläche der Erde, mit unbekannten Konsequenzen für den damit verbundenen Austausch von klimarelevanten Gasen. In diesem Projekt streben wir an, diese Lücke durch sich ergänzende Messungen der DOM-Zusammensetzung und anorganischer Kohlenstoff-Systemparameter zu schließen. Die Relevanz für die Forschungseinheit BASS ergibt sich aus dem Ziel unseres Teilprojekts, die fehlenden grundlegenden biogeochemischen Informationen des SML-DOM-Inventars zur Verfügung zu stellen und sie in den Kontext der Ökosystemprozesse in der SML zu setzen, einschließlich der DOM-Produktion (SP1.1) sowie des mikrobiellen (SP1.2) und photochemischen (SP1.4) Umsatzes. Darüber hinaus werden wir den Beitrag des DOM-Geometaboloms zum Säure-Basen-Gleichgewicht der SML untersuchen, von dem wir erwarten, dass es die Gasgleichgewichte in der Grenzfläche - insbesondere im Kohlensäuresystem und damit auch die Treibhausgasflüsse - beeinflusst (SP2.1).
Iron(III) (hydr)oxide-organic associations in soils have been recognized to play an important role in the biogeochemical cycling of iron, carbon, and of nutrients like phosphate. In temporarily moist or water-logged soils such associations can form via the coprecipitation of dissolved organic matter (OM) with Fe(III) (hydr)oxides (FHOs). At present, it is generally unknown which factors control the formation and composition of Fe(III)-OM coprecipitates and how the structural properties translate into the cycling of the FHO and OM component involved. The objectives of the project are thus to elucidate (i) the structural properties of Fe(III)- OM coprecipitates under different environmental conditions, (ii) the subsequent stability of Fe(III)-OM coprecipitates against dissolution under both oxic as well as anoxic conditions, (iii) the changes in Fe(III)-OM coprecipitate composition upon redox oscillations, and (iii) their cumulative effects on oxyanion sorption. To achieve these goals, various batch experiments will be conducted. By using multiple analytical tools, this project will gain a fundamental understanding of the abiotic and biotic controls on the formation, structure, and biogeochemical reactivity of Fe(III)-OM coprecipitates in acidic and neutral temporarily moist soils and soils subject to redox oscillations.