API src

Found 7 results.

Prozessbasierte hydrologische Modellierung durch Integration von Pedologie, Geophysik und Bodenhydrologie

Die Quantifizierung von Boden-Wasser Interaktionen ist von großer Bedeutung für eine Reihe praktischer Anwendungen wie z.B. im Bewässerungsmanagement, bei der Nahrungsmittelproduktion oder im Hochwasserschutz. Trotzdem ist die genaue räumliche und zeitliche Schätzung der hydrologischen Zustände und Wasserflüsse nach wir vor eine große Herausforderung in der Hydrologie. Dies liegt daran, dass die meisten hydrologischen Prozesse stark nichtlinear und zudem durch zeitlich variable Randbedingungen kontrolliert sind. Daher werden numerische Modelle für ihre umfangreiche Beschreibung benötigt. Eine weitere Herausforderung ist die räumliche Heterogenität der Böden, deren Identifikation und Charakterisierung nach wie vor ein Gebiet intensiver Forschung im Gebiet der Hydrogeophysik ist. Bis heute gibt es nur sehr wenige Studien, die vorhandene Informationen aus der traditionellen bodenkundlichen Beschreibung, hydrologischem Monitoring, geophysikalischer Charakterisierung des Untergrundes und moderner hydrologischer Modellierung kombinieren, um zu einer umfangreichen Beschreibung der hydrologischen Prozesse zu kommen. Hauptziel dieses Projektes ist es, einen integrativen Ansatz für eine verbesserte prozessbasierte hydrologische Modellierung der ungesättigten Wasserflüsse auf der Hangskala anzuwenden. Der Ansatz basiert auf der Integration von klassischem pedologischem Wissen zur Bodenbeschreibung, präzisem Monitoring des Bodenwassergehalts, sowie auf Zeitreihen moderner geophysikalischer Messungen zur Erfassung der räumlichen Heterogenität des Untergrundes. Letztendlich sollen die gesamten gesammelten Informationen in einem physikalisch-basierten numerischen Modell integriert werden, welches in der Lage ist, die Bodenwasserflüsse inklusive der gesättigten und ungesättigten Wasserflüsse, Oberflächenabfluß, Evaporation, Wasseraufnahme durch Pflanzen, sowie Schneeakkumulation und -schmelze in hoher räumlicher und zeitlicher Auflösung zu simulieren. Das Projekt wird die derzeit vorhandenen Ansätze zur Schätzung der Bodenwasserflüsse um eine neue Dimension erweitern, da es die Möglichkeit bietet, durch Kombination die Potenziale der verfügbaren Mess- und Modellierungstechniken zu maximieren und die Quellen der Unsicherhheiten in den geschätzten hydrologischen Zuständen und Flüssen zu minimieren. Es wird wichtiges Wissen liefern, um diesen Ansatz auch auf größere Skalen zu übertragen, wo eine präzise Quantifizierung der Bodenwasserflüsse auf Betriebs- oder Einzugsgebietsskala für ein effizienteres Wasser- und Nährstoffmanagement im Zusammenhang mit einer nachhaltigen Nahrungsmittelproduktion in Zeiten Klimawandels benötigt wird.

Ertragsoptimierung schallkritischer Windenergie-Anlagen durch automatisierte Regelung von Betriebsmodi, Automatische Überwachungs-Messung, Regelung der Drosselungsmodi und Optimierung des Anlagenbetriebes schallkritischer Windenergie-Anlagen - Teilvorhaben: Ertragsoptimierung schallkritischer Windenergie-Anlagen durch automatisierte Regelung von Betriebsmodi

BioFusion - Biologische Transformation 4.0: Weiterentwicklung von Industrie 4.0 durch Integration biologischer Prinzipien, Teilprojekt: Ganzheitliches nachhaltiges Produktionssystem

A-SWARM - Autonome elektrische Schifffahrt auf Wasserstraßen in Metropolenregionen, Vorhaben: A-SWARM Interface

Ausbau des Datenmanagements zur Digitalisierung mariner Biodiversitätsdaten am BfN (Phase 2)

Vortrocknung von Nadelrundholz im Wald - WinterQualitätsHolz (WQH)

(...) Wegen fehlender eigener Kapazitäten zur technischen Trocknung und aufgrund des Termindrucks wird daher das Konstruktionsholz zumeist notgedrungen in deutlich zu nassem Zustand geliefert und eingebaut, was häufig genug zu Bauschäden führt. Kurzfristige Folgen sind Reklamationen und mangelhafte Kundenzufriedenheit. Langfristig drohen Imageverluste und ein Abwenden der Architekten und Bauherren vom Bau- und Werkstoff Holz. Es erscheint also aus technischen und wirtschaftlichen Gründen wie auch zur Pflege und Nutzung des positiven Produktimages des Baustoffes Holz in traditioneller Verwendung zielführend, die herkömmliche und vielerorts noch im Bewusstsein der Kunden verankerte Vorstellung vom sorgfältig im Wald ausgewählten, schonend zur Zeit der Saftruhe im Winter geschlagenen und langsam natürlich getrocknetem Stammholz aus heimischer Forstwirtschaft als spezifisches Produktkonzept aktiv und gezielt weiterzuentwickeln. Übergeordnete Fragestellung des Gesamtprojektes ist es, wie zukünftig anstelle von nassem und zum Teil auch imprägniertem Bauholz qualitativ hochwertiges, natürlich vorgetrocknetes und damit maßhaltiges und energiesparend bearbeitetes Holz in marktkonformer Sortierung bereitgestellt werden kann. Eine exakte wissenschaftliche Analyse, ob auf diesem Wege tatsächlich hinsichtlich der verwendungsrelevanten Parameter Trockenheit und Formstabilität Konstruktionsholz hinreichender Qualität erzeugt werden kann, ob die ins Auge gefassten ökologischen Vorteile durch Verzicht auf oder mindestens deutliche Abkürzung der energieintensiven technischen Trocknung tatsächlich realisiert werden können, wie die organisatorische Gestaltung der optimierten Produktionskette vorzunehmen ist, und schließlich wie die Kostenbelastung des Produkts einzuschätzen ist, fehlt bisher vollständig. Die genaue Kenntnis dieser Zusammenhänge erlaubt eine Abschätzung, ob das ins Auge gefasste Konzept der Erzeugung von qualitativ höherwertigerem Konstruktionsholz aus natürlich vorgetrocknetem Rundholz zu technisch akzeptablen Ergebnissen führt und eine optimierte Wertschöpfung für Waldbesitzer und Sägewerke zur Folge hat. In einem zur Zeit laufenden Forschungsprojekt in Zusammenarbeit mit dem Forstamt Schmallenberg und dem Sägerwerk Hegener-Hachmann, Hanxleden, Nordrhein-Westfalen, und unter der wissenschaftlichen Leitung des Instituts für Forstbenutzung und Forstliche Arbeitswissenschaft der Albert-Ludwigs-Universität Freiburg wird geprüft, ob alle biologischen und technologischen Möglichkeiten zur Trocknung von Fichtenholz ausgenutzt und in eine Produktionskette integriert werden können, so dass die für qualitativ hochwertiges, formstabiles Konstruktionsholz notwendige Holzfeuchte von u = 15 + 3 Prozent gänzlich ohne, oder aber mit deutlich verkürzter technischer Schnittholztrocknung erreicht werden kann.

Zuchtfortschritt bei Sommergerste und genetische Ressourcen bei Gerste

Die Demonstration und wissenschaftliche Auswertung des Zuchtfortschritts wird am Beispiel Sommergerste durchgeführt. Alte Landsorten aus der Zeit von 1830 bis 1940, Reselektionen aus diesen sowie erste Kreuzungssorten aus der Zeit von 1920 bis 1960 werden neben seit 1960 bedeutenden Sorten auf agronomische und qualitative Merkmale geprüft. Neben dem Ertragsfortschritt wird ein Hauptaugenmerk auf den Fortschritt in der Braueignung gelegt. Das alte Landsortenmaterial wird vor allem auf sein Potential im Hinblick auf neue Züchtungskriterien (Züchtung auf low-input bzw. für den biologischen Landbau) beobachtet. Weiters wird dieses Material - ergänzt um weitere genetische Ressourcen von Gerste, vor allem Nacktgersten - auf ihren Gehalt hinsichtlich ernährungsphysiologisch interessanter Inhaltsstoffe geprüft.

1