API src

Found 6163 results.

Similar terms

s/bewerbung/Bewertung/gi

Umweltgerechtigkeit 2021/2022 (Umweltatlas)

Umweltgerechtigkeit in Berlin 2021/22 durch die Bewertung der Kernindikatoren Lärmbelastung, Luftbelastung, Grünversorgung, Thermische Belastung, Soziale Benachteiligung sowie der Darstellung der Integrierten Mehrfachbelastung, Integrierten Mehrfachbelastung einschließlich des Kernindikators Soziale Benachteiligung sowie der Integrierten Mehrfachbelastung einschließlich des Kernindikators Soziale Benachteiligung und weiterer Ergänzungsindikatoren als "Berliner Umweltgerechtigkeitskarte".

SÖF: Regulation von Grundwasser in telegekoppelten sozial-ökologischen Systemen, Teilprojekt 3: Ökologische Stressoren und Wirkungen.

Föhnstudien im Rheintal in Österreich während MAP

Im Rahmen des 'Mesoscale Alpine Programme' (MAP), einer internationalen kooperativen Forschungsinitiative zahlreicher Institutionen europäischen und außereuropäischer Länder zum Studium intensiver Wettervorgänge im Alpenraum, ist die Erforschung des Föhns als ein Schwerpunkt festgelegt worden. Das Alpenrheintal von seinem Ursprung an den Pässen des Alpenhauptkamms bis zum Bodensee, einschließlich der Seitentäler, wurde von den internationalen MAP Gremien zum Zielgebiet ausgewählt. Diese Region wird in einer gemeinsamen Aktion im kommenden Jahr von einem dichten Beobachtungsnetz überzogen um den Atmosphärenzustand während interessanter meteorologischer Situationen zu erfassen. Der vorliegende Forschungsantrag soll einer der österreichischen Beiträge zu dieser internationalen Initiative werden. Er ist so angelegt, dass er einerseits die Messungen der zahlreichen anderen Forschergruppen durch zusätzliche Messungen ergänzt, anderseits werden eigene Forschungsziele verfolgt. Die entsprechenden Fragestellungen sollen dann anhand des gemeinsamen MAP Datensatzes studiert werden. Das vorliegende Projekt verfolgt zwei Hauptziele, nämlich (1) die Erfassung der kleinskaligen räumlich zeitlichen Variabilität und des Lebenszyklus von Föhnepisoden in Bodennähe, und (2) die Beobachtung der Struktur der Föhnströmung in der unteren und mittleren Troposphäre, wobei vor allem auf die Wechselwirkung zwischen den Strömungsprozessen in Tälern verschiedener Länge, Breite und Richtung eingegangen werden soll. Als weiteres Ziel ist die Qualitäts-Evaluierung der erhobenen Messdaten zu nennen, die mittels eines ausgeklügelten Verfahrens durchgeführt werden soll, welches in der jüngsten Zeit von den Antragstellern entwickelt wurde. Die qualitätsgeprüften Messungen sollen schließlich dem internationalen MAP Datenzentrum für die weitere Bearbeitung zur Verfügung gestellt werden, von wo die Antragsteller dann als Gegenleistung auch die Beobachtungsdaten der anderen beteiligten Forschergruppen beziehen können. Das Alpenrheingebiet wurde deshalb als Zielgebiet ausgewählt, weil dort klimatologisch eine der höchsten Wahrscheinlichkeiten für Föhn im Alpenraum vorliegt und die Länder Österreich, Schweiz und Deutschland betroffen sind. Außer an wenigen langjährigen Klimastationen ist bisher wenig über die kleinräumige Struktur von Föhn in dem von den Antragstellern ausgewählten Gebiet bekannt, nämlich dem Walgau von Bludenz bis Feldkirch und dem Brandner Tal, südlich von Bludenz. Eine bessere Kenntnis und vor allem eine besser Vorhersage von Föhn in diesem Gebiet ist von großem praktischem Wert, da immer wieder Schäden durch Föhn (z. B. Sturmschäden) auftreten und plötzlich und unerwartet auftretende Windböen und Turbulenz eine beträchtliche Gefahr für die Luftfahrt, insbesondere für motorlose Fluggeräte darstellt. usw.

Forest management in the Earth system

The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.

Untersuchung und Bewertung von Staub, Endotoxin, Schadgasen und Keimen in ausgewählten Stallsystemen mit freier Lüftung

Ziel: Das Ziel ist die Erfassung und Bewertung von Emissionen in 13 modernen Rinder-, Schweine- und Geflügelstallungen in Bayern unter den Aspekten Arbeitsmedizin, Tiergesundheit und Umweltwirkung. Methodik: Die ganztägigen Messkampanien erfolgen von Sommer 2004 bis Frühjahr 2005. Ergebnisse: Erste Auswertungen erfolgen im Frühjahr 2005.

Erhaltung und Nachzucht seltener Baum- und Straucharten

Ziel des Projektes ist die langfristige Sicherung und Erhaltung von Vorkommen seltener Baumarten, sowie die Etablierung neuer/verjüngter Vorkommen an geeigneten Standorten. Zunächst erfolgt die Evaluierung, Auswahl und Beerntung erhaltungswürdiger Bäume aus südwest-deutschen Wald- und Feldvorkommen (insbes. Elsbeere, Speierling, Wildapfel, Wildbirne, Schwarzpappel, Ulme, Walnuss und Eibe; außerdem Straucharten) mit entsprechender Dokumentation. Anschließend erfolgt eine vegetative und generative Weitervermehrung zum Aufbau von Erhaltungs-Klonsammlungen bzw. zum Aufbau von Erhaltungs-Samenplantagen, (ex-situ Generhaltung). Parallel dazu werden o.g. seltene Baumarten vegetativ und generativ mit 1- bis 3-jähriger Kulturzeit nachgezogen und an interessierte bzw. am Evaluierungsprozess beteiligte Forstämter abgegeben (in-situ Generhaltung) und dort langfristig weiterbeobachtet.

Transformation of organic carbon in the terrestrial-aquatic interface

The overarching goal of our proposal is to understand the regulation of organic carbon (OC) transfor-mation across terrestrial-aquatic interfaces from soil, to lotic and lentic waters, with emphasis on ephemeral streams. These systems considerably expand the terrestrial-aquatic interface and are thus potential sites for intensive OC-transformation. Despite the different environmental conditions of ter-restrial, semi-aquatic and aquatic sites, likely major factors for the transformation of OC at all sites are the quality of the organic matter, the supply with oxygen and nutrients and the water regime. We will target the effects of (1) OC quality and priming, (2) stream sediment properties that control the advective supply of hyporheic sediments with oxygen and nutrients, and (3) the water regime. The responses of sediment associated metabolic activities, C turn-over, C-flow in the microbial food web, and the combined transformations of terrestrial and aquatic OC will be quantified and characterized in complementary laboratory and field experiments. Analogous mesocosm experiments in terrestrial soil, ephemeral and perennial streams and pond shore will be conducted in the experimental Chicken Creek catchment. This research site is ideal due to a wide but well-defined terrestrial-aquatic transition zone and due to low background concentrations of labile organic carbon. The studies will benefit from new methodologies and techniques, including development of hyporheic flow path tubes and comparative assessment of soil and stream sediment respiration with methods from soil and aquatic sciences. We will combine tracer techniques to assess advective supply of sediments, respiration measurements, greenhouse gas flux measurements, isotope labeling, and isotope natural abundance studies. Our studies will contribute to the understanding of OC mineralization and thus CO2 emissions across terrestrial and aquatic systems. A deeper knowledge of OC-transformation in the terrestrial-aquatic interface is of high relevance for the modelling of carbon flow through landscapes and for the understanding of the global C cycle.

Evaluation des Feldversuchs zum Energiepass für Gebäude

FeinPhone - Partizpatorische Feinstaubmessungen mit Smartphones in Szenarien zukünftiger Smart Cities

Von Feinstaub können erhebliche Gesundheitsrisiken ausgehen: Er kann beim Menschen in die Atemwege und sogar bis in die Lungenbläschen oder den Blutkreislauf eindringen. Dort kann er Zellen schädigen oder auch andere toxische Stoffe tief in den Körper bringen. Die Feinstaubbelastung in Städten wird heute durch teure, statische Messstationen mit schlechter räumlicher und zeitlicher Auflösung überwacht. Um feingranulare dynamische Belastungskarten und reaktive Systeme in Szenarien zukünftiger Smart Cities zu ermöglichen, müssten dichte, verteilte Messungen vorgenommen werden. Eine Möglichkeit dafür sind partizipatorische Messungen auf Basis von Sensorik in Smartphones. Beim sogenannten 'Participatory Sensing' werden Privatpersonen mit kostengünstigen mobilen Sensoren ausgestattet, etwa integriert in bereits vorhandene Smartphones oder als eigenständige Geräte. Durch die Mobilität der einzelnen Teilnehmer kann eine höhere räumliche Auflösung erreicht werden. Beispiele für die erfolgreiche Umsetzung solcher Ansätze sind etwa Systeme zur Erstellung von Geräuschbelastungskarten oder zur Erfassung von Schlaglöchern, kaputten Ampeln und Verschmutzungen in Städten. Während solche Projekte meist auf regulären Smartphones und der darin verbauten Sensorik basieren, existieren integrierte Sensoren zur Messung von Feinstäuben in Smartphones noch nicht. Vergangene Arbeiten haben jedoch gezeigt, dass die Hintergrund-Feinstaubbelastung selbst mit äußerst einfachen, bereits relativ kleinen Staubsensoren erfasst werden kann. Prinzipiell ist es auch möglich das Messprinzip dieser Sensoren (Lichtstreuung) an Smartphones mit integrierter Kamera zu adaptieren. Das Projekt FeinPhone hat das Ziel, eine solche neuartige Sensorkomponente für Smartphones zur Messung von Feinstaub zu entwickeln und zu evaluieren und im Zuge der Evaluation ggf. einen Referenzdatensatz für die zukünftige Algorithmenentwicklung zu schaffen. Dies schließt das Design der externen Sensorhardware sowie geeigneter Algorithmen zur Verarbeitung der aufgenommenen Daten ein.

Entwicklung eines Zertifizierungssystems für nachhaltige Stadtquartiere, in Zusammenarbeit mit der DGNB (Deutsche Gesellschaft nachhaltiges Bauen e.V.)

Wie die Vielzahl der in den letzten Jahren entwickelten Audits, Evaluierungen und auch 'Labels' zeigt, gibt es einen deutlichen Trend, Qualitäten - möglichst durch Zahlen, Indikatoren und Vergleiche - mess- und damit öffentlich kommunizierbar zu machen. Dies gilt auch für den Bereich der Stadtentwicklung und veranlasste das Städtebau-Institut zur Forschung an dem Thema 'Zertifizierung in der Stadtentwicklung'. Der wachsende Handlungsbedarf auf Stadtebene - z.B. Klimawandel, Energiekosten, Städtewettbewerb, demografischer Wandel, zunehmende soziale Spaltung der Gesellschaft und wirtschaftliche Rahmenbedingungen -, erfordert es, kontinuierlich über Anforderungsniveaus in Stadtentwicklung, Städtebau und Stadtplanung nachzudenken. Vereinbarungen über Qualitätsbewertungen bzw. -standards sind unabdingbar, da Stadtentwicklungsprozesse - besonders auf lange Sicht - eine hohe Variabilität aufweisen. Begleitend zur Forschung beteiligt sich das Städtebau-Institut der Universität Stuttgart an der Entwicklung eines Zertifizierungssystems für nachhaltige Stadtquartiere, welches von der deutschen Gesellschaft für Nachhaltiges Bauen (DGNB) entwickelt wird. In der Entwicklungsphase des Zertifizierungssystems sollen folgende Fragen geklärt werden: - Ist Zertifizierung grundsätzlich - und im Kontext der etablierten Instrumente Evaluation und Monitoring - ein Erfolg versprechendes Instrument, um Nachhaltigkeit in der Stadtentwicklung zu befördern? - Sind die bestehenden angloamerikanischen Ansätze auf die Verhältnisse in Deutschland übertragbar oder müssen Zertifizierungsansätze in Deutschland anders konzipiert werden? - Welche Ziele, Kriterien und Indikatoren müssen bei der Bewertung von nachhaltigen Stadtquartieren herangezogen werden? - Wie können die Indikatoren berechnet werden?

1 2 3 4 5615 616 617