Das Projekt "ThWIC: Wasserwiederverwendung in der Landwirtschaft, Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Thüringer Bauernverband e.V..
Das Projekt "Graduiertenkolleg (GRK) 1565: Complex Terrain and Ecological Heterogeneity - Evaluating ecosystem services in production versus water yield and water quality in mountainous landscapes (TERRECO), Evaluation of WRF 3.2 with observed climate data in Haean (WP 1-01)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bayreuth, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Abteilung Mikrometeorologie.In this research we analyzed nocturnal temperature inversions in Haean Basin. Inversions are important phenomena for understanding meteorological and hydrological character of the basin region. Three automatic weather station data and tethered balloon soundings were used to analyze inversion strength, depth, and occurrence of inversions. Stronger and deep inversion was found during early summer while weaker but frequent inversions occurred during late September and early October. A significant influence of fog layer was found. The fog layer acts as a break during a cooling process. The fog appears usually in early mornings. During our experiment, average potential temperature change at the surface was -1.08 K/h without fog presence. When the fog appeared six hours average decreased to -0.23K/h. The most deep and strongest inversion of the studied period was 0.19 °C/m temperature gradient.
Das Projekt "Identification of groundwater nitrogen point source contribution through combined distribute temperature sensing and in-situ UV photometry" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement, Professur für Landschafts-, Wasser- und Stoffhaushalt.Agriculture is the major contributor of nitrogen to ecosystems, both by organic and inorganic fertilizers. Percolation of nitrate to groundwater and further transport to surface waters is assumed to be one of the major pathways in the fate of this nitrogen. The quantification of groundwater and associated nitrate flux to streams is still challenging. In particular because we lack understanding of the spatial distribution and temporal variability of groundwater and associated NO3- fluxes. In this preliminary study we will focus on the identification and quantification of groundwater and associated nitrate fluxes by combining high resolution distributed fiber-optic temperature sensing (DTS) with in situ UV photometry (ProPS). DTS is a new technique that is capable to measure temperature over distances of km with a spatial resolution of ca1 m and an accuracy of 0.01 K. It has been applied successfully to identify and quantify sources of groundwater discharge to streams. ProPS is a submersible UV process photometer, which uses high precision spectral analyses to provide single substance concentrations, in our case NO3-, at minute intervals and a detection limit of less than 0.05 mg l-1 (ca.0.01 mg NO3--Nl-1). We will conduct field experiments using artificial point sources of lateral inflow to test DTS and ProPS based quantification approaches and estimate their uncertainty. The selected study area is the Schwingbach catchment in Hessen, Germany, which has a good monitoring infrastructure. Preliminary research on hydrological fluxes and field observations indicate that the catchment favors the intended study.
Bewässerung aus dem Raumordnungskataster der Struktur- und Genehmigungsdirerektion Süd des Landes Rheinland-Pfalz
Die Klimabewertungskarten bieten die Grundlage für die Berücksichtigung klimatischer Belange bei den Planungen in der Stadtentwicklung. Es gibt insgesamt fünf Planungshinweiskarten. Die Bewertungen der Tag- und Nachsituation werden in einer Gesamtbewertung kumuliert. Zudem werden stadtklimatisch besonders belastete sowie vulnerable Gebiete sowie 16 Maßnahmenempfehlungen des Stadtentwicklungsplans (StEP) Klima 2.0, die u.a. zur Minderung der thermischen Belastung beitragen, dargestellt. den. Die Maßnahmeempfehlungen sind überschlägig auf Grundlage der Stadtstrukturtypen im Land Berlin bestimmt worden.
Im Schnitt nutzt jede Person in Deutschland täglich 126 Liter Trinkwasser im Haushalt. Für die Herstellung von Lebensmitteln, Bekleidung und anderen Bedarfsgütern wird dagegen so viel Wasser verwendet, dass es 7.200 Litern pro Person und Tag entspricht. Ein Großteil dieses indirekt genutzten Wassers wird für die Bewässerung von Obst, Gemüse, Nüssen, Getreide und Baumwolle benötigt. Direkte und indirekte Wassernutzung Jede Person in Deutschland verwendete im Jahr 2022 im Schnitt täglich 126 Liter Trinkwasser , etwa für Körperpflege, Kochen, Trinken, Wäschewaschen oder auch das Putzen (siehe Abb. „Trinkwasserverwendung im Haushalt 2023“). Darin ist auch die Verwendung von Trinkwasser im Kleingewerbe zum Beispiel in Metzgereien, Bäckereien und Arztpraxen enthalten. Der überwiegende Anteil des im Haushalt genutzten Trinkwassers wird für Reinigung, Körperpflege und Toilettenspülung verwendet. Nur geringe Anteile nutzen wir tatsächlich zum Trinken und für die Zubereitung von Lebensmitteln. Die tägliche Trinkwassernutzung im Haushalt und Kleingewerbe ging von 144 Liter pro Kopf und Tag im Jahr 1991 lange Jahre zurück bis auf täglich 123 Liter pro Kopf im Jahr 2016. 2019 wurden von im Schnitt täglich 128 Liter pro Person verbraucht, 2022 waren es 126 Liter. Der Anstieg im Vergleich zu 2016 begründet sich durch den höheren Wasserbedarf in den jeweils heißen und trockenen Sommermonaten (siehe Abb. „Tägliche Wasserverwendung pro Kopf“). Doch wir nutzen Wasser nicht nur direkt als Trinkwasser. In Lebensmitteln, Kleidungstücken und anderen Produkten ist indirekt Wasser enthalten, das für ihre industrielle Herstellung eingesetzt wurde oder für die Bewässerung während der landwirtschaftlichen Erzeugung. Dieses Wasser wird als virtuelles Wasser bezeichnet. Virtuelles Wasser zeigt an, wie viel Wasser für die Herstellung von Produkten benötigt wurde. Deutschlands Wasserfußabdruck Das virtuelle Wasser ist Teil des „Wasserfußabdrucks“ , der die direkt und indirekt verbrauchte Wassermenge einer Person, eines Unternehmens oder Landes angibt. Das Besondere des Konzepts ist, dass die Wassermenge, die in den Herstellungsregionen für die Produktion eingesetzt, verdunstet oder verschmutzt wird, mit dem Konsum dieser Waren im In- und Ausland in Verbindung gebracht wird. Der Wasserfußabdruck macht deutlich, dass sich unser Konsum auf die Wasserressourcen weltweit auswirkt. Der durch Konsum verursachte, kurz konsuminduzierte Wasserfußabdruck eines Landes, wird auf folgende Weise berechnet; in den Klammern werden die Werte des Jahres 2021 für Deutschland in Milliarden Kubikmetern (Mrd. m³) ausgewiesen: Nutzung heimischer Wasservorkommen – Export virtuellen Wassers (= 30,66 Mrd. m³) + Import virtuellen Wassers (188,34 Mrd. m³) = konsuminduzierter Wasserfußabdruck (219 Mrd. m³) Bei einem Wasserfußabdruck von 219 Milliarden Kubikmetern hinterlässt jede Person in Deutschland durch ihren Konsum einen Wasserfußabdruck von rund 2.628 Kubikmetern jährlich – das sind 7,2 Kubikmeter oder 7.200 Liter täglich. 86 % des Wassers, das man für die Herstellung der in Deutschland konsumierten Waren benötigt, wird im Ausland verbraucht. Für Kleidung sind es sogar nahezu 100 %. Grünes, blaues und graues Wasser Beim Wasserfußabdruck wird zwischen „grünem“, „blauem“ und „grauem“ Wasser unterschieden. Als „grün“ gilt natürlich vorkommendes Boden- und Regenwasser, welches Pflanzen aufnehmen und verdunsten. Als „blau“ wird Wasser bezeichnet, das aus Grund- und Oberflächengewässern entnommen wird, um Produkte wie Textilien herzustellen oder Felder und Plantagen zu bewässern. Vor allem Agrarprodukte haben einen großen Anteil am blauen Wasserfußabdruck von Deutschland (siehe Abb. „Sektoren mit den höchsten Beiträgen blauen Wassers zum Wasserfußabdruck von Deutschland“). Der graue Wasserfußabdruck veranschaulicht die Verunreinigung von Süßwasser durch die Herstellung eines Produkts. Er ist definiert als die Menge an Süßwasser, die erforderlich ist, um Gewässerverunreinigungen so weit zu verdünnen, dass die Wasserqualität die gesetzlichen oder vereinbarten Anforderungen einhält. Bei den nach Deutschland eingeführten Agrarrohstoffen und Baumwollerzeugnissen sind die Anteile an grünem, blauem und grauem Wasser auch bei gleichen Produkten je nach Herkunft unterschiedlich hoch: Für ein Kilogramm Kartoffeln aus Deutschland werden 119 Liter Wasser benötigt. Davon ist mit 84 Litern der größte Teil grünes Wasser. Für die gleiche Menge an Kartoffeln aus Israel werden 203 Liter eingesetzt. Davon sind 103 Liter blaues und 56 Liter graues Wasser. Für Kartoffeln aus Ägypten werden 418 Liter benötigt. Mit 278 Litern blauem und 118 Litern grauem Wasser steckt damit im Vergleich zu israelischen Kartoffeln sogar noch das Zweieinhalbfache blauen und grauen Wassers in ihnen. Daher ist der Kauf dieser Kartoffeln am problematischsten. Obwohl in Usbekistan für den Anbau der Baumwolle mit 13.160 Litern pro Kilogramm weniger Wasser benötigt wird als in Afrika, wo man für dieselbe Menge Baumwolle 22.583 Liter pro Kilogramm einsetzt, ist der Anbau in einem regenreichen afrikanischen Land wie Mosambik weniger problematisch: Mit 22.411 Litern an grünem Wasser und 172 Litern an grauem Wasser sind die Auswirkungen für den Anbau von einem Kilogramm Baumwolle weniger gravierend als in Usbekistan mit nur 203 Litern grünem Wasser. Dort werden 12.943 Liter des verwendeten Wassers als problematisch eingeschätzt, weil mit 11.126 Litern der Großteil des Bewässerungswassers dazu beiträgt, dass die geringen Wasserressourcen des Landes durch den Baumwollanbau bedroht sind. Außerdem verursacht ein Anteil von 1.817 Litern grauem Wasser am Wasserfußabdruck von einem Kilogramm Baumwolle aus Usbekistan eine beträchtliche Verschmutzung. Bei der Entnahme von blauem Wasser zur Bewässerung von Plantagen kann es zu ökologischen Schäden und lokalen Nutzungskonflikten kommen. Ein bekanntes Beispiel ist der Aralsee: Der einst viertgrößte Binnensee der Erde war im Jahr 1960 mit einer Fläche von 67.500 Quadratkilometern nur etwas kleiner als Bayern. Heute bedeckt er aufgrund gigantischer Wasserentnahmen für den Anbau von Baumwolle und Weizen nur noch etwa 10 % seiner ehemaligen Fläche. Bis 2014 verlor er 95 % seines Wasservolumens bei einem gleichzeitigen Anstieg des Salzgehalts um das Tausendfache. Auch in weiteren Gebieten auf der ganzen Welt trägt der Konsum in Deutschland dazu bei, dass deren Belastbarkeit überschritten wird (siehe Karte „Hotspots des Blauwasserverbrauchs mit Überschreitung der Belastbarkeitsgrenzen durch Konsum in Deutschland“).
Das Projekt "Wiederverwendung: Nutzwasserbereitstellung und Planungsoptionen für die urbane und landwirtschaftliche Bewässerung (Nutzwasser als alternative Wasserressource), Teilprojekt 4" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Regierung von Unterfranken.
Das Projekt "ThWIC: Wasserwiederverwendung in der Landwirtschaft, Teilprojekt B" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: WTA UNISOL GmbH.
Das Projekt "Forest management in the Earth system" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Meteorologie.The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Das Projekt "Linking nutrient cycles, land use and biodiversity along an elevation gradient on Mt. Kilimanjaro" wird/wurde ausgeführt durch: Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Agrarökosystemforschung.To understand impacts of climate and land use changes on biodiversity and accompanying ecosystem stability and services at the Mt. Kilimanjaro, detailed understanding and description of the current biotic and abiotic controls on ecosystem C and nutrient fluxes are needed. Therefore, cycles of main nutrients and typomorph elements (C, N, P, K, Ca, Mg, S, Si) will be quantitatively described on pedon and stand level scale depending on climate (altitude gradient) and land use (natural vs. agricultural ecosystems). Total and available pools of the elements will be quantified in litter and soils for 6 dominant (agro)ecosystems and related to soil greenhouse gas emissions (CO2, N2O, CH4). 13C and 15N tracers will be used at small plots for exact quantification of C and N fluxes by decomposition of plant residues (SP7), mineralization, nitrification, denitrification and incorporation into soil organic matter pools with various stability. 13C compound-specific isotope analyses in microbial biomarkers (13C-PLFA) will evaluate the changes of key biota as dependent on climate and land use. Greenhouse gas (GHG) emissions and leaching losses of nutrients from the (agro)ecosystems and the increase of the losses by conversion of natural ecosystems to agriculture will be evaluated and linked with changing vegetation diversity (SP4), vegetation biomass (SP2), decomposers community (SP7) and plant functional traits (SP5). Nutrient pools, turnover and fluxes will be linked with water cycle (SP2), CO2 and H2O vegetation exchange (SP2) allowing to describe ecosystem specific nutrient and water characteristics including the derivation of full GHG balances. Based on 60 plots screening stand level scale biogeochemical models will be tested, adapted and applied for simulation of key ecosystem processes along climate (SP1) and land use gradients.
Origin | Count |
---|---|
Bund | 1809 |
Global | 1 |
Land | 169 |
Wissenschaft | 5 |
Type | Count |
---|---|
Ereignis | 6 |
Förderprogramm | 1736 |
Text | 100 |
Umweltprüfung | 82 |
unbekannt | 56 |
License | Count |
---|---|
geschlossen | 204 |
offen | 1764 |
unbekannt | 12 |
Language | Count |
---|---|
Deutsch | 1295 |
Englisch | 887 |
Resource type | Count |
---|---|
Archiv | 6 |
Bild | 2 |
Datei | 15 |
Dokument | 119 |
Keine | 1297 |
Unbekannt | 1 |
Webdienst | 2 |
Webseite | 589 |
Topic | Count |
---|---|
Boden | 1980 |
Lebewesen & Lebensräume | 1819 |
Luft | 1274 |
Mensch & Umwelt | 1980 |
Wasser | 1980 |
Weitere | 1980 |