API src

Found 48 results.

Radioaktivitätsdaten in Umweltmedien

Die Messstelle untersucht seit den 1960er Jahren Lebensmittel, Futtermittel und Umweltproben auf Radioaktivität. Bitte wenden Sie sich für Auskünfte zu den Labordaten der Messstelle an das Funktionspostfach landesmessstelleumweltradioaktivitaetfhh@hu.hamburg.de

Weiterentwicklung von Strahlenschutzmethoden

Gegenstand der Forschungstaetigkeit der Zentralabteilung Strahlenschutz (ZST) ist die Erarbeitung von Ueberwachungskonzepten, Messprogrammen und -verfahren fuer die Umweltueberwachung sowie die Entwicklung nuklidspezifischer qualitativer und quantitativer Nachweisverfahren hoher Empfindlichkeit fuer Alpha- und Betta-Strahler in der Umweltanalytik. Arbeiten an einem jodselektiven Ueberwachungssystem fuer kerntechnische Stoerfaelle. Entwicklung eines Telemetriesystems fuer die Daten der von der Industrie zu entwickelnden peripheren Stationen zu einer Zentrale.

Messung der langlebigen Beta-Aktivitaet der Luft im Hochgebirge, Messung von Radionukliden im Fleisch

Die Radioaktivitaetsmessungen sollen ueber die Menge, Verteilung und Zusammensetzung der in die Biosphaere gelangenden langlebigen Zerfallsprodukte aufschluss geben. Vorgangsweise: 1. Taegliche Sammlung von Aerosolproben in Luftfiltern am Weissee und in der Schneiderau (Salzburg), 2. Bestimmung der Beta-Aktivitaet des langlebigen Anteils des radioaktiven Aerosols mittels Geiger-Mueller-Zaehler, 3. Untersuchung der Verteilung der Radioaktivitaet auf Einzelteilchen durch Autoradiographie, 4. Feststellung der radioaktiven Isotope durch Gamma-Spektrometrie.

Gebäude schützen im Notfall vor Strahlung

Gebäude schützen im Notfall vor Strahlung Das Verbleiben im geschlossenen Gebäude kann eine einfache und wirksame Schutzmaßnahme im radiologischen Notfall sein. Fenster und Türen sollten geschlossen bleiben. Lüftungs- und Klimaanlagen sollten ausgeschaltet werden. Dies verhindert, dass radioaktive Stoffe mit der Luft in die Wohnung gelangen und eingeatmet werden. Katastrophenschutzbehörden der Bundesländer können als frühe Schutzmaßnahme den Aufenthalt in Gebäuden anordnen. In einem radiologischen Notfall , zum Beispiel nach einem Unfall in einem Kernkraftwerk oder einer Nuklearwaffen-Explosion, können verschiedene radioaktive Stoffe in die Atmosphäre gelangen. Dort können sie sich, angeheftet an Staubpartikel oder gasförmig, als radioaktive Wolke verbreiten . Diese radioaktiven Luftmassen können gesundheitliche Folgen haben, wenn Menschen sich der Strahlung im Freien aussetzen. Oder wenn sie radioaktive Staubpartikel oder Gase in den Körper aufnehmen - mit der Atmung oder über die Nahrung. Mit dem Aufenthalt in geschlossenen Innenräumen im Haus kann das Einatmen von radioaktiven Partikeln reduziert werden, zusätzlich kann die einwirkende Strahlung aus den radioaktiven Luftmassen stark verringert werden. Als Aufenthaltsorte kommen Innen- und Kellerräume von Wohnhäusern und Arbeitsstätten in Betracht. Gleiches gilt für Innen- und Schutzräume in umliegenden Gebäuden, Läden und Geschäftsräumen. Besonders hohe Schutzwirkung bieten Kellerräume im Untergrund. Warum hilft das Drinnenbleiben? In einem radiologischen Notfall können unterschiedliche radioaktive Stoffe in die Umwelt gelangen . Ein Haus schirmt die Strahlungsenergie dieser radioaktiven Stoffe deutlich ab. Gebäude bieten Schutz vor Strahlung in einem radiologischen Notfall Alphastrahlung und Betastrahlung werden zu 100 % abgeschirmt. Gammastrahlung wird – je nach Bauart des Hauses und nach dem gewählten Aufenthaltsort im Haus – um bis zu 85 % abgehalten. Besonders hoch ist die Abschirmung im Keller. Hier können mehr als 85 % der Strahlung abgehalten werden. Wände aus Beton schirmen Strahlung besser ab als Holzwände. So wird zum Beispiel die Gammastrahlung von radioaktivem Jod durch 6 Zentimeter Beton um etwa 75 % reduziert. Je besser die Abschirmung , desto weniger Strahlung sind die betroffenen Menschen ausgesetzt – und desto geringere gesundheitliche Folgen sind zu erwarten. Auch im Fall einer Nuklearwaffen-Explosion ist der Aufenthalt in einem Gebäude in den ersten 24 bis 48 Stunden eine empfohlene Maßnahme. Bei einer Nuklearwaffen-Explosion entstehen viele kurzlebige Radionuklide , die sehr schnell zerfallen. Durch den schnellen Zerfall nimmt die Strahlenbelastung innerhalb von 48 Stunden etwa um den Faktor 100 ab. Wann sollte ich in einem Gebäude bleiben? Die Katastrophenschutzbehörden der Bundesländer können "Aufenthalt in Gebäuden" als frühe Schutzmaßnahme (früher sagte man Katastrophenschutzmaßnahme) anordnen. Sie legen auch die Gebiete fest, in denen diese Schutzmaßnahme angeordnet wird. Die Informationen dazu laufen dann über Medien oder kommen von den Behörden direkt. Und wie entscheiden Verantwortliche, wann eine solche Maßnahme nötig ist? Dafür gibt es sogenannte Notfall-Dosiswerte . Mit diesen Werten ist für das deutsche Staatsgebiet festgelegt, ab welcher zu erwartenden Strahlenbelastung für Menschen im Notfall aus radiologischer Sicht der Aufenthalt in einem Gebäude empfohlen wird. Was ist zu beachten? Verschiedene Orte bieten unterschiedlich guten Schutz. Wenn Sie aufgefordert werden, drinnen zu bleiben, bringen Sie so viel Material (Decken, Wände und in Kellerräumen Erdreich) wie möglich zwischen sich selbst und die radioaktiven Stoffe im Freien. Sollte ein (mehrstöckiges) Haus oder ein Keller innerhalb weniger Minuten sicher erreichbar sein, begeben Sie sich umgehend dort hin. Die sichersten Gebäude bestehen aus Ziegelstein- oder Betonwänden. Fahrzeuge und Wohnmobile bieten keinen ausreichenden Schutz. Trotzdem sind sie immer noch besser als ein Aufenthalt im Freien. Im Gebäude: Außenluft abschirmen, möglichst weit weg von Außenwänden aufhalten Suchen Sie, wenn möglich, innenliegende Räume und Keller ohne Fenster auf. Hat der sicherste Raum im Gebäude doch Fenster, halten Sie sich möglichst weit weg von den Fenstern auf. Im Gebäude müssen Türen und Fenster geschlossen werden, damit keine radioaktiven Teilchen mit der Luft ins Haus gelangen können. Einen zusätzlichen Schutz bieten abgedichtete Fenster und Außentüren – je weniger Luft von draußen ins Innere des Gebäudes gelangt, desto besser. Klima- und Lüftungsanlagen müssen, wenn es geht, ausgeschaltet werden, damit möglichst wenig radioaktive Partikel mit der Luft ins Haus gelangen können. Radioaktive Kontaminationen vermeiden: Waschen und Umziehen sind wichtig Lebensmittel, Getränke und Medikamente, die sich bereits in Lagern bzw. Geschäften oder in Ihrem Schutzraum befinden, können sicher verwendet werden. Falls es keine anderen behördlichen Empfehlungen gibt, kann auch Leitungswasser bedenkenlos genutzt werden. Ablegen von kontaminierter Oberbekleidung vor dem Betreten eines Gebäudes. Sollte Ihre (Ober-)Bekleidung, zum Beispiel Ihre Jacke, Hose oder Mütze, kontaminiert sein, legen Sie diese idealerweise vor Betreten des Gebäudes ab. Verstauen Sie diese Sachen in Plastiktüten außerhalb des Hauses. Waschen Sie alle ungeschützten Hautstellen unter fließendem Wasser. Achten Sie darauf, dass kein Wasser in den Mund, in die Nase und in die Augen läuft, damit radioaktive Stoffe nicht in den Körper eindringen können. Die zusätzliche Schutzwirkung des Tragens einer FFP 3-Atemschutzmasken im Haus kann vernachlässigt werden. Die Masken schützen nur vor radioaktiven Staubpartikeln, die bei geschlossenen Fenstern nur reduziert in die Wohnung gelangen können. Gut informiert bleiben Informationskanäle im Notfall Informieren Sie sich über Radio (Sender mit Verkehrsfunk), Fernsehen oder im Internet auf den offiziellen Behördenseiten. Folgen Sie den Anweisungen der Behörden und Einsatzkräfte. Nutzen Sie im Falle eines Stromausfalls zum Beispiel batteriebetriebene Radiogeräte für aktuelle Informationen. Wann darf ich wieder raus? Was habe ich dann zu beachten? Die Gefahr , die von radioaktivem Niederschlag, dem sogenanntem Fallout , ausgeht, nimmt in der Regel mit der Zeit ab. Wie schnell genau das passiert, ist abhängig von den Halbwertszeiten der radioaktiven Stoffe. In manchen Szenarien kann die Gefahr sogar sehr schnell und stark sinken. Wird von den Katastrophenschutzbehörden der Bundesländer die frühe Schutzmaßnahme „Aufenthalt in Gebäuden“ empfohlen, sollten Sie und Ihre Familie während des gesamten Zeitraums, für den diese Empfehlung gilt, das Haus nicht verlassen. Auch Ihre Haustiere sollten Sie in dieser Zeit nicht ausführen. Bleiben Sie an dem Ort, der Sie am besten schützt etwa im Keller oder in innenliegenden Räumen, sofern Sie nicht von einer unmittelbaren Gefahr bedroht sind (zum Beispiel Feuer, Gasleck, Gebäudeeinsturz oder ernsthafte Verletzung). Das heißt, Sie bleiben am besten im Gebäude, bis Sie andere Anweisungen erhalten: Die Behörden informieren darüber, wenn die Gebäude wieder verlassen werden können und ob und was dann beachtet werden muss. Von eigenständiger Evakuierung wird strengstens abgeraten, bis die gefährdeten Fallout -Gebiete identifiziert und sichere Routen für eine mögliche Evakuierung ausgewiesen wurden. Was tun, wenn ich doch das Haus verlassen muss oder von draußen komme? Wenn Sie das Gebäude doch verlassen müssen, tragen Sie am besten Schutzkleidung, zum Beispiel abwaschbare Kleidung und Gummistiefel. Falls vorhanden, tragen Sie außerdem eine FFP2- oder FFP3-Maske, das gilt auch im Falle einer Nuklearwaffen-Explosion. Damit werden radioaktive Partikel aus der Außenluft gefiltert und die Aufnahme von Radionukliden mit der Luft kann um mehr als das Zehnfache vermindert werden. Falls keine Maske vorhanden ist, können Sie sich auch ein Taschentuch vor Mund und Nase halten und dadurch atmen. Wenn Sie von draußen kommen und ein Gebäude betreten wollen, ziehen Sie Oberbekleidung und Schuhe beim Betreten des Gebäudes aus. Verpacken Sie die Kleidung und die Schuhe in einen Plastikbeutel und lagern Sie diesen verschlossen außerhalb der Wohnung. Damit verhindern Sie, dass radioaktive Stoffe ins Gebäude getragen werden. Reinigen Sie im Haus zunächst gründlich Hände und Kopf sowie alle weiteren unbedeckten Körperstellen, die mit radioaktiven Stoffen in Kontakt gekommen sein könnten, unter fließendem Wasser.  Erst danach sollten Sie gründlich duschen. Achten Sie dabei darauf, dass kein Wasser in den Mund, die Nase oder die Augen gelangt, damit radioaktive Stoffe nicht aus Versehen in den Körper kommen können. Potenziell kontaminierte Haustiere sollten in einem separaten Raum, getrennt von schutzsuchenden Personen, ausgebürstet und möglichst ebenfalls gewaschen werden. Dabei sollte - wenn verfügbar - eine FFP2- oder FFP3-Maske getragen werden. Wie kann ich mich auf die Schutzmaßnahme "Aufenthalt im Haus" vorbereiten? Identifizieren Sie bereits jetzt potenzielle Schutzräume – daheim, am Arbeitsplatz und in der Schule sowie auf dem Weg zur Arbeit. So wissen Sie im Ernstfall direkt, wohin Sie und Ihre Familie gehen können. In Betracht kommen können die Kellerräume Ihres Wohnhauses und Ihrer Arbeitsstätte, ebenso Schutzräume in umliegenden Gebäuden, Läden und Geschäftsräumen, insbesondere wenn sich diese im Untergrund befinden. Fahrzeuge und Wohnmobile bieten keinen ausreichenden Schutz. Das Bundesamt für Bevölkerungsschutz und Katastrophenhilfe ( BBK ) informiert ausführlich darüber, welche Vorräte man für den Fall eines radiologischen Notfalls sowie für andere Katastrophenfälle am besten zuhause vorrätig haben sollte. Verständigen Sie sich mit Ihrer Familie und Freunden über Ihre Vorgehensweise im Fall eines radiologischen Notfalls. So wissen alle Bescheid. Befestigen Sie Namensschilder an der Kleidung kleinerer Kinder und anderer schutzbedürftiger Personen, um sie im Fall einer Trennung schneller zu finden. Das BBK empfiehlt Brustbeutel oder eine SOS-Kapsel mit Namen, Geburtsdatum und Anschrift. SOS-Kapseln erhalten Sie in Kaufhäusern, Apotheken und Drogerien. Für das Szenario einer Nuklearwaffen-Explosion wäre es zusätzlich hilfreich, im Schutzraum einen Erste-Hilfe-Kasten mit Ausstattung und Medikamenten zur Behandlung von Verletzungen und Verbrennungen sowie mit allgemeiner und täglich benötigter Medizin vorzuhalten. Es bietet sich zudem an, bereits im Voraus Erste-Hilfe-Maßnahmen für mechanische Traumata und Verbrennungen zu erlernen. Stand: 26.11.2025

Personendosismessstelle

Personen, die ionisierender Strahlung (Röntgen-, Gamma-, Beta- oder Neutronenstrahlung) ausgesetzt sein können, müssen entsprechend §§ 64, 65 der Strahlenschutzverordnung hinsichtlich der von ihnen empfangenen Körperdosis an radioaktiver Strahlung überwacht werden. In Berlin ermittelt die amtlich bestimmte Personendosismessstelle der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt mit Hilfe von Dosimetern die Personendosis bei äußerer Strahlenexposition. Es werden etwa 17.000 Personen aus ungefähr 930 Betrieben in der Regel monatlich überwacht, woraus sich jährlich ca. 200.000 Ermittlungen ergeben. Für die Messung sind amtliche Personendosimeter erforderlich. Diese werden auf Anforderung in regelmäßigen Abständen von meist einem Monat ausgegeben und ausgewertet. Die Dosimeter der Messstelle für Berlin unterliegen rigorosen Zulassungsbedingungen und erfüllen alle Qualitätsanforderungen. Die Dosimeter sind an einer für die Strahlenexposition repräsentativen Stelle der Körperoberfläche zu tragen, bei Ganzkörperdosimetern ist dieses in der Regel die Vorderseite des Rumpfes. Da es auch vorkommt, dass nur einzelne Körperbereiche der Strahlung ausgesetzt sind, gibt es sogenannte Teilkörperdosimeter (Fingerring-, Augenlinsendosimeter) – die Dosimetersonde muss grundsätzlich an der Stelle getragen werden, an der die Strahlung einwirken kann. Die Bestimmung der Personendosis dient der Kontrolle der Einhaltung der Grenzwerte der Körperdosis. Die Ergebnisse der Auswertung der Personendosimeter gehen an den Auftraggeber sowie an das Strahlenschutzregister. Die Personendosismessstelle Berlin bietet als Ganzkörperdosimeter das OSL-Dosimeter an ( siehe Erklärfilm OSL-Dosimeter ), das hervorragend in Anwendungsbereichen von Röntgen- und Gammastrahlung einsetzbar ist und einen sehr großen Energiebereich abdeckt, sowie das Albedo-Dosimeter, welches verwendet werden sollte, wenn Neutronen-Strahlung auftreten kann. Als Teilkörperdosimeter werden Einmal-Kunststoff-Fingerringe mit einem Thermolumineszenz-Dosimeter angeboten, welche für Beta- bzw. für gemischte Beta-Photonen-Strahlungsfelder geeignet sind, sowie das Augenlinsendosimeter (ALD) auf Basis der OSL-Technologie. Die verantwortlichen Strahlenschutzbeauftragten der Betriebe können in der Messstelle die für zu überwachende Personen erforderlichen Personendosimeter bestellen. Als nichtkommerzielle Messstelle der Öffentlichen Hand gehören umfassende Beratung und Service für kleine und große Kundenbetriebe zu unserem Qualitätsverständnis. Wir beraten Sie auch gerne persönlich. Empfehlungen zum Strahlenschutz bei der Radiosynoviorthese Strahlenschutz beim Umgang mit Betastrahlern in der Nuklearmedizin einschließlich der Positronen-Emissions-Tomografie Empfehlungen zum Strahlenschutz bei der Radioimmuntherapie

Radioökologielabor

Radioökologielabor Leitstelle für Arzneimittel und deren Ausgangsstoffe sowie Bedarfsgegenstände Im Radioökologielabor des BfS wird die radioaktive Kontamination in Lebensmitteln und Umweltmedien gemessen. Die Beschäftigten führen Felduntersuchungen und Laborexperimente durch und entwickeln radiochemische Methoden zur schnellen Bestimmung von Alpha- und Betastrahlern in Lebensmitteln und Umweltmedien. Das Radioökologielabor ist Leitstelle für Arzneimittel und deren Ausgangsstoffe sowie Bedarfsgegenstände Mitglied des internationalen Labornetzwerks ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity). Das Radioökologielabor des Bundesamtes für Strahlenschutz ( BfS ) misst die radioaktive Kontamination hauptsächlich in Lebensmitteln und Umweltmedien, führt Felduntersuchungen und Laborexperimente durch und entwickelt radiochemische Methoden insbesondere zur schnellen Bestimmung von Alpha- und Betastrahlern in Lebensmitteln und Umweltmedien. Die wissenschaftlichen Untersuchungen und Messungen sind die Grundlage, um die für den Transport und die Anreicherung radioaktiver Stoffe in der Umwelt maßgeblichen Prozesse zu verstehen und durch radioökologische Modelle zu beschreiben. Sie tragen ferner dazu bei, Empfehlungen zum Schutz der Bevölkerung auszusprechen, wenn große Mengen radioaktiver Stoffe in die Umwelt freigesetzt werden. Ziel von Felduntersuchungen, Laborexperimenten und der Methodenentwicklung ist die radioaktive Kontamination von Umweltmedien sowie Lebensmitteln zu erfassen, die für den Transport und die Anreicherung radioaktiver Stoffe in der Umwelt verantwortlichen Prozesse zu verstehen und durch radioökologische Modelle zu beschreiben, die Entwicklung oder Optimierung radiochemischer Verfahren zur Bestimmung von Alpha- und Betastrahlern in Lebensmitteln und Umweltmedien, die Entwicklung von Schnellmethoden zum Einsatz im Notfallschutz oder in Fällen der Nuklearspezifischen Gefahrenabwehr, die Festschreibung der Verfahren in Analysevorschriften und Messanleitungen. Messungen: Grundlage für Empfehlungen zum Schutz der Bevölkerung Werden, etwa nach einem Kernkraftwerksunfall, große Mengen radioaktiver Stoffe in die Umwelt freigesetzt, liegt die Hauptverantwortung für die Radioaktivitätsmessungen bei den entsprechenden Landesbehörden der betroffenen Länder. Ergänzend wird die radioaktive Kontamination von Umweltproben und Lebensmittelproben auch im Radioökologielabor des Bundesamtes für Strahlenschutz ( BfS ) gemessen. Ziel ist es, die radiologische Situation möglichst schnell zu erfassen. Auf Grundlage der von den Ländern gemeldeten Daten und eigenen Messergebnissen können die Expertinnen und Experten des BfS politischen Entscheidungsträgern zeitnah wirksame Maßnahmen zum Schutz der Bevölkerung empfehlen. Das Radioökologielabor ist zudem Leitstelle für Arzneimittel und deren Ausgangsstoffe sowie Bedarfsgegenstände. Im Rahmen der Leitstellentätigkeit werden beispielsweise Tees, Kräuter und Gewürze stichprobenartig untersucht. In der Analysewaage wird die Kalibrierung einer Pipette überprüft. Überwachung der radioaktiven Kontamination nach dem Reaktorunfall von Tschornobyl Auch mehr als dreieinhalb Jahrzehnte nach dem Reaktorunfall von Tschornobyl ( russ. : Tschernobyl) überwacht das Radioökologielabor die Entwicklung der radioaktiven Kontamination durch Messungen von Umwelt- und Lebensmittelproben. Im Blickpunkt stehen vor allem Lebensmittel aus dem Wald, wie etwa Pilze und Waldbeeren, die auch heute noch erhöhte Gehalte des Radionuklids Cäsium-137 aufweisen können. Ziele der Schnellmethoden Entwicklung radiochemischer Verfahren Ein weiterer Schwerpunkt des Radioökologielabors ist die Entwicklung oder Weiterentwicklung radiochemischer Verfahren zur Bestimmung von Alpha- und Betastrahlern in Lebensmitteln und Umweltmedien. Von besonderem Interesse sind hierbei Schnellmethoden, die im Rahmen des Notfallschutzes oder in Fällen der Nuklearspezifischen Gefahrenabwehr eingesetzt werden. Darüber hinaus unterstützt das Radioökologielabor Studierende an Hochschulen bei der Erstellung ihrer Abschlussarbeit (Bachelor, Master, PhD ). Ausstattung Instrumentarium des Radioökologielabors: Messgeräte zur Messung von Alpha-, Beta und Gamma- Strahlung Zur Vorbereitung und radiochemischen Aufbereitung der Proben stehen unter anderem Mühlen, Trockenschränke, Veraschungsöfen, Geräte zum Mikrowellenaufschluss, Kühlzentrifugen sowie Chemieabzüge zur Verfügung. Zur apparativen Ausstattung des Radioökologielabors gehören ferner Reinstgermanium-Detektoren zur Messung von Gammastrahlern sowie mehrere Messsysteme zur Bestimmung von Alpha- und Betastrahlern. Qualitätssicherung und Qualitätsmanagement Wie in allen Laboren des Bundesamtes für Strahlenschutz haben Qualitätsmanagement und Qualitätssicherung einen hohen Stellenwert. Das Radioökologielabor nimmt regelmäßig an Vergleichsmessungen (Ringversuchen und Leistungsprüfungen) teil. Zudem soll durch die angestrebte Akkreditierung nach DIN EN ISO/IEC 17025 (DAkkS) die hohe fachliche und technische Kompetenz des Radioökologielabors nachgewiesen werden. Das Radioökologielabor organisiert selbst Ringversuche nach § 161 StrlSchG (Strahlenschutzgesetz). Internationale Vernetzung Das Radioökologielabor ist Mitglied des internationalen Labornetzwerks ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) der IAEA und nimmt regelmäßig an ALMERA Leistungsprüfungen teil. Stand: 05.08.2025

Radioaktivität in Gebrauchsgegenständen

Gelegentlich wird in den Medien über Funde von radioaktiven Gegenständen berichtet. Dazu gehören auch Alltagsgegenstände, beispielsweise Geschirr mit bestimmten Glasuren. In manchen Fällen sind diese nicht eindeutig als solche erkennbar und es wird nur zufällig festgestellt, dass radioaktive Stoffe enthalten sind. Doch woher stammen diese? Früher wurden radioaktive Stoffe häufig aufgrund bestimmter Eigenschaften zur Herstellung von Gegenständen verwendet. So sind die Fliesen des Rosenthaler Platzes dafür bekannt, dass die aufgebrachte leuchtend orangefarbige Glasur leicht radioaktiv ist. Die Radioaktivität war dabei meist nur ein ungewollter und in der Anfangszeit unbekannter Nebeneffekt. Im Laufe der Zeit entwickelte sich jedoch ein Bewusstsein dafür, dass ionisierende Strahlung eine Gefahr für die menschlichen Gesundheit darstellt. Dies führte dazu, dass Produkte mit radioaktiven Stoffen heutzutage nicht mehr oder nur noch für ganz bestimmte Anwendungsfälle produziert und verwendet werden. Auch heute kann es jedoch in seltenen Fällen noch zu einer Kontamination kommen, z.B. wenn versehentlich eine radioaktive Quelle bei der Wiederverwertung von Metallschrott mit eingeschmolzen wird. Von den meisten der heute noch im Umlauf befindlichen Gegenständen geht nur eine geringe Strahlenbelastung aus, so dass die Handhabung in der Regel unproblematisch ist. Es ist jedoch zu beachten, dass auch diese spezifische Aktivitäten aufweisen können, aufgrund derer man die Gegenstände nicht über den Hausmüll entsorgen darf. In diesem Fall kann die Zentralstelle für radioaktive Abfälle (ZRA) kontaktiert werden. Bestimmte uranhaltige Verbindungen sind dafür bekannt, dass sie eine schöne intensive Farbe ergeben. Daher wurden sie vor allem ab Mitte des 19. Jahrhunderts als Zusatz in Glasuren beispielsweise für Fliesen oder Geschirr verwendet. Auch für die Herstellung gefärbter Gläser oder Vasen kamen sie zur Verwendung. Bei Glasuren sind insbesondere kräftige Orangefarben häufig vertreten, je nach Ausgangsmaterial und Produktionsart können aber auch andere Farben entstehen. Uranglas, welches meist in hellen, gelben oder grünen Farben vorkommt, kann man leicht daran erkennen, dass es durch UV-Licht zum Leuchten angeregt wird. In der Regel sind diese Gegenstände etwa als Sammelobjekte gesundheitlich unbedenklich, da relativ geringe Strahlungswerte auftreten und das uranhaltige Material gebunden vorliegt. Säuren können jedoch die Uranverbindungen aus dem Material herauslösen. Da in vielen Lebensmitteln (z.B. in Früchten) Säuren vorhanden sind oder bei der Nahrungszubereitung Zutaten wie Essig verwendet werden, sollte man Geschirr mit uranhaltiger Glasur nicht als Essgeschirr verwenden, da sonst die Gefahr einer Aufnahme mit der Nahrung besteht. Für die Leuchtzifferblätter von Uhren wurden früher Farben verwendet, die radioaktives Radium oder Promethium enthielten. Hierbei traten durch die Produktionsbedingungen teils schwerwiegende gesundheitliche Auswirkungen auf, wie auch bei dem weithin bekannten Fall der „Radium Girls“. Daher wurde auf das weitaus ungefährlichere radioaktive Tritium gewechselt. Inzwischen gibt es auch nicht-radioaktive Alternativen, diese sind aber nicht selbstleuchtend. Daher wird Tritium auch heute noch verwendet. Seine Eigenschaften werden auch in den frei erhältlichen, mit Tritium gefüllten, nachtleuchtenden Schlüsselanhängern genutzt. Weitere Informationen zu Leuchtzifferblättern auf der Seite des Bundesamtes für Strahlenschutz In gasbetriebenen Leuchten werden sogenannte Glühstrümpfe verwendet. Diese wurden bei der Produktion in einer Lösung mit einer radioaktiven Thorium-haltigen Verbindung getränkt. Die nach dem Verbrennen bleibende Struktur erzeugt aus der kaum sichtbaren Gasflamme das gewünschte helle Licht. Der Effekt entsteht dabei nicht durch die radioaktive Eigenschaft, das Thorium diente vor allem der Stabilität der Struktur. Seit einigen Jahrzehnten können Glühstrümpfe auch ohne den Zusatz von Thorium produziert werden. In Deutschland endete die letzte Glühstrumpfproduktion 2004, seit 2011 ist die Herstellung und Inverkehrbringen thoriumhaltiger Glühstrümpfe nicht mehr erlaubt (mit Ausnahme von zur Straßenbeleuchtung verwendeter Glühstrümpfe; §39 StrlSchG). In Berlin erfolgt aufgrund von Energiesparmaßnahmen der Austausch von Gasleuchten auf formgleiche LED-Leuchten. Weiterhin erhalten bleiben sollen jedoch ca. 3.300 Gasleuchten mit historischer Bedeutung. Ein Thorium-haltiger Glühstrumpf ist in der Regel nur gering radioaktiv. Das größte Risiko geht davon aus, wenn Partikel des Glühstrumpfes eingeatmet werden, insbesondere beim erstmaligen Brennen oder der Handhabung der fragilen abgebrannten Glühstrümpfe. Weitere Informationen auf der Seite des Fachverbands für Strahlenschutz e.V. In der ersten Hälfte des 20. Jahrhunderts wurden aus medizinischen Gründen sogenannte Radium-Emanatoren verwendet. In diesen befindet sich eine Quelle mit dem natürlich radioaktiven Isotop Radium-226, welches u. a. in das ebenfalls schwach radioaktive Radon zerfällt. In die Gefäße wurde Wasser eingefüllt, welches das Radon aufnahm. Das Wasser wurde dann in als gesundheitsfördernd geltenden Trinkkuren angewendet. Der radioaktive Stoff ist in einer Quelle in dem Gefäß gebunden. Solange diese nicht beschädigt wird, so dass das Radium etwa als Staub eingeatmet oder mit Nahrung eingenommen wird, geht keine unmittelbare Gefahr davon aus. Dennoch kann die Dosisleistung ausreichen, dass der Grenzwert von 1 mSv im Jahr überschritten wird, der u.a. für beruflich strahlenexponierte Personen festgelegt ist. Die Becher sind auch heute noch etwa unter Sammlern im Umlauf. Sofern die radioaktive Quelle noch enthalten ist, ist für den Besitz eine strahlenschutzrechtliche Genehmigung erforderlich, da hier in der Regel die Freigrenzen für einen genehmigungsfreien Umgang überschritten sind. Einige Farben von (Halb-)Edelsteinen entstehen nur durch die Einwirkung von Strahlung. Diese kann sowohl durch natürliche als auch durch künstlich erzeugte Radioaktivität erfolgen. Wenn zur Bestrahlung Beta-oder Gamma-Strahlung eingesetzt wird, sind die Steine selber nicht radioaktiv. Es kann jedoch auch Neutronenstrahlung verwendet werden, wodurch die bestrahlten Edelsteine selber ebenfalls radioaktiv werden. Ein bekanntes Beispiel hierfür ist der Edelstein Topas. Während hellere Blautöne durch Betastrahlung erzielt wird, kommt für eine tiefblaue Färbung („London Blue“) Neutronenstrahlung zum Einsatz. Da die Radioaktivität mit der Zeit abklingt, dürfen diese, um die gesundheitlichen Risiken zu verringern, erst nach einer ausreichenden Wartezeit in den Verkauf kommen. Außerdem gibt es Edelsteine, die einen Anteil natürlich radioaktiver Stoffe enthalten. Diese geben nur eine geringe Strahlung ab und können daher bedenkenlos gehandhabt werden. Edelsteine die eine natürliche Radioaktivität aufweisen können sind beispielsweise Zirkon oder Ekanit. Aber auch andere Schmuckstücke können radioaktive Strahlung abgeben. Neben Uranglas können auch Gesteine oder Mineralien verarbeitet sein, die eine natürliche Radioaktivität aufweisen. So tauchen beispielsweise gelegentlich Amulette im Handel auf, die aufgrund des verarbeiteten Materials mit Anteilen von Uran oder Thorium leicht radioaktiv sind. Weitere Informationen auf der Seite des Bundesamtes für Strahlenschutz

Können Glas und Wände Menschen vor ionisierender Strahlung schützen?

Können Glas und Wände Menschen vor ionisierender Strahlung schützen? Ja. Wände oder Glas können bestimmte Strahlungsarten vollständig abschirmen. Das gilt für Alpha- und Betastrahlung. Alphas t rahlung kann bereits durch wenige Zentimeter Luft und Glas vollständig abgeschirmt werden. Energiereiche Betastrahlung hat eine größere Reichweite als Alphastrahlung, wird aber auch durch Wände und Glas abgeschirmt. Werden energiereiche Alpha- oder Beta-Strahler eingeatmet, können sie in der Lunge zerfallen. Dies kann zu einer erhöhten Strahlendosis führen. Ja. Wände oder Glas können bestimmte Strahlungsarten zumindest abschwächen. Das gilt für Gammastrahlung. Gammastrahlung kann durch Mauern vermindert, aber nicht vollständig abgeschirmt werden. Beispiel: Die Gammastrahlung von radioaktivem Jod wird durch 6 Zentimeter Beton um etwa 75% reduziert. Durch Aufenthalt in Gebäuden können Sie Ihre Strahlendosis bei Durchzug einer radioaktiven Wolke im Vergleich zu einem Aufenthalt im Freien um ca. 80% verringern. Werden Fenster und Türen im Ereignisfall geschlossen, wird verhindert, dass radioaktive Stoffe mit der Luft in die Wohnung gelangen und eingeatmet werden. Publikationen Radiologischer Notfall - So schützen Sie sich PDF 4 MB

Strahlenschutz in der Klinik - Expositionen von Klinikpersonal bei nuklearmedizinischen Therapien, Teilprojekt B

Identifizierung und Quantifizierung von Beta-Strahlern zur zerstörungsfreien Charakterisierung radioaktiver Abfallgebinde (IQ-Beta)

1 2 3 4 5