<p>Die Angaben über CO2-Emissionen nach Sektoren beruhen auf den Energiebilanzen für Baden-Württemberg, die zunächst nur auf Landesebene vorliegen. Bei der Berechnung der Emissionswerte auf Kreis- und Gemeindeebene wird notwendigerweise auf modellhafte und damit in den verschiedenen Sektoren zum Teil verallgemeinernde Annahmen zurückgegriffen. Insbesondere wird aufgrund fehlender primärstatistischer Angaben im Sektor Haushalte, Gewerbe, Handel, Dienstleistungen und übrige Verbraucher mit einem durchschnittlichen Energieverbrauch je Wohnung bzw. je sozialversicherungspflichtig Beschäftigtem gerechnet. Regionale Minderungsmaßnahmen in diesem Sektor werden deshalb in der Modellrechnung nicht vollständig berücksichtigt.</p> <p><strong>Jahr:</strong></p> <p>Die Jahreszahl 2011a bezieht sich auf Bevölkerungsstand zum 31.12., Fortschreibung des Zensus 1987 (VZ1987)</p> <p>Die Jahreszahl 2011b auf Bevölkerungsstand zum 31.12., Fortschreibung des Zensus 2011 (VZ2011)</p> <p><strong>Gemeindekennung: </strong>335043, Konstanz</p> <p><strong>Private Haushalte, GHD und übrige Verbraucher</strong>: damit sind Gewerbe, Handel, Dienstleistungen (GHD) und übrige Verbraucher wie öffentliche Einrichtungen, Landwirtschaft und militärische Einrichtungen gemeint.</p> <p><strong>Verkehr</strong>: bezeichnet den Straßenverkehr und sonstiger Verkehr wie Schienen-, nationaler Luftverkehr, Binnenschifffahrt und Off-Road-Verkehr (landwirtschaftl. Zugmaschinen, Baumaschinen, Militär, Industriegeräte,Garten/Hobby).</p> <p><strong>Wohnbevölkerung</strong>:</p> <p>-Bevölkerungsstand zum 31.12., Fortschreibung der Volkszählung 2011 (VZ2011).</p> <p>-Bevölkerungsstand zum 31.12., Fortschreibung der Volkszählung 1987 (VZ1987).</p> <p><strong>Tonnen</strong>: Menge an CO2 Emissionen in Tonnen nach Sektoren</p> <p><strong>EW</strong>: Einwohnerzahl im jeweiligen Jahr</p> <p><strong>Tonnen Je Einwohner</strong>: Menge der CO2 Emissionen in Tonnen je Einwohner nach Sektoren</p> <p><strong>Mengenanteile der Sektoren in %:</strong> CO2 Emissionen nach Sektoren in Prozenten.</p> <p><strong>Methodische Hinweise</strong>: Änderungen Allgemein/ Methodisch CO2-Berechnung regional/ Revision ab Herbst 2019:</p> <p>- Umstellung auf die endgültige Energiebilanz 2016</p> <p>- Die Emissionsfaktoren für feuerungsbedingte CO2-Emissionen ab dem Berichtsjahr 2016 wurden mit den Daten des Umweltbundesamtes gemäß NIR 2019 aktualisiert.</p> <p>- Die bundesweiten Anteile Nationalflug an Gesamtflug wurden seitens des Umweltbundesamtes in NIR 2019 ab 1990 um durchschnittlich 10 % gesenkt. Dadurch Ändern sich alle Emissionen des nationalen Luftverkehrs und somit die Emissionen des Sektors Verkehr.</p> <p>- Die Regionalisierungsdaten aus weiteren amtlichen und nichtamtlichen Quellen wurden hinsichtlich Datenverfügbarkeit zum jeweiligen Berichtsjahr überprüft und aktualisiert, sowie die Detailberechnungen methodisch vereinheitlicht.</p> <p>- Die den regionalen Straßenverkehrsemissionen zugrundeliegenden Jahresfahrleistungen wurden ab dem Jahr 2010 einer grundlegenden Revision unterzogen. Das Verkehrszählungsjahr 2010, das die Basis für die Fortschreibung der Jahre 2011 bis 2014 bildet, greift auf deutlich veränderte Zählergebnisse nach dem neuen Verkehrsmonitoring zurück. Die Verkehrszählung 2015 bildet bis zur nächsten Zählung die Basis für künftige Fortschreibungen ab 2016. Details hierzu finden Sie im Glossar des Internetauftritts des Statistischen Landesamtes unter dem Thema "Verkehr", Unterthema "KFZ und Verkehrsbelastung", Jahresfahrleistungen im Straßenverkehr (<a href="https://www.statistik-bw.de/Glossar/456">https://www.statistik-bw.de/Glossar/456</a>)</p> <p>- Aus methodischen Gründen werden die regionalen Straßenverkehrsemissionen aus Strom erst ab Berichtsjahr 2016 ausgewiesen.</p> <p>-Die Vergleichbarkeit der Ergebnisse mit früheren Berechnungsjahren sind eingeschränkt.</p> <p>[statistisches Landesamt Baden-Württemberg]: <a href="https://www.statistik-bw.de/">https://www.statistik-bw.de/</a></p> <p><strong>Quelle der Daten</strong>: <a href="https://www.statistik-bw.de/">Statistisches Landesamt Baden-Württemberg</a></p>
Die IENC sind Elektronische Navigationskarten für Binnenschifffahrtsstraßen. Sie werden in Deutschland für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) von der Fachstelle für Geodäsie und Geoinformatik der WSV (FGeoWSV) hergestellt, herausgegeben und kostenfrei zur Verfügung gestellt.
Die Motoren von Binnenschiffen gelten allgemein als ineffizient und dreckig - ihr Schadstoffausstoß gilt immer noch als zu hoch. Aber ist diese pauschale Aussage richtig? Die Ladungsmenge auf einem einzelnen Binnenschiff übertrifft diejenige von LKW und Bahn um ein Vielfaches, wodurch der Transport im Allgemeinen sehr effizient ist. Trotzdem ist der Schadstoffausstoß verhältnismäßig hoch, weshalb die Europäische Union die Grenzwerte für ausgestoßene Schadstoffe auch für die Binnenschifffahrt verschärfen wird. Im Rahmen des europäischen Forschungs- und Innovationsprogramms HORIZON2020 beteiligt sich die BAW am Vorhaben PROMINENT (promoting innovation in the inland waterways transport sector; http://www.prominent-iwt.eu/). Das Vorhaben hat zum Ziel, den Treibstoffbedarf und die Luftschadstoffemissionen der Binnenschiffe durch technische Maßnahmen und energieeffiziente Navigation zu reduzieren. Mit der Entwicklung eines Assistenzsystems erhält ein Schiffsführer Hinweise, wie er seinen Zielhafen treibstoffsparend und termingerecht erreichen kann. Dafür werden neben Motor- und Verbrauchsdaten von Schiffen auch Informationen zur Wassertiefe, Strömungsgeschwindigkeit und Wasserspiegellage für den zu befahrenden Flussabschnitt benötigt. Da präzise Peildaten und mehrdimensionale numerische Modelle nicht flächendeckend für alle Wasserstraßen innerhalb der EU verfügbar sind, rüstet die BAW Binnenschiffe mit Messgeräten zur Erfassung von Sohlenhöhen und Strömungsgeschwindigkeiten aus. Dabei werden gleichermaßen die Machbarkeit und der Aufwand für die Installation und den Betrieb der Sensorik bewertet. Die Reederei Deymann Management GmbH und Co. KG mit Sitz in Haren (Ems) unterstützt das Vorhaben, indem sie die Installation der Sensoren auf dem Großmotorgüterschiff (GMS) MONIKA DEYMANN gestattet. Das Schiff wurde im Juli 2016 in den Dienst gestellt. Die BAW hat in der Bauphase den Einbau und die Verkabelung der geplanten Sensoren mit der Reederei sowie der ausführenden Werft abgestimmt und durchgeführt. Das 135 m lange und 14,2 m breite GMS verkehrt derzeit im Liniendienst zwischen Antwerpen und Mainz. Es fährt in der Regel mit drei Lagen Containern, woraus ein mittlerer Tiefgang zwischen 1,8 m und 2,5 m resultiert. Für einen Umlauf Antwerpen - Mainz - Antwerpen werden sieben bis acht Tage benötigt, sodass das Schiff den Mittelrhein rund zweimal pro Woche passiert. Eine besondere Herausforderung ist es, von einem Binnenschiff aus die Strömungsgeschwindigkeiten im laufenden Schiffsbetrieb zu erfassen, da die Strömung im nahen Umfeld des Schiffes durch das Rückströmungsfeld gestört wird. Dessen Größe und Ausdehnung hängt insbesondere vom Gewässerquerschnitt und der Schiffsgeschwindigkeit gegenüber Wasser ab. Bei geringen Wassertiefen kann daher die Geschwindigkeit nicht vertikal unter einem Binnenschiff gemessen werden, wie es bei Messschiffen sonst üblich ist. (Text gekürzt)
In einer Forschungskooperation mit dem Institut für Schiffstechnik, Meerestechnik und Transportsysteme der Universität Duisburg-Essen wird eine Software (BinEm) entwickelt, die mithilfe der Messung von Luftschadstoffen auf Binnenschiffen unter realen Betriebsbedingungen kalibriert und validiert werden soll. Aufgabenstellung und Ziel Die Schifffahrt soll nach Vorgaben der EU bis zum Jahr 2050 klimaneutral werden. Zur zwischenzeitlichen Reduktion der Treibhausgas- und Schadstoffemissionen werden verschiedene Technologien (z. B. Abgasreinigung) eingesetzt. Um den Einfluss von neuen Technologien auf die Schiffsemissionen abschätzen zu können, sind realistische Angaben zu den emittierten Schadstoffen durch die Binnenschifffahrt notwendig. Die bisher veröffentlichten Emissionsdaten, die der Binnenschifffahrt zugerechnet werden, basieren auf Modellen mit vielen Annahmen, die die Betriebsparameter im realen Einsatz sehr vereinfacht abschätzen. Aus diesem Grund wurde im Rahmen eines gemeinsamen Forschungsvorhabens der BAW und der Universität DuisburgEssen ein Verfahren zur Berechnung der Binnenschiffsemissionen entwickelt. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Mit der im Rahmen der Forschungskooperation mit dem Institut für Schiffstechnik, Meerestechnik und Transportsysteme (ISMT) entwickelten Software können Emissionen der Binnenschifffahrt für beliebige Regionen und Schiffsflotten modelliert werden. Damit steht der BAW eine Methode zur Verfügung, die es ermöglicht, den Anteil der Binnenschifffahrt an den Luftschadstoffen abzubilden und den Erfolg von Emissionsminderungsmaßnahmen zu bewerten. Auf Basis dieser Ergebnisse können Entscheidungsträger im BMDV und in der GDWS erfolgversprechende Maßnahmen zur Minderung von Binnenschiffsemissionen gezielt ableiten, geltende Vorschriften anpassen oder neue erlassen. Untersuchungsmethoden Das entwickelte Verfahren besteht aus mehreren Modulen. Zunächst wird der Schiffswiderstand in Abhängigkeit von der Geschwindigkeit über Grund und der Strömung berechnet (Noß und Kossmann 2021). In dem aktuellen Verfahren wird nun auch der zusätzliche Widerstand bei Kurvendrift berücksichtigt. Hierfür greift das Programm auf einen äquivalenten Geradeauswiderstand zurück und addiert in Abhängigkeit des Driftwinkels einen in einer Datenbank hinterlegten Beiwert für den zusätzlichen Widerstand durch Schräganströmung. Anschließend werden der Gütegrad der Propulsion und die Propellerdrehleistung ermittelt. Mithilfe charakteristischer Propellerfreifahrtdiagramme und Motorenkennfelder sowie leistungsbezogener Faktoren werden final der Kraftstoffverbrauch und die Schiffsemissionen berechnet (Noß und Kossmann 2022). Die Spannweite an Schiffs- und Motorenparametern ist sehr groß. Basierend auf Simulations- und Modellversuchsergebnissen charakteristischer Schiffe (Noß und Kossmann 2021, 2022; Kossmann und Wierczoch 2022) wurden einzelne Widerstandsbeiwerte und der Gütegrad der Propulsion in Abhängigkeit von Schiffsgeschwindigkeit und Wassertiefenverhältnis zu Abladetiefenverhältnis berechnet. Der für die Propulsion verwendete Propeller ähnelt in seiner Geometrie einem charakteristischen Binnenschiffs-Düsen-Propeller. In Abhängigkeit von der berechneten Propulsions- bzw. Bremsleistung, der Schiffsgröße und der Anzahl der Propeller wählt das Verfahren einen passenden Motor in einer Datenbank aus. Diese beinhaltet für schnelllaufende Dieselmotoren mit Leistungen zwischen 400 und 1200 kW Daten zur Motorleistung, Drehzahl und zum spezifischen Kraftstoffverbrauch. Der gewählte Ansatz ist für den Großteil der Flotte sowie Betriebspunkte während einer typischen Streckenfahrt anwendbar. Situationen wie Ausweichmanöver, Ausweichmanöver, Schleusenfahrten oder An- und Ablegemanöver lassen sich mit diesem Ansatz jedoch nicht abbilden.
Veranlassung Modelle sind sehr gut geeignet, großflächig Aussagen über Luftschadstoffbelastungen, z.B. an Wasserstraßen, zu tätigen. Die Qualität der Modellergebnisse hängt zum einen von der Qualität des Modells und zum anderen von der Qualität der Eingangsdaten ab. Beide Qualitäten müssen bekannt sein, um die Ergebnisse richtig einordnen zu können, sei es im Vergleich mit Messungen, aber auch im Vergleich zu Modellen für andere Verkehrsträger. Daher soll für das Emissionsmodul des Modells ‘Luftschadstoffbelastung an Wasserstraßen’ (LuWas) eine Unsicherheitsanalyse durchgeführt werden. Dazu wird zunächst für jeden Eingangsparameter die einzelne Unsicherheit bestimmt und daraus die Gesamtunsicherheit der modellierten Luftschadstoffemissionen berechnet. Die Ergebnisse der Unsicherheitsanalyse ermöglichen sowohl eine gezielte Verbesserung der Datengrundlage und des Modells als auch eine verbesserte Aussagekraft der modellierten Schiffsemissionen. Ziele - Bestimmung der Unsicherheiten der für die Modellierung der binnenschifffahrtsbedingten Luftschadstoffemissionen notwendigen Eingangsparameter, u.a. durch Nutzung pseudonymisierter Automatic Identification System (AIS)-Daten - Entwicklung einer Methodik zur Bestimmung der resultierenden Gesamtunsicherheit für die mit LuWas berechneten Luftschadstoffe - Anwendung des entwickelten Verfahrens für ausgewählte Gebiete - verkehrsträgerübergreifender Vergleich für ausgewählte Gebiete Für erfolgreiche intra- und intermodale Maßnahmen zur Verringerung der verkehrsbedingten Luftschadstoffbelastung müssen umfassende Kenntnisse über die Emissionsbeiträge der einzelnen Verkehrsträger vorliegen. Die hierfür eingesetzten Emissionsmodelle für einzelne Verkehrsträger unterscheiden sich im Detaillierungsgrad und in der Genauigkeit. Ein Vergleich von verkehrsträgerspezifischen Emissionen ist daher nur unter Kenntnis der Unsicherheiten der einzelnen Modelle möglich. Im Rahmen des BMDV-Expertennetzwerks wird die Unsicherheit eines Modells für Binnenschiffemissionen untersucht. Ein Vergleich von verkehrsträgerspezifischen Emissionen ist nur unter Kenntnis der Unsicherheiten der einzelnen Modelle möglich.
Instandsetzungsmaßnahmen an Schleusen mit einer Kammer bedingen bislang eine Außerbetriebnahme der Schleusenanlage und damit eine Unterbrechung der Schifffahrt. Mit diesem Vorhaben wird das Ziel verfolgt, Ansätze für eine Instandsetzung unter Betrieb, also innerhalb zu definierender Zeitfenster pro Tag zu erarbeiten. Aufgabenstellung und Ziel Die Wasserstraßen und Schifffahrtsverwaltung des Bundes (WSV) verfügt über etwa 260 Schleusenanlagen mit lediglich einer Schleusenkammer. Angesichts der Altersstruktur und des baulichen Zustands zeichnet sich bei diesen Bauwerken kurz- oder mittelfristig ein erheblicher Instandsetzungsbedarf ab, sofern eine weitere mittel- oder langfristige Nutzung der Schleusenanlage beabsichtigt wird. Die Durchführung grundlegender Instandsetzungsmaßnahmen am Massiv- oder am Stahlwasserbau bedingt bei Schleusenanlagen mit nur einer Schleusenkammer eine Außerbetriebnahme der gesamten Schleusenanlage und damit eine Unterbrechung zumindest der durchgängigen Schifffahrt auf der zugehörigen Wasserstraße. Für die Grundinstandsetzung des Massivbaus einer Schleusenanlage mit konventionellen Bauverfahren sind selbst unter günstigen Randbedingungen Mindestbauzeiten von etwa zwei Jahren erforderlich. Der Zustand einzelner Schleusenanlagen an einer Wasserstraße differiert selbst bei gleicher oder annähernd gleicher Bauweise und Errichtungszeit stark. Ein unmittelbarer Instandsetzungsbedarf der einzelnen Schleusenanlage an einer Wasserstraße tritt unter reich technischen Gesichtspunkten im Regelfall zu sehr unterschiedlichen Zeitpunkten auf. Die gleichzeitige, zumindest teilweise prophylaktische, Instandsetzung aller Schleusenanlagen an einer Wasserstraße während einer mehrjährigen Gesamtsperrung dürfte vor diesem Hintergrund genauso wenig ein akzeptabler Weg sein wie wiederkehrende Unterbrechungen der Schifffahrt immer dann, wenn eine weitere Anlage zur Instandsetzung ansteht. Ein Ersatzneubau einzelner instandsetzungsbedürftiger Schleusenanlagen parallel zum weiterlaufenden Betrieb der vorhandenen Anlage dürfte zwar fallweise, nicht aber bei allen 260 Einkammerschleusen realisierbar sein. Vor diesem Hintergrund ist die Frage zu beantworten, ob umfassende Instandsetzungsmaßnahmen an Schleusenanlagen zur Sicherstellung einer weiteren mittel- oder langfristigen Nutzung nicht auch innerhalb bestimmter täglicher Zeitfenster von beispielsweise 12 Stunden, in denen die Schifffahrt kurzzeitig unterbrochen wird, gegebenenfalls in Kombination mit einzelnen mehrtägigen Schifffahrtssperrungen, realisiert werden können. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Für die Binnenschifffahrt sind immer wiederkehrende längerfristige Unterbrechungen des Verkehrs auf ihren Wasserstraßen nicht akzeptabel. Umfahrungsmöglichkeiten bestehen im Regelfall nicht ober bedingen einen erheblichen wirtschaftlichen Mehraufwand, welcher die Konkurrenzfähigkeit dieses Verkehrsträgers grundsätzlich in Frage stellen würde. Längere Sperrungen würden auch zu Verkehrsverlagerungen führen, die nach Abschluss der Maßnahme wieder für die Schifffahrt zurückgewonnen werden müssten. Untersuchungsmethoden Um künftig eine Instandsetzung von Einkammerschleusen unter Betrieb zu ermöglichen, müssen die vorliegenden Erkenntnisse auf diesem Themengebiet zusammengetragen und weitergehende Untersuchungen angestellt werden. Dabei ist eine modulare Betrachtung der verschiedenen Bauwerksteile (z. B. Kammerwände, Kammersohle, Unterhaupt, Oberhaupt) und der im Rahmen der Instandsetzung anfallenden Teilprozesse (z. B. Betonabtrag, Reprofilierung, Austausch Stahlwasserbau, Austausch Ausrüstung etc.) sinnvoll. Hierbei wird die gesamte Bandbreite der bauwerks- und standortabhängigen Randbedingungen von Einkammerschleusenanlagen der WSV, wie z. B. Altbetonqualität, Bewehrungssituation oder Hubhöhe, berücksichtigt. (Text gekürzt)
Kann der Ausbau der Hafeneinfahrten an der deutschen Nord- und Ostseeküste mit dem Trend zu immer größeren Schiffe mithalten? Und wie können etwa Schleusenbauwerke an Flüssen und Kanälen für den Binnenschiffsverkehr mit überlangen Großmotorgüterschiffen fit gemacht werden? Leidet die Sicherheit des Verkehrs, wenn immer größere Schiffe die Wasserstraßen befahren? Mit den beiden Schiffsführungssimulatoren der BAW lassen sich Maßnahmen zur Verbesserung der Sicherheit und der Qualität der Wasserstraßen schon in der Planungsphase überprüfen und Engpässe ihrer Befahrbarkeit analysieren. Der Trend zu immer größeren Schiffen erhöht die Anforderungen an See- ebenso wie an Binnenschifffahrtsstraßen. Kurzum, es wird allenthalben enger. Noch vor wenigen Jahrzehnten reichte es beispielsweise völlig aus, für die Trassenplanung in Binnengewässern die Fahrspurbreite und damit den Flächenbedarf eines Schiffes aus dem zu fahrenden Kurvenradius, den Schiffsabmessungen und dem Driftwinkel, den das Schiff in der Kurvenfahrt einnimmt, zu berechnen. Aber schon im Zuge des Wasserstraßenausbaus nach Berlin zu Beginn der 1990er Jahre zeigten sich deutlich die Grenzen dieses geometrischen Bemessungsverfahrens: Die bis dahin angestrebten Mindestradien von 600 m für 185 m lange Schubverbände und 110 m lange Großmotorgüterschiffe hätten zum Beispiel beim Ausbau der Havel bei Berlin zu gewaltigen Landschaftsveränderungen in einem Naturschutzgebiet geführt.
Das Themenfeld 6 „Verkehrswirtschaftliche Analysen“ des BMV-Forschungsnetzwerkes bearbeitet Verkehrsströme und Verflechtungen der Verkehrsträger. Für die Binnenschifffahrt werden Verkehrs- und Transportmengen sowie die Transportkosten berechnet. Dies soll unter anderem mit der Auswertung von AIS-Daten erreicht werden. Aufgabenstellung und Ziel Als eine von sechs Ressortforschungseinrichtungen des Bundesministeriums für Digitales und Verkehr (BMDV) ist die Bundesanstalt für Wasserbau (BAW) maßgeblich am BMDV-Expertennetzwerk beteiligt. In sechs Themenfeldern (TF) werden verkehrsträgerübergreifend anwendungsorientierte Forschungsergebnisse zu einem resilienten und umweltgerechten Verkehr der Zukunft erarbeitet. Im TF 6 „Verkehrswirtschaftliche Analysen“ werden Güterverkehrsdaten in einem ökonomischen Kontext analysiert und ausgewertet (BMDV 2023). Zur Entlastung anderer Verkehrsträger im Rahmen der Verkehrswende werden Möglichkeiten der Verlagerungen des Güterverkehrs von der Straße beziehungsweise der Schiene auf die Wasserstraße untersucht. Es wird die Auslastung des Wasserstraßennetzes betrachtet und deren Kapazitätsgrenze quantifiziert. Durch Simulationen werden die Wirkzusammenhänge der Transportprozesse auf den Wasserstraßen sowie die Auslastung einzelner Wasserstraßenabschnitte und relevanter Strukturelemente (Schleusen, Häfen) in Abhängigkeit der Verkehrsstärken analysiert. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Die anvisierten Ergebnisse des FuE-Vorhabens geben einen detaillierten Einblick in die aktuellen Verkehre und Transportprozesse auf den Wasserstraßen. Die entwickelten Methoden erlauben darüber hinaus, unterschiedliche Szenarien zu simulieren und zu bewerten. So lassen sich die zu priorisierenden Maßnahmen für eine Kapazitätssteigerung, z. B. mit größeren Schiffen oder versetzten Reisezeiten, identifizieren. Diese Erkenntnisse können Entscheidungsträger in der GDWS und im BMDV für ihre strategische Planung, z. B. zur Steigerung der Wettbewerbsfähigkeit des Verkehrsträgers Wasserstraße, unterstützen. Untersuchungsmethoden Für verkehrswirtschaftliche Untersuchungen an Bundeswasserstraßen werden AIS-Daten (Automatic Identification System) verwendet (BAW 2024). Diese werden in Fahrten einzelner Schiffe aufgeteilt. Mithilfe von Grenzwerten der Geschwindigkeiten für Starts (vst) bzw. Stopps (vsp) sowie der Mindestdauern für Fahrten (td) und Liegezeiten (ti) werden Starts und Stopps detektiert. Dabei sind die Parameter so zu wählen, dass alle relevanten Starts und Stopps zum Laden/Löschen in Häfen bzw. Übernachten erfasst werden. Nicht detektiert werden dagegen verkehrsbedingte Wartezeiten z. B. vor Schleusen oder Begegnungen an Engstellen, da diese zu den Fahrten gehören. Fahrten werden auch als OD-Relationen (Origin: Start - Destination: Stopp) bezeichnet und entsprechend ihrer Häufigkeit aggregiert. Die räumliche Auflösung ist so zu wählen, dass weder ein zu hoher unübersichtlicher noch ein zu niedriger grober Detaillierungsgerad erreicht wird. Würde die Auswertung von Starts und Stopps mit einer Meter-Auflösung erfolgen, entständen 500 Strukturelemente für einen 500 m-langen Hafen. Eine Aggregierung mit 10 Kilometern Stützweite würde dagegen nahe beieinanderliegende Häfen fälschlicherweise zu einem Strukturelement zusammenfassen. Exemplarisch wurde der deutschlandweite Schiffsverkehr im März 2024 mit AIS-Daten von 17.925 unterschiedlichen Schiffen untersucht. 5.111 - jedoch nicht alle - Seeschiffe konnten eindeutig identifiziert und herausgefiltert werden, da diese für die Betrachtung der Binnenwasserstraßen irrelevant sind. Mit der Parameterkonfiguration vst = 1,3 km/h, vsp = 0,4 km/h, td = 4 h, ti = 2 h erhält man insgesamt 51.648 Starts und Stopps. 19.583 Fahrten verbleiben mit Strecken länger als 10 km. Die Häufigkeit von Relationen hängt von der räumlichen Auflösung ab, die den Starts und Stopps zugrunde liegt. (Text gekürzt)
Veranlassung Im Rahmen von Planfeststellungsverfahren bei Neu- und Ausbauprojekten der Infrastruktur müssen Lärmimmissionsgutachten erstellt werden. Der prognostizierte Schiffschall an Verkehrswegen wird nach verkehrsträgerspezifischen Rechenvorschriften (Modelle) berechnet. Sie basieren auf Daten, die vor dem Hintergrund technischer Entwicklungen an Fahrzeugen bei Bedarf durch personal- und kostenintensive Messungen zu überprüfen sind; dies trifft auch auf die Binnenschifffahrt zu. Es sollte daher eine Möglichkeit geschafft werden, benötigte aktuelle Daten und Parameter automatisiert - und dadurch mit minimalem Personalaufwand - zu erfassen. Nur so kann sichergestellt werden, dass die für wissenschaftlich fundierte Begutachtungen notwendige Datengrundlage fortlaufend die in Deutschland fahrende Schiffsflotte abbildet. Die so erfassten Daten können zudem für Modellierungen zur Untersuchung verkehrsträgerübergreifender Minderungsmaßnahmen genutzt werden. Ziele - Quantifizierung von Schallemissionen und -immissionen von Binnenschiffen durch Messungen und Modellierungen - Überprüfung, Aktualisierung und Erweiterung der bestehenden Datengrundlage durch die Durchführung von automatisierten Messungen - Entwicklung eines Modells zur Ermittlung binnenschifffahrtsbedingter Luftschallemissionen und -immissionen für eine Vielzahl von Verkehrsgebieten und -situationen (z.B. Manöver, Liegeplätze, Häfen) - Aktualisierung der Berechnungsgrundlage ‘Anleitung zur Berechnung von Luftschallausbreitung an Wasserstraßen’ auf Basis des neu entwickelten Modells Alle Verkehrsträger - egal ob Straße, Schiene oder Wasserstraße - verursachen Lärm und können zu Belastungssituationen für Anwohnende führen. Im Rahmen des BMDV-Expertennetzwerks werden sowohl verkehrsträgerübergreifende als auch verkehrsträgerspezifische Lärmbelastungen quantifiziert und Minderungsmaßnahmen abgeleitet. Für beide Ziele ist es unerlässlich, zunächst die technologischen Innovationen im Bereich der Binnenschifffahrt (Motoren inklusive Antriebswellen, Ruderanlage und Rumpfdesign, Elektrifizierung) durch angepasste Modelle abzubilden und die hierfür notwendige Datenbasis aufzubauen. Automatisierte Messungen von Schiffsschall der Binnenschifffahrt erlauben den Aufbau einer umfassenden Datengrundlage für die Modellierung von Luftschallimmissionen an Wasserstraßen.
Origin | Count |
---|---|
Bund | 653 |
Kommune | 1 |
Land | 45 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Daten und Messstellen | 4 |
Ereignis | 3 |
Förderprogramm | 255 |
Kartendienst | 1 |
Text | 324 |
Umweltprüfung | 2 |
unbekannt | 108 |
License | Count |
---|---|
geschlossen | 71 |
offen | 610 |
unbekannt | 15 |
Language | Count |
---|---|
Deutsch | 688 |
Englisch | 30 |
Resource type | Count |
---|---|
Archiv | 13 |
Bild | 6 |
Datei | 20 |
Dokument | 139 |
Keine | 324 |
Webdienst | 7 |
Webseite | 257 |
Topic | Count |
---|---|
Boden | 288 |
Lebewesen und Lebensräume | 459 |
Luft | 487 |
Mensch und Umwelt | 696 |
Wasser | 333 |
Weitere | 543 |