Die Firma FAWA Fahrzeugwaschanlagen GmbH ist seit über 30 Jahren in der Fahrzeugreinigungsbranche tätig. Aktuell betreibt das Unternehmen zwei maschinelle Fahrzeugwaschanlagen im Stadtgebiet der Universitätsstadt Gießen. Beim Betrieb von Autowaschanlagen werden dem Waschwasser verschiedene Stoffe zugefügt, beispielsweise Tenside, Säuren oder Laugen zur Erhöhung der Reinigungsleistung. Außerdem gelangen bedingt durch den Reinigungsprozess selbst organische und anorganische Substanzen in den Wasserkreislauf. In Deutschland wird die Behandlung von Abwässern aus Autowaschanlagen im Rahmen der Abwasserverordnung geregelt. Zudem wird darin zwar auch festgelegt, dass Waschwasser weitestgehend im Kreislauf zu führen ist, allerdings greift diese Regelung nicht für SB-Waschplätze, da es sich hierbei nicht um eine maschinelle, sondern um eine manuelle Fahrzeugreinigung handelt. Standard-SB-Waschplätze haben allgemein folgenden Aufbau: Die Bodenabläufe der SB-Waschplätze enthalten selbst separate Schlamm- und Sandfänge, oder werden über Rohrleitungen in einen zentralen Schlammfang geführt. Danach ist ein Leichtflüssigkeitsabscheider installiert. Das verbrauchte Waschwasser wird dann in die Kanalisation eingeleitet, da die Qualität des Abwassers für eine Kreislaufführung nicht ausreicht. Im Rahmen dieses UIP-Projekts ist ein Kfz-Waschpark mit SB-Waschplätzen geplant, der mit Regenwassernutzung und einer membranbasierten Wasseraufbereitung ausgestattet ist und so fast komplett ohne Frischwasser auskommt. Darüber hinaus wird ein CO 2 -neutraler Betrieb mit Energieversorgung durch PV-Anlage und Energiespeicher sowie eine innovative Wärmerückgewinnung aus dem Betrieb von speziellen SB-Staubsaugern angestrebt. Durch die Realisierung des Vorhabens werden regenerative Energien effizient genutzt, Regenwasser verwendet und der Einsatz von Chemikalien minimiert. Durch Kreisläufe wird Grauwasser wieder zu Nutzwasser. Anfallende Wärme wird in den energetischen Kreislauf eingebunden und minimiert damit den energetischen Aufwand. Die Nutzung von Regenwasser reduziert im Projekt die projizierte notwendige Menge von Frischwasser auf null, wenn Niederschläge, wie in den vergangenen Jahren fallen. Wenn kein Regenwasser zur Verfügung steht, kann die nötige Qualität auch mittels Umkehrosmose erzeugt werden. Das Wasser, welches normalerweise aufgrund seiner hohen Salzfracht ins Stadtnetz eingeleitet werden würde, kann hier einfach zurück in den Entnahmebehälter geleitet werden. Dort vermischt es sich im Betrieb wieder mit dem Osmosewasser und kann so ohne Weiteres erneut aufbereitet werden. Der Bedarf an Osmosewasser beträgt etwa 20 Prozent des Gesamtbedarfs. Die Bereitstellung des Wassers durch die Aufbereitungsanlage folgt einfachen Regeln, welche in der Steuerung über die Zeit in Abhängigkeit vom Nutzungsverhalten, Wetterdaten und damit u.a. dem PV-Strom Aufkommen optimiert werden. Im weiteren Betrieb optimiert sich die Anlage bezüglich genauerer Vorhersagen, was die täglichen Bedarfsmengen betrifft. Gegenüber einer herkömmlichen Anlage werden voraussichtlich mindestens 1.050 Kubikmeter, gegenüber einer effizienten Anlage immer noch ca. 350 Kubikmeter Frischwasser eingespart. Regenwasser hat eine geringere Härte, dadurch und durch eine Erhöhung der Prozesswassertemperatur um ca. 5 Grad Celsius kann eine Reduzierung von bis zu 35 Prozent der schaumbildenden Chemie erreicht werden. Es können ca. 440 Liter Chemikalien eingespart werden. Trotz der 100-prozentigen Einsparung von Frischwasser kann die innovative Anlage mit dem gleichen Energiebedarf wie eine herkömmliche Anlage betrieben werden. Der Gesamtenergiebedarf reduziert sich bei der Projektanlage um ca. 6.800 Kilowattstunden auf 11.503 Kilowattstunden pro Jahr, was einer Reduktion von etwa 40 Prozent gegenüber einer effizienten Anlage entspricht. Besonders an der Anlage ist vor allem die sehr gute Übertragbarkeit der einzelnen Technologien in der Branche. Die Komponenten können fast alle, teilweise in abgewandelter Form, einfach in bereits bestehende SB-Waschanlagen, Portalanlagen und Waschstraßen integriert und nachgerüstet werden. Branche: Grundstücks- und Wohnungswesen und Sonstige Dienstleistungen Umweltbereich: Ressourcen Fördernehmer: FAWA Fahrzeugwaschanlagen GmbH Bundesland: Hessen Laufzeit: seit 2023 Status: Laufend
Standorte von gewerblichen Förderbrunnen im Landkreis Nienburg/Weser. Wasserentnahmen jeglicher Art von mehr als 10 m³/Tag (z. B. Kühl- oder Brauchwasser für gewerbliche oder industrielle Zwecke) oder in Wasserschutzgebieten bedürfen einer wasserrechtlichen Erlaubnis nach den §§ 8 u. 10 Wasserhaushaltsgesetz (WHG).
Die Eignung von Regenwasser in Zisternen (bei sachgemaesser techn. Ausfuehrung) ist fuer die Nutzungsarten WC-Spuelung, Gartenberegnung und Waeschewaschen nicht mehr umstritten. Aus diesem Grunde ist es sinnvoll die Dachablaufwaesser in Regenwassernutzungsanlagen (RWNA) zu sammeln und fuer o.g. Nutzungsarten zu verwenden. Auf diese Art kann teures Trinkwasser eingespart, das Kanalisationsnetz und die techn. Klaerwerke entlastet werden. In vielen Regionen der BRD reicht jedoch der Niederschlag fuer o.g. Nutzungsarten nicht aus, so dass eine Nachspeisung der Zisterne zwingend notwendig wird. Anstelle der Nachspeisung mit Trinkwasser koennte auch gereinigtes Grauwasser zum Einsatz kommen; Voraussetzung: es ist in seiner Beschaffenheit vergleichbar mit Regenwasser. Hauptproblem sind hierbei die hohen Konzentrationen von Tensiden, die ueber die Waschmittel in das Grauwasser gelangen. Ziel des Versuches ist es das Grauwasser mittels bepflanzten Bodenfiltern so gut zu Reinigen, dass die Grenzwerte der EU-RL ueber die Qualitaet der Badegewaesser eingehalten bzw. unterschritten werden koennen.
LuproCess zielt auf die Gewinnung hochwertiger, weitestgehend nativer und funktioneller Protein- und Faserfraktionen aus Schmalblättriger Bitterlupine (Lupinus angustifolius L.) für die Humanernährung ab. Aus der gewonnen Proteinfraktion sollen im hier skizzierten Projekt Fleischersatzprodukte entwickelt werden. In LuproCess soll die bei der Proteingewinnung anfallende Faserfraktion auf ein lebensmittelgeeignetes Qualitätsniveau aufbereitet und als Zusatz bei der High-Moisture-Extrusion eingesetzt werden. Die bei der Faseraufbereitung abgeschiedenen antinutritiven Substanzen - Chinolizidinalkaloide und Oligosaccharide sowie Mineralstoffe - werden dem Prozesswasser mittels Nanofiltration entzogen und separiert, wodurch es im geschlossenen Kreis wiederverwendet werden kann. Die Chinolizidinalkaloide können als pflanzliche Sekundärmetaboliten mit bioaktiver Wirkung zu biologischen Pflanzenschutzmitteln und/oder medizinischen/veterinärmedizinischen Wirkstoffen weiterentwickelt werden. Um die Ressourceneffizienz durchgängig zu gewährleisten sollen Nebenstromketten bereits ab dem Schälprozess der Lupinensaaten vor dem Flockieren verfolgt werden. Im Rahmen der hier beschriebenen Forschungsvorhaben wird die Lupine als weitere alternative nachhaltige und ernährungsphysiologisch vorteilhafte Proteinquelle erschlossen. Des Weiteren leistet das Forschungsvorhaben einen Beitrag zur Ressourcenschonung oder sogar Ressourcenaufwertung, indem die Lupinenfasern als anfallender Nebenstrom zur Aufwertung der Textur und somit des Mundgefühls von extrudierten Fleischersatzprodukten eingesetzt werden. Darüber hinaus ist der benötigte hohe Wasserbedarf für die Diafiltration eine nicht zu akzeptierende Belastung der Trinkwasserressourcen. Ziel ist es hier das gesamte Prozesswasser für die zusätzlichen Waschungsstufen in den Prozesskreislauf zurückzuführen.
Durch den Bau und den Betrieb der Demonstrationsanlage soll der Funktionsnachweis einer neuartigen Verfahrenskombination zur Aufbereitung von Weserwasser nachgewiesen werden. Das Verfahrenskonzept besteht im wesentlichen aus einer zweistufigen Membrananlage, wobei in der ersten Stufe mit einer Ultrafiltration ungeloeste Wasserinhaltsstoffe und Bakterien abgetrennt werden sollen. Mit einem zweiten Verfahrensschritt soll das Wasser mit einer Umkehrosmose-Anlage entsalzt werden. Die derzeit hohen Kosten zur Aufbereitung von Weserwasser sollen durch den Einsatz eines modernen/innovativen Verfahrens normalisiert werden, um den Wettbewerbsnachteil gegenueber anderen Stahlerzeugern zu verringern. Die Salzfracht des in den Vorfluter abzuleitenden Abwassers wird durch den Einsatz der Membrantechnologie drastisch reduziert. Weiterhin wird der Chemikalieneinsatz drastisch gesenkt.
The development of sustainable and efficient energy conversion processes at interfaces is at the center of the rapidly growing field of basic energy science. How successful this challenge can be addressed will ultimately depend on the acquired degree of molecular-level understanding. In this respect, the severe knowledge gap in electro- or photocatalytic conversions compared to corresponding thermal processes in heterogeneous catalysis is staggering. This discrepancy is most blatant in the present status of predictive-quality, viz. first-principles based modelling in the two fields, which largely owes to multifactorial methodological issues connected with the treatment of the electrochemical environment and the description of the surface redox chemistry driven by the photo-excited charges or external potentials.Successfully tackling these complexities will advance modelling methodology in (photo)electrocatalysis to a similar level as already established in heterogeneous catalysis, with an impact that likely even supersedes the one seen there in the last decade. A corresponding method development is the core objective of the present proposal, with particular emphasis on numerically efficient approaches that will ultimately allow to reach comprehensive microkinetic formulations. Synergistically combining the methodological expertise of the two participating groups we specifically aim to implement and advance implicit and mixed implicit/explicit solvation models, as well as QM/MM approaches to describe energy-related processes at solid-liquid interfaces. With the clear objective to develop general-purpose methodology we will illustrate their use with applications to hydrogen generation through water splitting. Disentangling the electro- resp. photocatalytic effect with respect to the corresponding dark reaction, this concerns both the hydrogen evolution reaction at metal electrodes like Pt and direct water splitting at oxide photocatalysts like TiO2. Through this we expect to arrive at a detailed mechanistic understanding that will culminate in the formulation of comprehensive microkinetic models of the light- or potential-driven redox process. Evaluating these models with kinetic Monte Carlo simulations will unambiguously identify the rate-determining and overpotential-creating steps and therewith provide the basis for a rational optimization of the overall process. As such our study will provide a key example of how systematic method development in computational approaches to basic energy sciences leads to breakthrough progress and serves both fundamental understanding and cutting-edge application.
| Origin | Count |
|---|---|
| Bund | 1212 |
| Kommune | 2 |
| Land | 168 |
| Wirtschaft | 1 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Daten und Messstellen | 9 |
| Ereignis | 1 |
| Förderprogramm | 1018 |
| Infrastruktur | 8 |
| Text | 238 |
| Umweltprüfung | 84 |
| unbekannt | 28 |
| License | Count |
|---|---|
| geschlossen | 165 |
| offen | 1073 |
| unbekannt | 132 |
| Language | Count |
|---|---|
| Deutsch | 1275 |
| Englisch | 147 |
| Resource type | Count |
|---|---|
| Archiv | 133 |
| Bild | 4 |
| Datei | 135 |
| Dokument | 232 |
| Keine | 801 |
| Webdienst | 7 |
| Webseite | 354 |
| Topic | Count |
|---|---|
| Boden | 984 |
| Lebewesen und Lebensräume | 1080 |
| Luft | 650 |
| Mensch und Umwelt | 1370 |
| Wasser | 1370 |
| Weitere | 1346 |