This database expands the Poulton et al., 2018 (doi:10.1594/PANGAEA.888182) database of pelagic calcium carbonate (CP) rate measurements from isotopic tracer uptake in incubated discrete water samples, as discussed in Daniels et al., 2018 (doi:10.5194/essd-10-1859-2018), and accompanies Marsh et al. (in prep.). The database now includes more CP (new data n = 400; complete database n = 3165), net primary production rate (PP) (new data n = 399; complete database n = 3150), total coccolithophore cell counts (new data n = 240; complete database n = 1512), and Emiliania huxleyi cell counts (new data n = 27; complete database n = 612). This expanded database maintains the record of data, including the principal investigator, expedition, OS region, doi reference (where available), collection date and year, sample ID, latitude, longitude, sampling and light depth, and method of measuring CP. We further expand the Poulton et al. (2018) data collection by including ancillary and environmental data, including: optical depth (OD, n = 3165), pHtotal (hereinafter referred to as pHT, n = 398), temperature (n = 1160), salinity (n = 1161), and the concentrations of chlorophyll a (n = 1363), NOx (NO3 or the sum of NO3 + NO2, n = 1161), silicic acid (Si(OH)4, n= 1156), phosphate (PO4, n = 1232), dissolved inorganic carbon (DIC, n = 318), total alkalinity (TA, n = 307), bicarbonate ion concentration (n = 349), and carbonate ion concentration (n = 352). All data was matched to CP, sample bottle identifiers (Niskin bottle numbers), and/or sampling depth values. This global database (81 °N - 64 °S, 132 °E - 174 °W) now covers expeditions and upper ocean measurements (0 - 193 m) from 1989 to 2024. Global in-situ geolocated data spanning time is valuable for modelling, satellite algorithms, and capturing calcium carbonate production in the global ocean. This expanded database, including the environmental, nutrient, chlorophyll a, and carbonate chemistry data, also allows for analysis of factors influencing calcium carbonate production on a global scale. This data amalgamation contributes to understanding the biogeochemistry of the oceans, global carbon cycle, and ocean acidification.
Hydrogencarbonat-Hintergrundwerte im Grundwasser von Niedersachsen 1 : 500.000 Die natürliche Grundwasserbeschaffenheit ist maßgeblich durch die Wechselwirkung zwischen Grundwasser und der durchströmten Gesteinsmatrix geprägt. In Deutschland sind die Grundwässer jedoch durch anthropogene Handlungen wie z.B. Ackerbau, Rodung und Maßnahmen zur Grundwasserentnahme ubiquitär überprägt. Einflüsse einer Jahrhunderte alten Kulturlandschaft können dennoch als natürlich betrachtet werden (Funkel et al. 2004). Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte u.a. für gelöstes Hydrogencarbonat im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Hydrogencarbonat umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters sowie in Kontakt mit einer Jahrhunderte alten Kulturlandschaft einstellen. Die Karte zeigt farblich differenziert Klassen der Hydrogencarbonat-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Für Hydrogencarbonat im Grundwasser gibt es aktuell keine Grenz-, Prüf- oder Richtwerte, weil Hydrogencarbonat weder ökotoxikologisch noch gesundheitlich als bedenklich betrachtet wird. Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Informationen zu den Daten: Die genutzten Grundwasseranalysen stammen aus der Datenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Hintergrundwerte sind definiert als das 90.-Perzentil der Normalpopulation der geogenen Konzentration des analysierten Parameters. Zur Bestimmung der Hintergrundwerte wurde die jeweils aktuellste Analyse einer Grundwassermessstelle verwendet. Bei zu geringer Probenzahl (n < 10) wurden, soweit möglich, lithologisch ähnliche Teilräume zu einem gemeinsamen Hintergrundwert zusammengefasst. Die Ermittlung der Hintergrundwerte folgte dem Verfahren zur statistischen Auswertung der Daten mittels Wahrscheinlichkeitsnetz der Staatlichen Geologischen Dienste (Wagner et al., 2011). Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016. Funkel R., Voigt H.-J., Wendland F., Hannappel S. (2004): Die natürliche ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland, Forschungszentrum Jülich GmbH (47), ISBN: 3-89336-353-X. WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg.
Um die globale Erwärmung zu einzudämmen, ist der Entzug von Kohlendioxid (CDR) aus der Atmosphäre dringend in erheblichem Maßstab erforderlich. Zwei heute bereits verfügbare Negativ-Emissionstechnologien (NET) sind die beschleunigte Verwitterung von silikatischem Gestein (engl. enhanced weathering - EW) und die pyrogene Kohlenstoffabscheidung und -speicherung (engl. pyrogenic carbon capture and storage - PyCCS). Bei EW wird vulkanisches Gesteinsmehl in landwirtschaftliche Böden eingebracht, wo dieses mit CO2 reagiert und gelöstes Bicarbonat bildet, das durch weitere Reaktionen im Boden als Karbonat ausfallen kann oder über die Bodenlösung in Grund- und Oberflächengewässer gelangt und in die Ozeane transportiert wird. Bei PyCCS erfolgt der CO2-Entzug durch Photosynthese (Produktion von Biomasse). Anschließend wandelt die Pyrolyse die Biomasse und damit den pflanzlich aufgenommenen Kohlenstoff in eine stabile Form um, die, wenn sie in den Boden eingebracht wird, für Jahrhunderte stabil bleibt. Die Kombination dieser beiden NETs, d. h. pyrogene und mineralische Kohlenstoffabscheidung und -speicherung (PyMiCCS), könnte das C-Senken Potenzial pro bewirtschafteter Flächeneinheit maximieren und die positiven Effekte auf die Bodenfruchtbarkeit vereinen und verstärken. Allerdings sind systematische Untersuchungen zu den Materialeigenschaften, zur Kinetik der Verwitterung von Silikatgestein in Gegenwart von pyrogenem Kohlenstoff, zur C-Effizienz der Pyrolyse, zu möglichen Umweltrisiken und zur kombinierten Wirkung beider NETs auf das Pflanzenwachstum erforderlich. Darüber hinaus muss die CDR-Dynamik dieser kombinierten C-Senken erfasst werden, um die Bewertung von PyMiCCS gegenüber anderen NETs zu ermöglichen. Zu diesem Zweck werden sowohl Mischungen aus Pflanzenkohle und Gesteinsmehl als auch Co-Pyrolysate aus Biomasse und Gesteinsmehl experimentell im Kilogramm-Maßstab hergestellt. Diese PyMiCCS-Materialien werden in Säulen- und Gewächshausversuchen eingesetzt. Verwitterungsraten, Nährstoffauswaschung und Pflanzenwachstum werden quantifiziert. Sowohl frische als auch gealterte Pflanzenkohlen werden spektro-mikroskopisch untersucht, um den Einfluss des Gesteinsmehls auf die Speziierung des pyrogenen Kohlenstoffs zu charakterisieren. An gealterter Pflanzenkohle, die aus den Gewächshausexperimenten gewonnen wird, wird der Einfluss des Gesteinsmehls auf den Alterungsprozess untersucht, insbesondere auf die Bildung der organischen Beschichtung der Pflanzenkohle. Diese Beschichtung trägt maßgeblich zur Fähigkeit der Pflanzenkohle bei, hochmobile Pflanzennährstoffe wie Nitrat zurückzuhalten, was eine wichtige Eigenschaft von (gealterter) Pflanzenkohle ist. Basierend auf den experimentellen Daten und Literaturarbeit wird die CDR-Dynamik der PyMiCCS C-Senke beschrieben, um eine spätere Zertifizierung solcher Kohlenstoffsenken zu ermöglichen.
Zielsetzung und Anlass des Vorhabens: Ziel der letzten Projektphase war es, mit einer Langzeit-Praxiserprobung das zweistufige biologische Verfahren zur Deponiesickerwasserreinigung als Stand der Technik zu etablieren und zu bilanzieren. Nach der Inbetriebnahme des Technikums am Deponiestandort Schöneiche ging es in der zwölfmonatigen Laufzeit des Projektes AZ 14996/04 in den Langzeitversuchen um die Validierung der Laborergebnisse im technischen Maßstab, die verfahrenstechnische Optimierung der Anlage und um eine damit verbundene mögliche Kostenreduzierung des Systems. Darstellung der Arbeitsschritte und der angewandten Methoden: Nach dem ersten Technikums-Probebetrieb wurde eine Reihe von Optimierungsmaßnahmen durchgeführt: - der Umbau des Rohsickerwasserzulaufs, - die Verwendung von Soda statt Bicarbonat für die Ammoniumoxidation in Reaktor 2, - der Einsatz von Membrandosierpumpen mit integrierten Rückschlagventilen für die Zugabe von Soda und Essigsäure, - der Einbau von zusätzlichen Polyurethan-Festbetten zur Vergrößerung der Oberfläche für die Besiedlung mit Mikroorganismen, - die Einstellung des Sollwerts für Reaktor 4 auf einen pH-Wert von 6,5, - ein Update der SPS-Steuerung der Nanofiltration zur freien Programmierung der Spülzyklen, - der Einbau eines Absperrhahns vor den Nanofiltrations-Vorfilter - und die Trennung des Nanofiltrationsablaufs vom Reaktoren-Sammelablauf zur Behälterleerung. Es wurde sowohl Rohsickerwasser der MEAB-Deponie Schöneiche als auch Sickerwasserkonzentrat der Deponie Vorketzin behandelt. Fazit: Wegen der durchgeführten Optimierungsmaßnahmen ist es prinzipiell gelungen, das Schöneicher Rohsickerwasser gemäß Anhang 51 der Abwasserverordnung aufzureinigen. In Vorketzin wurde die organische Belastung über 70% und Stickstoff über 80% reduziert. Nach Rückgang der Calciumfracht sollte es zukünftig möglich sein, mit der Zweistufen-Biologie das Sickerwasserkonzentrat ausreichend zu reinigen, da organische Belastung und Stickstoffgehalt geringer als im Schöneicher Rohsickerwasser sind. Um das Verfahren als Stand der Technik, vor allem für die Behandlung von Sickerwasserkonzentraten, zu etablieren, müssten die Laborvorgaben mit den Erfahrungen des Technikumsbetriebs kombiniert und in einer weiteren Versuchsreihe unter optimierten Bedingungen verifiziert werden.
Hydrogencarbonat-Hintergrundwerte im Grundwasser von Niedersachsen 1 : 500.000 Die natürliche Grundwasserbeschaffenheit ist maßgeblich durch die Wechselwirkung zwischen Grundwasser und der durchströmten Gesteinsmatrix geprägt. In Deutschland sind die Grundwässer jedoch durch anthropogene Handlungen wie z.B. Ackerbau, Rodung und Maßnahmen zur Grundwasserentnahme ubiquitär überprägt. Einflüsse einer Jahrhunderte alten Kulturlandschaft können dennoch als natürlich betrachtet werden (Funkel et al. 2004). Zur Erfüllung der Aufgaben aus der EG-Wasserrahmenrichtlinie (EG-WRRL) wurden für die hydrogeologischen Teilräume Niedersachsens (Elbracht et al., 2016) Hintergrundwerte u.a. für gelöstes Hydrogencarbonat im Grundwasser ermittelt. Die Hintergrundwerte von gelöstem Hydrogencarbonat umfassen die Gehalte, welche sich unter natürlichen Bedingungen durch den Kontakt des Grundwassers mit der umgebenden Gesteinsmatrix des Grundwasserleiters sowie in Kontakt mit einer Jahrhunderte alten Kulturlandschaft einstellen. Die Karte zeigt farblich differenziert Klassen der Hydrogencarbonat-Hintergrundwerte der hydrogeologischen Teilräume Niedersachsens. Für Hydrogencarbonat im Grundwasser gibt es aktuell keine Grenz-, Prüf- oder Richtwerte, weil Hydrogencarbonat weder ökotoxikologisch noch gesundheitlich als bedenklich betrachtet wird. Durch das Auswählen eines Teilraumes gelangt man zu weiterführenden Informationen (z.B. Probenanzahl, zusammengefasste Teilräume, etc.). Informationen zu den Daten: Die genutzten Grundwasseranalysen stammen aus der Datenbank des Niedersächsischen Bodeninformationssystems (NIBIS). Hintergrundwerte sind definiert als das 90.-Perzentil der Normalpopulation der geogenen Konzentration des analysierten Parameters. Zur Bestimmung der Hintergrundwerte wurde die jeweils aktuellste Analyse einer Grundwassermessstelle verwendet. Bei zu geringer Probenzahl (n < 10) wurden, soweit möglich, lithologisch ähnliche Teilräume zu einem gemeinsamen Hintergrundwert zusammengefasst. Die Ermittlung der Hintergrundwerte folgte dem Verfahren zur statistischen Auswertung der Daten mittels Wahrscheinlichkeitsnetz der Staatlichen Geologischen Dienste (Wagner et al., 2011). Quellen: ELBRACHT, J., MEYER, R. & REUTTER, E. (2016): Hydrogeologische Räume und Teilräume in Niedersachsen. – GeoBerichte 3, LBEG, Hannover. DOI: 10.48476/geober_3_2016. Funkel R., Voigt H.-J., Wendland F., Hannappel S. (2004): Die natürliche ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland, Forschungszentrum Jülich GmbH (47), ISBN: 3-89336-353-X. WAGNER, B., WALTER, T., HIMMELSBACH, T., CLOS, P., BEER, A., BUDZIAK, D., DREHER, T., FRITSCHE, H.-G., HÜBSCHMANN, M., MARCZINEK, S., PETERS, A., POESER, H., SCHUSTER, H., STEINEL, A., WAGNER, F. & WIRSING, G. (2011): Hydrogeochemische Hintergrundwerte der Grundwässer Deutschlands als Web Map Service. – Grundwasser 16(3): 155-162; Springer, Berlin / Heidelberg.
Anzahl der Proben: 19 Gemessener Parameter: Der anorganische Kohlenstoffgehalt (Total Inorganic Carbon, TIC) einer Probe ist ein Maß für den Gehalt an anorganischen Kohlenstoffverbindungen wie Kohlendioxid, Carbonate und Hydrogencarbonate. Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Prossen (km 13) Erste Probenahmefläche der Elbe beim Eintritt nach Deutschland
Anzahl der Proben: 15 Gemessener Parameter: Der anorganische Kohlenstoffgehalt (Total Inorganic Carbon, TIC) einer Probe ist ein Maß für den Gehalt an anorganischen Kohlenstoffverbindungen wie Kohlendioxid, Carbonate und Hydrogencarbonate. Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Jochenstein (km 2210) Letzte Probenahmefläche der Donau vor der Grenze zu Österreich
Anzahl der Proben: 18 Gemessener Parameter: Der anorganische Kohlenstoffgehalt (Total Inorganic Carbon, TIC) einer Probe ist ein Maß für den Gehalt an anorganischen Kohlenstoffverbindungen wie Kohlendioxid, Carbonate und Hydrogencarbonate. Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Saar, Staustufe Güdingen Die Saar beim Eintritt in den Saarländischen Verdichtungsraum
Anzahl der Proben: 18 Gemessener Parameter: Der anorganische Kohlenstoffgehalt (Total Inorganic Carbon, TIC) einer Probe ist ein Maß für den Gehalt an anorganischen Kohlenstoffverbindungen wie Kohlendioxid, Carbonate und Hydrogencarbonate. Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Bimmen (km 865) An der deutsch-holländischen Grenze
Anzahl der Proben: 19 Gemessener Parameter: Der anorganische Kohlenstoffgehalt (Total Inorganic Carbon, TIC) einer Probe ist ein Maß für den Gehalt an anorganischen Kohlenstoffverbindungen wie Kohlendioxid, Carbonate und Hydrogencarbonate. Probenart: Schwebstoffe Feine mineralische oder organische Partikel in der Wasserphase, die nicht in Lösung gehen Probenahmegebiet: Koblenz (km 590,3) Mittelrhein oberhalb der Moselmündung in Koblenz am Deutschen Eck
| Origin | Count |
|---|---|
| Bund | 58 |
| Kommune | 80 |
| Land | 9637 |
| Wirtschaft | 11 |
| Wissenschaft | 5 |
| Zivilgesellschaft | 30 |
| Type | Count |
|---|---|
| Chemische Verbindung | 6 |
| Daten und Messstellen | 9655 |
| Förderprogramm | 25 |
| Gesetzestext | 5 |
| Text | 9 |
| Umweltprüfung | 1 |
| unbekannt | 3 |
| License | Count |
|---|---|
| geschlossen | 25 |
| offen | 4472 |
| unbekannt | 5202 |
| Language | Count |
|---|---|
| Deutsch | 9690 |
| Englisch | 5220 |
| Resource type | Count |
|---|---|
| Archiv | 3084 |
| Datei | 567 |
| Dokument | 1373 |
| Keine | 4684 |
| Webdienst | 2 |
| Webseite | 4461 |
| Topic | Count |
|---|---|
| Boden | 8858 |
| Lebewesen und Lebensräume | 9675 |
| Luft | 9618 |
| Mensch und Umwelt | 9699 |
| Wasser | 9692 |
| Weitere | 9688 |