API src

Found 170 results.

Related terms

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Probing the Earth's subdecadal core-mantle dynamics based on satellite geomagnetic field models

The CHAMP mission provided a great amount of geomagnetic data all over the globe from 2000 to 2010. Its dense data coverage has allowed us to build GRIMM - GFZ Reference Internal Magnetic Model - which has the highest ever resolution for the core field in both space and time. We have already modeled the fluid flow in the Earth's outer core by applying the diffusionless magnetic induction equation to the latest version of GRIMM, to find that the flow evolves on subdecadal timescales, with a remarkable correlation to the observed fluctuation of Earth rotation. These flow models corroborated the presence of six-year torsional oscillations in the outer core fluid. Torsional oscillation (TO) is a type of hydromagnetic wave, theoretically considered to form the most important element of decadal or subdecadal core dynamics. It consists of relative azimuthal rotations of rigid fluid annuli coaxial with the mantle's rotation and dynamically coupled with the mantle and inner core. In preceding works, the TOs have been studied by numerical simulations, either with full numerical dynamos, or solving eigenvalue problems ideally representing the TO system. While these studies drew insights about dynamical aspects of the modeled TOs, they did not directly take into account the observations of geomagnetic field and Earth rotation. Particularly, there have been no observation-based studies for the TO using satellite magnetic data or models. In the proposed project, we aim at revealing the subdecadal dynamics and energetics of the Earth's core-mantle system on the basis of satellite magnetic observations. To that end, we will carry out four work packages (1) to (4), for all of which we use GRIMM. (1) We perform timeseries analyses of core field and flow models, to carefully extract the signals from TOs at different latitudes. (2) We refine the conventional flow modeling scheme by parameterizing the magnetic diffusion at the core surface. Here, the diffusion term is reinstated in the magnetic induction equation, which is dynamically constrained by relating it to the Lorentz term in the Navier-stokes equation. (3) We develop a method to compute the electromagnetic core-mantle coupling torque on the core fluid annuli, whereby the energy dissipation due to the Joule heating is evaluated for each annulus. This analysis would provide insights on whether the Earth's TOs are free or forced oscillations. (4) Bringing together physical implications and computational tools obtained by (1) to (3), we finally construct a dynamical model for the Earth's TOs and core-mantle coupling such that they are consistent with GRIMM and Earth rotation observation. This modeling is unique in that the force balances concerning the TOs are investigated in time domain, as well as that the modeling also aims at improving the observation-based core flow model by considering the core dynamics.

The effect of elevated atmospheric CO2 concentration on gross nitrogen dynamics, plant N-uptake and microbial community dynamics in a permanent grassland

To predict ecosystem reactions to elevated atmospheric CO2 (eCO2) it is essential to understandthe interactions between plant carbon input, microbial community composition and activity and associated nutrient dynamics. Long-term observations (greater than 13 years) within the Giessen Free Air Carbon dioxide Enrichment (Giessen FACE) study on permanent grassland showed next to an enhanced biomass production an unexpected strong positive feedback effect on ecosystem respiration and nitrous oxide (N2O) production. The overall goal of this study is to understand the long-term effects of eCO2 and carbon input on microbial community composition and activity as well as the associated nitrogen dynamics, N2O production and plant N uptake in the Giessen FACE study on permanent grassland. A combination of 13CO2 pulse labelling with 15N tracing of 15NH4+ and 15NO3- will be carried out in situ. Different fractions of soil organic matter (recalcitrant, labile SOM) and the various mineral N pools in the soil (NH4+, NO3-, NO2-), gross N transformation rates, pool size dependent N2O and N2 emissions as well as N species dependent plant N uptake rates and the origin of the CO2 respiration will be quantified. Microbial analyses will include exploring changes in the composition of microbial communities involved in the turnover of NH4+, NO3-, N2O and N2, i.e. ammonia oxidizing, denitrifying, and microbial communities involved in dissimilatory nitrate reduction to ammonia (DNRA). Stable Isotope Probing (SIP) and mRNA based analyses will be employed to comparably evaluate the long-term effects of eCO2 on the structure and abundance of these communities, while transcripts of these genes will be used to target the fractions of the communities which actively contribute to N transformations.

Untersuchungen des Tagesgangs verschiedener Spurengase mit Hilfe der solaren Absorptionsspektroskopie im infraroten Spektralbereich im tropischen Westpazifik (TROPAC)

Der Ozean im Westpazifik ist mit Temperaturen von ganzjährig 30°C der wärmste Ozean der Welt. Im tropischen Westpazifik ist die Lufttemperatur der Grenzschicht weltweit am höchsten und die Ozonkonzentration am niedrigsten. Aufgrund der allgemeinen Advektion der Luftmassen in der unteren und mittleren Troposphäre aus dem Osten durch die Walker-Zirkulation über den Pazifik befindet sich die Luft über dem tropischen Westpazifik für längere Zeit in einer sauberen, warmen und feuchten Umgebung. Der Abbau von reaktiven Sauerstoff- und Ozonvorläufern wie NOx findet daher länger als anderswo in den Tropen, was zu sehr niedrigen Ozonkonzentrationen führte. Dies erhöht die Lebensdauer von kurzlebigen biogenen und anthropogenen Spurengasen. Darüber hinaus begünstigen hohe Meeresoberflächentemperaturen eine starke Konvektion im tropischen Westpazifik, was zu niedrigen Ozonmischungsverhältnissen in den konvektiven Ausflussgebieten in der oberen Troposphäre führen kann. Der Warmpool im Westpazifik ist auch eine wichtige Quellregion für stratosphärische Luft. Daher fallen die Region, in der die Lebensdauer kurzlebiger Spurengase erhöht ist, und die Quellregion der stratosphärischen Luft zusammen. Somit bestimmt die Zusammensetzung der troposphärischen Atmosphäre in dieser Region in hohem Maße auch die globale stratosphärische Zusammensetzung.Ozon ist aufgrund von Rückkopplungsprozessen zwischen Temperatur, Dynamik und Ozon ein wichtiges Spurengas in der Klimaforschung. Da der Warmpool im Westpazifik die Hauptquellenregion für stratosphärische Luft ist, ist die Kenntnis von Ozon und anderen kurzlebigen Spurengasen auch wichtig, um den Transport von Spurengasen in die Stratosphäre zu verstehen.Ziel unseres Projektes ist die Messung des Tagesgangs von Ozon und anderen Spurengasen mit Hilfe der hochauflösenden solaren Absorptions-FTIR-Spektroskopie. Die Messungen liefern die Gesamtsäulendichten von bis zu 20 Spurengasen. Für einige Spurengase erlaubt die Analyse der Spektrallinienform die Ableitung der Konzentrationsprofile in bis zu etwa vier atmosphärischen Höhenschichten. Ergänzt werden die Beobachtungen durch Ozonballonsondierungen, kontinuierliche Messungen der UV-Strahlung, und Modellrechnungen mit einem Chemie-Transport-Modell. Die Messungen sind für den Zeitraum August bis Oktober 2022 geplant, die Auswertung und Interpretation von November 2022 bis Januar 2023.

Beobachtung von Peroxyradikalen in dem städtischen Wald und Vergleichsübung von Peroxyradikale- Messmethoden

Peroxyradikale sind kurzlebige Spezies, die an den meisten Oxidationsprozessen in der Atmosphäre beteiligt sind, die zur Bildung von langlebigeren und chemisch oder toxikologisch wichtigen Schadstoffen wie Ozon führen. Insbesondere in Gebieten, die von komplexen Emissionsquellen betroffen sind, sind Peroxyradikal-Messmethoden mit ausreichender Genauigkeit, Reproduzierbarkeit und Empfindlichkeit erforderlich, um die chemische Umwandlung der städtischen Umweltverschmutzung zu verstehen. In dieser Hinsicht ermöglichen Vergleiche von state-of-the-art Sensoren in chemischen Reaktorkammern deren Charakterisierung unter kontrollierten Bedingungen und verbessern das Vertrauen in die Messung von Peroxyradikalen.SPRUCE strebt ein besseres Verständnis der Rolle der Peroxyradikale bei atmosphärischen chemischen Umwandlungen an, die aus der Wechselwirkung zwischen urbanen anthropogenen und ländlichen biogenen Emissionen resultieren. Im Rahmen der vorgeschlagenen Arbeit wird das vorhandene PeRCEAS-Instrument (Peroxy Radical Chemical Enhancement and Absorption Spectrometer) an der Messkampagne des internationalen Projekts ACROSS (Atmospheric ChemistRy Of the Suburban Forest) zur Untersuchung des Schadstoffausflusses von Paris über ein Waldgebiet, und in der internationalen Vergleichsstudie ROxCOMP22 für wissenschaftliche Instrumente, die atmosphärische Peroxyradikale teilnehmen. Diese beiden Messkampagnen befassen sich mit zwei Hauptaspekten von SPRUCE. Sie bieten eine einzigartige Gelegenheit für a) die Messung von Peroxyradikalen in der spezifischen Umgebung von Interesse und in Verbindung mit einer umfangreichen Reihe von Beobachtungen, die für die Interpretation der Radikalchemie von wesentlicher Bedeutung sind, und b) die Bewertung der Datenqualität und Leistungsfähigkeit von PeRCEAS, insbesondere die Überprüfung der Sensitivität und Effizienz für die Speziation der Radikale unter kontrollierten Bedingungen.Ein Schwerpunkt der Studie wird auf der Untersuchung von Oxidationsreaktionen und Ozonausbeuten in Luftmassen mit unterschiedlicher anthropogener/biogener Signatur in Abhängigkeit von der Menge und Zusammensetzung von Peroxyradikalen liegen. Numerische Berechnungen und Modelle werden durch die Beobachtungen von Vorläuferspezies eingeschränkt, um die Budgets von Peroxyradikalen abzuschätzen. Der Vergleich mit den PeRCEAS-Messungen wird verwendet, um das Verständnis der Oxidationsmechanismen in urbanen Plumes gemischt mit biogenen Emissionen zu testen. Es wird erwartet, dass die Analyse des resultierenden Datensatzes das aktuelle Wissen über die chemische Transformation von Megacity-Emissionen während des atmosphärischen Transports ergänzt.

Niederschlagslebenszyklus in Passatwindkumuli

Passatwindkumuli spielen eine essentielle Rolle im Strahlungshaushalt der Erde und sind verantwortlich für bis zu 20 % des tropischen Niederschlags. Noch ist nicht bekannt, wie Passatwindkumuli auf die globale Erwärmung reagieren werden. Durch Niederschlag verändern sich Wolkeneigenschaften, aber auch die Grenzschichtstruktur und -dynamik. Aufgrund der Vielzahl der beteiligten Prozesse ist die Niederschlagsentwicklung in Modellen ist unsicher. Die Konfiguration der Simulationen und Wahl der Parameterisierung, wie das Autokonversionsschema, beeinflussen Niederschlagsfluss, Wolkenstruktur und â€Ìorganisation. Bisher konnten Vergleiche mit Beobachtungen noch nicht zur Reduktion der Unsicherheit des Autokonversionsschemas beitragen. Radarreflektivität, die mit Standardmethoden aus bodengebundenen Messungen abgeleitet wird, erkennt Niederschlag erst in einem fortgeschrittenen Stadium, was es schwierig macht, die verschiedenen, den Regen verursachenden Faktoren zu entflechten. Durch die Verdunstung des Niederschlags unterhalb der Wolkenunterkante (WUK) bestimmt dieser die Stärke der Coldpools und ist so bedeutend für die Organisation von Konvektion und somit die Klimasensitivität: Daher ist es essentiell Verdunstungsraten zu bestimmen und deren räumlich-zeitliche Variabilität zu verstehen. Zwar gibt es Parameterisierungen der Verdunstung unterhalb der WUK, allerdings sind diese von der Größe der Regentropfen abhängig, welche jedoch schlecht direkt zu beobachten ist.Ziel dieses Antrages ist die Bestimmung von Faktoren, welche die Niederschlagsformation in Passatwindkumuli beeinflussen. Dazu werden neuartige Radarbeobachtungen dieser Prozesse zur genaueren Beschreibung der Niederschlagsentwicklung in Grobstruktursimulationen (LES) herangezogen. Die räumlich-zeitliche Verdunstungsverteilung wird unterhalb der WUK in den Passatwindkumuli untersucht und treibende Faktoren identifiziert. Das Forschungsvorhaben ergänzt die bevorstehende EUREC4A (A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation) Kampagne und nutzt die langjährige Datenreihe des Barbados Cloud Observatory (BCO).Die synergetischen bodengebundenen Beobachtungen und der neue Ansatz, Niederschlag in Wolken mit Hilfe höherer Momente des Wolkenradardopplerspektrums zu bestimmen, werden erstmalig zur Beobachtungen von Passatwindkumuli und der Charakterisierung des Niederschlagslebenszyklus zu angewendet. Damit wird es möglich die Niederschlagsentwicklung in den hochauflösenden ICON-LEM und DHARMA-LES Modellen zu evaluieren. Für einen statistischen Vergleich der Simulationen und der Beobachtungen wird der Vorwärtsoperator PAMTRA verwendet, so dass im Beobachtungsraum untersucht werden kann, inwiefern die Modelle die beobachteten, mittleren Werte und Abhängigkeiten reproduzieren können und systematischen Fehler identifiziert werden. Damit trägt das Vorhaben zum Grand Challenge on Cloud Circulation and Climate Sensitivity des Weltklimaforschungsprogramm WRCP bei.

Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Unravelling the role of an autonomous pathway component in FTi control in Arabidopsis and barley

We will compare the role of an RNA-binding protein in floral transition in Arabidopsis thaliana and Hordeum vulgare. The RNA-binding protein AtGRP7 promotes floral transition mainly by downregulating the floral repressor FLC via the autonomous pathway. Based on our observation that AtGRP7 affects the steady-state abundance of a suite of microRNA precursors, we will globally compare the small RNA component of the transcriptome during FTi regulation in wild type plants and AtGRP7 overexpressors by deep sequencing. This will extend the knowledge on small RNAs associated with floral transition and provide insights into the regulatory network downstream of this RNA-binding protein. Further, we will address the question how AtGRP7 orthologues function in crop species lacking FLC homologues. A barley line with highly elevated levels of the AtGRP7 orthologue HvGR-RBP1 shows accelerated FTi and preanthesis development when compared to a near-isogenic parent with very low expression of this gene. We will characterize in detail flowering of this line with respect to different photoperiods and its vernalization requirement. We will employ a TILLING approach to further delineate the function of HvGR-RBP1 in flowering. A candidate gene approach to identify downstream targets will provide insights into the signaling pathways through which HvGR-RBP1 influences FTi. This project contributes to the development of a functional cross-species network of FTi regulators, the major strategic aim of the SPP.

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Current Systems around Terrestrial Planets: EOF Analysis and Modeling

The magnetosphere of a planet is controlled by a number of factors such as the intrinsic magnetic field, the atmosphere and ionosphere, and the solar wind. Different combinations of these control factors are at work at the terrestrial planets Mercury, Venus, Earth, and Mars, hence they form a very suitable set for quantitative comparative studies. A significant intrinsic dipolar magnetic field is present only on Earth and on Mercury. However, the configuration at Mercury differs considerably from that at Earth because Mercury does not support an atmosphere and ionosphere, the dipolar field is much weaker, the solar wind denser, and the interplanetary magnetic field stronger. Both Mars and Venus have atmospheres but lack a global planetary magnetic field, with regional crustal magnetization being present on Mars. This proposal aims at investigating and comparing electrical current systems in the space environments of terrestrial planets using magnetic vector data collected by orbiting spacecraft such as Venus Express, Mars Global Surveyor, CHAMP (Earth), and MESSENGER (Mercury). We propose to construct data-driven and physically meaningful representations that reveal and quantify the influence of various control factors. To achieve this, we will tailor Empirical Orthogonal Function (EOF) analysis and other multivariate methods to the specifics of planetary magnetic field observations. In contrast to representations that build on predefined functions like spherical harmonics, basis functions in the EOF approach are derived directly from the data. EOFs are designed to extract dominant coherent variations for further interpretation in terms of known physical phenomena, and then, in a regression step, for modeling using suitable control variables. The EOF methodology thus allows quantifying the relative importance of control factors for each planet individually, and thus contributes to the solution of topical science questions. The resulting empirical models will facilitate comparative studies of current systems at the terrestrial planets.

Human influences on forests in southern Ethiopia: the case of Shashemane-Munessa-forest

Especially during the last decades, the natural forests of Ethiopia have been heavily disturbed by human activities. Some forests have been totally cleared and converted into fields for agricultural use, other suffered from different influences, such as heavy grazing and selective logging. The ongoing research in the Shashemane-Munessa-study area (Gu 406/8-1,2) showed clearly that, in spite of interdiction and control, forests continue to be cleared and degraded. However, it is not yet sufficiently known, how and why these processes are still going on. Growing population pressure and economic constraints for the people living in and around the forests contribute to the actual situation but allow no final answers to the complex situation. Concerning a sustainable management of the forests there is to no solid basis for recommendations from the socioeconomic and socio-cultural view. Therefore, a comprehensive analysis of the traditional needs and forms of forest use, including all forest products, is necessary. The objective of this project is, to achieve this basis by carrying out intensive field observations, the consultation of aerial photographs, satellite imagery and above all semi-structured interviews with the population in the study area in order to contribute to the recommendations for a sustainable use of the Munessa Shasemane forests.

The importance of peripheral oceanic processes in the Labrador Sea for the Atlantic meridional overturning circulation

The Labrador Sea is one of the few places in the world ocean, where deep water formation takes place. This water is exported from the Labrador Sea to become part of the southward branch of the meridional overturning circulation. Previous observational work has largely focused on the role of deep convection in the interior of the Labrador Sea. Recent evidence from observations and numerical ocean models specifically indicate that processes near the ocean boundaries might be most relevant for both Eulerian downwelling of waters in the Labrador Sea and the fast export of newly transformed waters. We propose to analyze mooring based observations at the western margin of the Labrador Sea together with high resolution numerical model simulations to understand the role both processes play for the meridional overturning circulation in the subpolar North Atlantic. Specifically, we want to test (i) if (and where) downwelling occurs along the margins of the Labrador Sea, (ii) how downwelling relates to the seasonal evolution of convection and eddy activity, (iii) how fast waters newly transformed near the western margin of the Labrador Sea are exported, and (iv) how the two processes (downwelling, fast export) affect the temporal variability of the Atlantic meridional overturning circulation.

Aerosole aus dem asiatischen Monsun in der oberen Troposphäre: Quellen, Alterung, Auswirkungen

Die Asian Tropopause Aerosol Layer (ATAL), eine Schicht mit erhöhtem Aerosolgehalt, tritt jedes Jahr von Juni bis September in 14-18 km Höhe in einem Gebiet auf, das sich vom Mittelmeer bis zum westlichen Pazifik erstreckt. Hinsichtlich der Zusammensetzung der Partikel, sowie ihrer Bedeutung für die Strahlungsbilanz in dieser klimasensitiven Höhenregion bestehen große Unsicherheiten. Die bisher einzigen Flugzeugmessungen aus dem Zentrum der ATAL wurden 2017 im Rahmen der StratoClim Kampagne von Kathmandu aus gewonnen. Dabei entdeckten wir mit Hilfe des Infrarotspektrometers GLORIA auf dem Forschungsflugzeug Geophysica, dass feste Ammoniumnitrat (AN) â€Ì Partikel einen beträchtlichen Teil der Aerosolmasse ausmachen. Diese zählen zu den effizientesten Eiskeimen in der Atmosphäre. Zudem zeigte die gleichzeitige Messung von Ammoniakgas (NH3) durch GLORIA, dass dieses Vorläufergas durch starke Konvektion in die obere Troposphäre verfrachtet wird. Im Rahmen der PHILEAS-Kampagne schlagen wir eine gemeinsamen Betrachtung von atmosphärischen Modellsimulationen und Messungen vor, um die Zusammensetzung, Ursprung, Auswirkungen und Verbleib der ATAL-Partikel zu untersuchen â€Ì insbesondere im Hinblick auf ihre Prozessierung sowie ihren Einfluss auf die obere Troposphäre und die untere Stratosphäre der nördlichen Hemisphäre. Messungen von monsunbeeinflussten Luftmassen über dem östlichen Mittelmeer sowie über dem nördlichen Pazifik werden es uns erlauben, Luft mit gealtertem Aerosol- und Spurengasgehalt zu analysieren und damit die StratoClim-Beobachtungen aus dem Inneren des Monsuns zu komplementieren. Um dabei die wahrscheinlich geringeren Konzentrationen an Aerosol und Spurengasen zu quantifizieren, schlagen wir vor, die GLORIA-Datenerfassung von NH3 und AN u.a. durch die Verwendung neuartiger spektroskopischer Daten zu verbessern. Ferner werden wir die Analyse der GLORIA-Spektren auf Sulfataerosole sowie deren Vorläufergas SO2 auszudehnen. Auf der Modellseite werden wir das globale Wetter- und Klimamodellsystem ICON-ART weiterentwickeln, um die ATAL unter Einbeziehung verschiedener Aerosoltypen (Nitrat, Ammonium, Sulfat, organische Partikel, Staub) zu simulieren â€Ì unter Berücksichtigung der hohen Eiskeimfähigkeit von festem AN. Modellläufe werden durchgeführt, um einerseits einen globalen Überblick über die Entwicklung der ATAL 2023 zu gewinnen und zudem detaillierte, auf die relevanten Kampagnenperioden zugeschnittene, wolkenauflösende Informationen über die Aerosol-Wolken-Strahlungs-Wechselwirkungen zu erhalten. Über die direkte Analyse der PHILEAS-Kampagne hinausgehend wird diese Arbeit die Grundlage für eine verbesserte Analyse von Aerosolparametern aus GLORIA-Beobachtungen früherer und zukünftiger HALO-Kampagnen sowie aus Satellitenbeobachtungen legen. Darüber hinaus wird sie ICON-ART, einem der zentralen Klimamodellsysteme in Deutschland die Simulation von Aerosolprozessen sowie Aerosol/Wolken-Wechselwirkungen im Zusammenhang mit der ATAL ermöglichen.

1 2 3 4 515 16 17