API src

Found 7833 results.

Related terms

Bundesweites Flächenziel für die Gewässerentwicklung

<p>In einem breiten Korridor kann sich die Wümme eigendynamisch entwickeln.</p><p>Die Fließgewässer in Deutschland nehmen nur noch etwa 1 Prozent der Landesfläche ein. Das ist nur ein Bruchteil ihrer ursprünglichen Ausdehnung. Sie sind touristisch kaum noch erlebbar und nur wenig resilient gegenüber den Folgen des Klimawandels. Diese Situation lässt sich erheblich verbessern, indem Bächen und Flüssen in unserer Kulturlandschaft wieder mehr Fläche zurückgegeben wird.</p><p>Ziele der Wasserrahmenrichtlinie erreichen – den Gewässern Naturfläche zurückgeben</p><p>Deutschland wird von einem dichten Netz von Bächen und Flüssen durchzogen. Die gesamte Länge aller Fließgewässer beträgt etwa 590.000 Kilometer. Dieses Gewässernetz wird intensiv genutzt und wurde zu Gunsten von Siedlungen, Landwirtschaft, Verkehr und Energiegewinnung weitreichend umgestaltet. Auf Grund der vielfältigen Eingriffe gilt nur noch 1 Prozent aller Fließgewässer als unbelastet. Die Ziele des Gewässerschutzes werden deutlich verfehlt. Die europäische ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserrahmenrichtlinie#alphabar">Wasserrahmenrichtlinie</a>⁠ fordert bis 2015 einen guten ökologischen Zustand der Fließgewässer herzustellen. Noch im Jahr 2022 wurde dieses Ziel in 90 Prozent der Bäche und Flüsse nicht erreicht <a href="https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/221010_uba_fb_wasserrichtlinie_bf.pdf">(Wasserrahmenrichtlinie – Gewässer in Deutschland 2021. Fortschritte und Herausforderungen).</a></p><p>Ein guter ökologischer Zustand und vielfältige Lebensraumangebote für unterschiedlichste Organismen sind eng miteinander verknüpft. Bäche und Flüsse können diese typischen Lebensräume jedoch nur ausbilden, wenn ihnen dafür Fläche zur Verfügung steht. Mehr Fläche bedeutet mehr Lebensraum und mehr ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biodiversitt#alphabar">Biodiversität</a>⁠.</p><p>Mehr Fläche für Gewässer schafft nicht nur die nötigen Randbedingungen für einen nachhaltigen Gewässerschutz. Naturnahe Fluss- und Auenlandschaften können nachweislich über 40 verschiedene Funktionen erfüllen und sind multifunktonal ( <a href="https://www.umweltbundesamt.de/leistungen-nutzen-renaturierter-fluesse">Leistungen und Nutzen renaturierter Flüsse</a>). Das Erschließen der Multifunktionalität eines Flächenziels für die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gewsserentwicklung#alphabar">Gewässerentwicklung</a>⁠ ist daher auch Inhalt des <a href="https://www.bundesumweltministerium.de/natuerlicher-klimaschutz">Aktionsprogramms Natürlicher Klimaschutz</a> und der <a href="https://www.bundesumweltministerium.de/wasserstrategie">Nationalen Wasserstrategie</a>.</p><p>Wie wird die Gewässerentwicklungsfläche ermittelt?</p><p>Bei der <a href="https://www.umweltbundesamt.de/publikationen/den-gewaessern-raum-zurueckgeben">Berechnung der nötigen Gewässerentwicklungsfläche</a> macht man sich Gesetzmäßigkeiten der natürlichen Flussentwicklung zu nutze. Ein Gewässerbett wird beispielsweise umso breiter, je mehr Wasser ein Bach oder Fluss normalerweise mit sich führt, je geringer das Gefälle ist und je mehr Widerstand dem fließenden Wasser entgegengebracht wird. Für die Berechnung der Gewässerbettbreite werden daher Informationen zum Talgefälle, Windungsgrad, Böschungsneigung, Sohlrauheit und Breiten-Tiefen-Verhältnis sowie zum mittleren bordvollen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Abfluss#alphabar">Abfluss</a>⁠ benötigt. Diese Informationen liegen z.B. in Form von typspezifischen <a href="https://www.umweltbundesamt.de/publikationen/hydromorphologische-steckbriefe-der-deutschen">Gewässersteckbriefen</a> vor.</p><p>Wie viel Fläche benötigen unsere Flusslandschaften?</p><p>Im Rahmen eines Forschungsvorhabens wurde der Flächenbedarf unserer Fließgewässer berechnet. Alle Ergebnisse des Vorhabens sind in dem Bericht <a href="https://www.umweltbundesamt.de/publikationen/den-gewaessern-raum-zurueckgeben">„Den Gewässern Raum zurückgeben. Ein bundesweites Flächenziel für die Gewässerentwicklung</a>“ und in dem Hintergrundpapier des Umweltbundesamtes <a href="https://umweltbundesamt.de/publikationen/fluessen-baechen-wieder-mehr-raum-zurueckgeben">„Flüssen und Bächen wieder mehr Raum zurückgeben“</a> publiziert.</p><p>Aus den Berechnungen hat sich ein Flächenbedarf von insgesamt 11.400 Quadratkilometern für das gesamte Fließgewässernetz Deutschlands ergeben. Zwei Drittel dieser Fläche stehen heute nicht mehr zur Verfügung. Das bedeutet, dass den <strong>Flüssen und Bächen 7.000 Quadratkilometer an Entwicklungsfläche zurückgegeben werden muss</strong>, um die Ziele im Gewässerschutz erreichen zu können. Dies entspricht <strong>etwa 2 Prozent der Fläche Deutschlands</strong>.</p><p>Ursprünglich dürften den Bächen und Flüssen etwa 7 Prozent der Fläche Deutschlands zur Verfügung gestanden haben. Diese Fläche wurde durch den Gewässerausbau und Eingriffe in Auen- und Gewässerflächen auf ca. 1 – 1,4 Prozent reduziert. Mit der Realisierung eines Flächenziels von 2 Prozent, würde den Fließgewässern daher der Entwicklungsraum zurückgegeben werden, den das Fließgewässer- und Auensystem im Minimum benötigt.</p><p>Naturfern begradigtes Gewässer (links) im Vergleich zu einem renaturierten Fluss (rechts). 2 Prozent mehr Fläche für Gewässer sind in Deutschland nötig.<br> Stephan Naumann (links), Wolfgang Kundel (terra-air services / Landkreis Verden) (rechts)</p><p>Diagramm, in dem auf der y-Achse die Fläche Deutschlands und auf der x-Achse die Zeit dargestellt. Es wird schematisch gezeigt, wie viel an Gewässerentwicklungsfläche durch den Gewässerausbau verloren wurde und wie viel Fläche für einen guten Ökologischen Zustand benötigt wird</p><p>Große Steine und Baustämme sorgen als Strömungslenker für eine Verzweigung der Fulda.</p><p>Gewundener Verlauf der neuen Wern mit deutlich erkennbarem Verlauf eines alten geradlinigen Grabens, der streckenweise in die Renaturierung integriert ist.<br> Wasserwirtschaftsamt Bad Kissingen</p><p>An der Wümme und ihren Nebengewässern wurden Gewässerrandstreifen auf einer Gewässerlänge von insgesamt ca. 35 km geschaffen.</p><p>An der renaturierten Ruhr hat sich schnell naturnaher Uferbewuchs eingestellt. Zudem verändert die Ruhr sich ständig. Laufverzweigungen und Inseln kommen und gehen.</p><p>Flüsse und Bäche beanspruchen je nach Typ unterschiedlich große Entwicklungsbreiten</p><p>Die berechneten Gewässerentwicklungsbreiten, die benötigt werden, um einen guten ökologischen Zustand erreichen zu können, weisen eine große Spannweite auf. In der Gewässerentwicklungsbreite ist sowohl die eigentliche Breite des Gewässers als auch die Breite enthalten, die ein Gewässer aktiv zum Beispiel bei Hochwasser umgestaltet. Wenn ein Fluss also eine Gewässerentwicklungsbreite von 50 m aufweist und das Gewässer selbst 10 Meter breit ist, werden links und rechts des Flusses also jeweils 20 Meter Fläche benötigt.</p><p>Bäche mit einem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Einzugsgebiet#alphabar">Einzugsgebiet</a>⁠ größer als 10 Quadratkilometer benötigen, je nach Einzugsgebietsgröße und Gewässertyp, eine Entwicklungsbreite von 20 bis 40 Meter. Ihre Gewässerbreite beträgt natürlicherweise 4 bis 9 Meter. Noch kleinere Bäche mit einem Einzugsgebiet von weniger als 10 Quadratkilometer, sollten typischerweise Gewässerentwicklungsbreiten zwischen 7 und 14 Metern zur Verfügung gestellt bekommen.</p><p>Die Entwicklungsbreiten der kleinen Flüsse der Alpen und des Alpenvorlandes und die Mittelgebirgsflüsse betragen im Mittel 70 bis 110 Meter. Die potenziell natürliche Gewässerbreite dieser Gewässer liegt zwischen 15 und 22 Metern. Organisch geprägte Flüsse und Tieflandflüsse werden in der Regel bis 40 Meter breit. Das Ausmaß ihrer nötigen Gewässerentwicklungsbreite erreicht Werte von 150 bis über 200 Meter.</p><p>Werden die Einzugsgebiete der Flüsse noch größer und erreichen 1.000 bis 10.000 Quadratkilometer, nehmen auch ihr ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Abfluss#alphabar">Abfluss</a>⁠ und ihre Breite zu. Diese großen Flüsse können in Einzelfällen bis zu 130 Meter breit werden. Im Normalfall sind es 40 bis 100 Meter. Sie können bereits über 500 Meter Gewässerentwicklungsbreite beanspruchen, um ihr vollständiges Strukturinventar entwickeln zu können. Die mittleren Breiten der Gewässerentwicklungskorridore werden für 25 verschiedene Fließgewässertypen in den <a href="https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/41_2025_texte_v2.pdf">Hydromorphologischen Steckbriefen</a> &nbsp;für verschiedene ökologische Gewässerzustände angegeben.</p><p>Darstellung der 3 methodischen Schritte und Anteile, welche die Breite des Gewässerentwicklungskorridors bestimmen.</p><p>Diagramm der Gewässerentwicklungskorridorbreiten in Abhängigkeit vom Gewässertyp</p><p>Literaturangaben</p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BfN#alphabar">BfN</a>⁠ [Hrsg.] (2012): <a href="https://www.bfn.de/publikationen/schriftenreihe-naturschutz-biologische-vielfalt/nabiv-heft-124-oekosystemfunktionen">Ökosystemfunktionen von Flussauen - Analyse und Bewertung von Hochwasserretention, Nährstoffrückhalt, Kohlenstoffvorrat, Treibhausgasemissionen und Habitatfunktio</a>n. NaBiV Heft 124</p><p>BfN [Hrsg.] (2023): <a href="https://www.bfn.de/publikationen/broschuere/den-fluessen-mehr-raum-geben">Den Flüssen mehr Raum geben. Renaturierung von Auen in Deutschland</a></p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMUV#alphabar">BMUV</a>⁠ [Hrsg.] (2023): <a href="https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Naturschutz/nbs_indikatorenbericht_2023_bf.pdf">Indikatorenbericht 2023 der Bundesregierung zur Nationalen Strategie zur biologischen Vielfalt</a></p><p>BMUV/⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ [Hrsg.] (2022): <a href="https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/221010_uba_fb_wasserrichtlinie_bf.pdf">Die Wasserrahmenrichtlinie – Gewässer in Deutschland 2021</a>. Fortschritte und Herausforderungen. Bonn, Dessau.</p><p>Bundesregierung (2023a): Aktionsprogramm Natürlicher ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>⁠. Kabinettsbeschluss vom 29. März 2023</p><p>Bundesregierung (2023b): Nationale Wasserstrategie. Kabinettsbeschluss vom 15. März 2023</p><p>Ehlert, T. &amp; S. Natho (2017): Auenrenaturierung in Deutschland – Analyse zum Stand der Umsetzung anhand einer bundesweiten Datenbank. Auenmagazin 12/2017.</p><p>Janssen, G., Wittig, S., Garack, S., Koenzen, U., Reuvers, C., Wiese, T., Wetzel, N. (2022): Wissenschaftlich fachliche Unterstützung der Nationalen Wasserstrategie - Kohärenz der flächenbezogenen Gewässerentwicklungsplanung gemäß WRRL mit der Raumplanung. Umweltbundesamt [Hrsg.] UBA -Texte 71/2022. Dessau.</p><p>⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LAWA#alphabar">LAWA</a>⁠ [Hrsg.] (2016): ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LAWA#alphabar">LAWA</a>⁠ Verfahrensempfehlung „Typspezifischer Flächenbedarf für die Entwicklung von Fließgewässern“ LFP Projekt O 4.13. Hintergrunddokument.</p><p>LAWA [Hrsg.] (2019b): LAWA-Verfahrensempfehlung zur Gewässerstrukturkartierung - Verfahren für mittelgroße bis große Fließgewässer.</p><p>Linnenweber, C., Koenzen, U., Steinrücke J. (2021): Gewässerentwicklungsflächen. Auenmagazin 20 / 2021. 4-9.</p><p>Müller, A., Kranl J., Pottgiesser, T., Schmidt,S., Albert, C., Greassidis, S., Stolpe H., Jolk C. (2025): Den Gewässern Raum zurückgeben. Ein bundesweites Flächenziel für die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gewsserentwicklung#alphabar">Gewässerentwicklung</a>⁠. Umweltbundesamt [Hrsg.] UBA-Texte xx/2025: 92 Seiten, Dessau.</p><p>Statistisches Bundesamt (o. J.): FS 3 Land- und Forstwirtschaft, Fischerei, R. 5.1 Bodenfläche nach Art der tatsächlichen Nutzung, verschiedene Jahrgänge.</p><p>UBA [Umweltbundesamt, Hrsg.] (2023a): Flächenverfügbarkeit und Flächenbedarfe für den Ausbau der Windenergie an Land. CLIMATE CHANGE 32/2023. Autoren: Marian Bons, Martin Jakob, Thobias Sach, Dr. Carsten Pape, Christoph Zink, David Geiger, Dr. Nils Wegner, Olivia Boinski, Steffen Benz, Dr. Markus Kahles. Dessau.</p><p>WHG (2009): Wasserhaushaltsgesetz vom 31. Juli 2009 (BGBl. I S. 2585), das zuletzt durch Artikel 7 des Gesetzes vom 22. Dezember 2023 (BGBl. 2023 I Nr. 409) geändert worden ist.</p><p> <a href="https://www.lpv.de/uploads/tx_ttproducts/datasheet/DVL-Leitfaden_17_WRRL-web.pdf"><i></i> Kleine Fließgewässer kooperativ entwickeln</a> <a href="https://www.hcu-hamburg.de/fileadmin/documents/REAP/files/SCHWARK_etal_2005_Fliessgewaesserrenaturierung_heute_Effizienz_Umsetzungspraxis_BMBF-Abschlussbericht.pdf"><i></i> Schwark et al.: Fließgewässerrenaturierung heute – Effizienz und Umsetzungspraxis</a><a href="https://www.gewaesser-bewertung.de/"><i></i> UBA &amp; LAWA: Informationsplattform zur Bewertung der Oberflächengewässer gemäß Europäischer Wasserrahmenrichtlinie</a> </p>

Machbarkeitsstudie: Integration (bio-) akustischer Methoden zur Quantifizierung biologischer Vielfalt in das Waldmonitoring

Ziel des Vorhabens ist, auf Grundlage von akustischen Erhebungen das Potential einer (bio-)akustischen Quantifizierung der biologischen Vielfalt für ein bundesweites Waldmonitoring auszuloten. Dazu sollen sowohl existierende (bio-)akustische Datensätze ausgewertet, als auch auf acht Level II- und zwei unbewirtschafteten Flächen in einem dichten Zeitraster automatisch akustische Aufzeichnungen erstellt werden. Auf der Grundlage der Tonaufzeichnungen soll im Interesse einer Schnellindikation kritischer Veränderungen des Waldzustandes, insbesondere der Artenvielfalt, eine Bewertung der biotischen und abiotischen Geräuschkulisse durch Berechnung akustischer Diversitätsindizes erfolgen. Zudem soll eine möglichst vollständige Erfassung des Artenspektrums lautgebender Arten (inklusive Instrumentalgeräusche wie Spechttrommeln) automatisiert unter Nutzung von Algorithmen der (bio-)akustischen Mustererkennung erfolgen. Die Ergebnisse der (bio-)akustischen Analysen sollen stichprobenartig durch Erfassungen vor Ort verifiziert werden. Es soll eine IT-Infrastruktur aufgebaut werden, die es erlaubt, die akustischen Daten effizient zugänglich zu machen, schnell zu analysieren und im Interesse der Schnellindikation zu visualisieren. Die Akustikergebnisse sollen mit routinemäßig erhobenen Daten zum Waldzustand verschnitten werden. Auf der Grundlage einer kritischen Bewertung der Kosten(Aufwand)/Nutzen-Balance und einer eingehenden Analyse der erforderlichen Workflows sollen Handlungsempfehlungen für die Einbindung eines (bio-)akustischen Monitorings in die bundesweite Bewertung des Zustandes der Wälder erarbeitet werden. Im Teilprojekt des Thünen-Institut wird gemeinsam mit dem MfN die erforderliche IT-Infrastruktur aufgebaut. Der Schwerpunkt des Teilprojektes liegt auf die Erstellung eines Leitfadens für Bioakustikaufnahmen und der Integration von Bioakustikdaten in das nationale Waldmonitoring.

Auswirkungen invasiver Arten auf funktionelle Diversität und Ökosystemfunktionen

Es ist postuliert worden, dass invasive Pflanzenarten, die sowohl die Struktur als auch die Funktionen von Ökosystemen beeinflussen, besonders erfolgreich sind und einen großen Einfluss auf die Zusammensetzung von Lebensgemeinschaften und damit auf die Biodiversität ausüben. Es gibt jedoch bislang nicht viele empirische Untersuchungen, die sich umfassend mit dieser Thematik befassen. Daher soll im Rahmen dieses Projektes am Beispiel der Staudenlupine (Lupinus polyphyllus) der Einfluss dieser erfolgreichen invasiven Art auf die funktionelle Diversität von Pflanzen in Bergwiesensytemen in der Rhön untersucht werden.

Entsiegelungspotenziale 2025

Die Inanspruchnahme von Böden durch Überbauung und Versiegelung führt zum Verlust der Bodenfunktionen mit dauerhaft negativen Folgen für die Leistungsfähigkeit des Naturhaushaltes. Böden weisen vielfältige und schützenswerte Funktionen auf: Als Lebensraum für Pflanzen und Tiere, als Speicher und Filter für das Grundwasser, als Puffer gegenüber Schadstoffen, als Basis für die Landwirtschaft und gesundes Wohnen sowie als Archiv der Natur- und Kulturgeschichte (§ 2 BBodSchG). Diese grundlegenden Funktionen des Bodens sind durch eine adäquate Berücksichtigung der Bodenschutzbelange in der Planung für die Zukunft zu sichern. Die Bedeutung des Bodens erlangt zunehmende gesellschaftliche und umweltpolitische Beachtung insbesondere mit Blick auf die Anpassung an die Folgen des Klimawandels, die Kohlenstoff- und Wasserspeicherfähigkeit des Bodens und die Biodiversität. Dies mündet in bundesweite Maßnahmen und Regelungen zur Reduzierung der Flächenneuinanspruchnahme und der Versiegelung und in die Notwendigkeit eines nachhaltigen Flächenmanagement in Städten und Gemeinden. „Die Siedlungs- und Verkehrsfläche (SuV) in Deutschland ist im vierjährigen Mittel der Jahre 2019 bis 2022 durchschnittlich um rund 52 Hektar pro Tag gewachsen. Der tägliche Anstieg nahm damit gegenüber dem Vorjahresindikatorwert ab (55 Hektar pro Tag in den Jahren 2018 bis 2021).“ (Destatis, 2024a, 2024b, 2024c, vgl. UBA, 2024). International und national greifen ambitionierte Zielsetzungen und Maßnahmen die Reduzierung der Flächenneuinanspruchnahme auf. Sowohl das globale Nachhaltigkeitsziel 15 der Vereinten Nationen als auch die daran angelehnte Deutsche Nachhaltigkeitsstrategie greifen den Schutz und die nachhaltige Nutzung der Ressource Boden auf und weisen die Degradationsneutralität als wichtiges Ziel aus (UN, 2015; Bundesregierung, 2021). Mit der Deutschen Nachhaltigkeitsstrategie 2016 hat die Bundesregierung das 30 Hektar-Ziel des Jahres 2020 auf das Jahr 2030 auf „unter 30 Hektar pro Tag“ festgeschrieben (Bundesregierung, 2017; Destatis, 2018). In der Weiterentwicklung der Nachhaltigkeitsstrategie der Bundesregierung 2021 wird ergänzend bis zum Jahr 2050 eine Flächenkreislaufwirtschaft angestrebt, das heißt, es sollen netto keine weiteren Flächen für Siedlungs- und Verkehrszwecke beansprucht werden (Bundesregierung, 2021). Der Unterschied zwischen Flächenneuinanspruchnahme und Versiegelung: Unter Flächenneuinanspruchnahme wird die Netto-Zunahme der Siedlungs- und Verkehrsfläche verstanden. Der Indikator „Anstieg der Siedlungs- und Verkehrsfläche“ bezieht sich auf die Umwandlung land- und forstwirtschaftlich genutzter Fläche in Siedlungs- und Verkehrsfläche und umfasst damit auch nicht versiegelte Areale wie Stadtparks, Hofflächen, Verkehrsbegleitgrün, Friedhöfe, Kleingärten etc. Insbesondere in urbanen Räumen ist der Indikator oft unzureichend, um den tatsächlichen Zustand der Böden sowie den nachhaltigen Umgang mit dieser Ressource bewerten zu können. Die Flächenversiegelung einer Stadt kann auch bei gleichbleibender Flächenneuinanspruchnahme ansteigen (z. B. durch Innenentwicklung und bauliche Nachverdichtung). Der Grad der Versiegelung und seine Entwicklung gibt daher i.d.R. den. detaillierteren Aufschluss über die Inanspruchnahme der natürlichen Ressource Boden im urbanen Raum (LABO, 2020). Einer von 16 Kernindikatoren, an denen die nachhaltige Entwicklung im Land Berlin gemessen wird, ist daher die Flächenversiegelung (AfS Berlin-Brandenburg, 2021). Dieser Indikator ermöglicht im Land Berlin, auf der Grundlage gesetzlich verankerter Regelungsmöglichkeiten, die Einbeziehung der begrenzten Ressource Boden in das Spannungsfeld von Bau- und Planungsprozessen und die Stärkung des Schutzes und der Wiederherstellung wertvoller Bodenfunktionen. Das Anliegen der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt und der Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen besteht somit darin, Instrumente für ein aktives, praxisorientiertes Flächenmanagement zur Verfügung zu stellen. Diese erleichtern es insbesondere den Bodenschutzbehörden, ihre Aufgaben als Träger öffentlicher Belange z. B. im Rahmen der Bauleitplanung wahrzunehmen sowie im Rahmen von Umweltprüfungen eine qualifizierte Integration bodenschutzfachlicher Aspekte im Prüfungsprozess vornehmen zu können. Ein regelmäßig in der Planungspraxis auftretendes Problem besteht darin, dass sich die bei einer baulichen Entwicklung eines Gebietes notwendigen Versiegelungen materiell kaum ausgleichen lassen. Der fachlich beste Ausgleich besteht prinzipiell in der Entsiegelung anderer Flächen. Das Auffinden versiegelter Flächen, die tatsächlich entsiegelt werden können, gestaltet sich in Berlin aufgrund der eingeschränkten Verfügbarkeit der meisten Flächen als schwierig und lässt sich im Rahmen der Umweltprüfung mangels eines adäquaten Flächenangebots vielfach nicht realisieren. Entsiegelungsvorschläge haben jedoch meist dann eine Realisierungschance, wenn Entsiegelungsflächen bereits bekannt sind und als geeignet geprüft in einem Verzeichnis vorliegen. In einem ersten Schritt wurde mit der Umweltatlaskarte Planungshinweise zum Bodenschutz ein wichtiges planerisches Instrument für die bodenschutzfachliche Bewertung erarbeitet. Die Wichtung der unterschiedlichen Funktionen und Empfindlichkeiten der Berliner Böden ermöglicht eine differenzierte Bewertung im Rahmen der Bauleitplanung. So wird z. B. für Böden, die aus bodenschutzfachlicher Sicht als besonders wertvoll eingestuft wurden, die Suche von Standortalternativen für bauplanungsrelevante Vorhaben empfohlen (vgl. SenStadt, 2020). Um eine verbesserte Verfügbarkeit von Entsiegelungsflächen zu erreichen, wurde in einem zweiten Schritt das Projekt „Entsiegelungspotenziale in Berlin“ ins Leben gerufen. Das Projekt hat die Erfassung und Bewertung von Flächen mit Entsiegelungspotenzial zum Inhalt und soll dazu dienen, Flächen im Land Berlin aufzufinden, die in absehbarer Zukunft dauerhaft entsiegelt werden können. Soweit möglich, sollen die Funktionsfähigkeit des Bodens wiederhergestellt und naturschutzfachlich wertvolle Lebensräume für Pflanzen und Tiere entwickelt werden. Außerdem soll es gelingen, eine räumliche Entkopplung zwischen den Orten der Beeinträchtigung und der Aufwertung durch eine gesamtstädtische Erfassung und einheitliche Systematik bei der Bewertung der erfassten Flächen zu unterstützen. Hierfür kommt im Einzelfall das Instrument der Eingriffsregelung (nach Baurecht und Naturschutzrecht) in Betracht. Die erfassten Flächen dienen grundsätzlich als Flächenangebot für die Kompensation von Eingriffen in den Boden und bei dauerhaftem Verlust von Bodenfunktionen sowie für Entsiegelungsmaßnahmen im Rahmen von Fördermaßnahmen. Im Rahmen mehrerer Projektphasen werden seit 2010 Recherchen in allen Berliner Bezirken, in den vier Berliner Forstämtern, in den Senatsverwaltungen für Stadtentwicklung, Bauen und Wohnen (SenStadt) und Bildung, Jugend und Familie (SenBJF) sowie bei privaten Eigentümern durchgeführt. Die letzte Aktualisierung erfolgte im August 2025. Die bei diesen Recherchen gewonnenen Daten werden in einer Datenbank zusammengeführt. Im Rahmen des in der Entwicklung befindlichen Berliner Entsiegelungsprogramms wird perspektivisch eine Zusammenführung vorhandener Potenzialerfassungen angestrebt. Hierbei sind partizipative Möglichkeiten zur Einbringung bisher unbekannter Entsiegelungspotenziale durch verschiedenste Akteure in der Stadt denkbar. Um die Umsetzung von Entsiegelungsmaßnahmen zu unterstützen, wurde zudem eine Arbeitshilfe zur Ableitung vereinfachter Kostenansätze für die zu erwartenden Rückbaukosten erstellt (inklusive Excel-Eingabedatei für vereinfachte Kostenschätzung von Entsiegelungsmaßnahmen). Außerdem wird die Arbeitshilfe zur Wiederherstellung von Bodenfunktionen nach einer Entsiegelung online bereitgestellt. Darüber hinaus wird in Form regelmäßiger Newsletter über aktuelle Geschehnisse zum Thema Entsiegelung berichtet. In 2021 wurde eine Dokumentation einer Entsiegelungsmaßnahme veröffentlicht, die überblickshaft den Projektablauf, die Finanzierung sowie die Beteiligten aufzeigt. Im Jahr 2025 soll mit einem Bericht über die Entsiegelung der ehemaligen Bezirksgärtnerei Marienfelde eine weitere Dokumentation eines aktuellen Entsiegelungsprojekts veröffentlicht werden. Für den Newsletter, die Dokumentation, sowie die genannten Arbeitshilfen siehe Entsiegelungspotenziale in Berlin – Berlin.de .

BEK 2030 – Umsetzung 2022 bis 2026

Berlin hat sich das Ziel gesetzt bis spätestens 2045 klimaneutral zu werden und bis 2030 die CO 2 Emissionen um 70 % zu reduzieren. Zentrales Instrument zur Erreichung der Berliner Klimaziele ist das Berliner Energie- und Klimaschutzprogramm (BEK 2030). Am 20.12.2022 hat der Berliner Senat die Fortschreibung des Berliner Energie- und Klimaschutzprogramms für die Umsetzungsphase 2022-2026 beschlossen und zur Beschlussfassung an das Abgeordnetenhaus überwiesen. Pressemitteilung zum Senatsbeschluss vom 20.12.2022 BEK 2030 Umsetzungsphase 2022-2026 ( Austauschseiten 66, 162 und 163 ) Die Fortschreibung des Klimaschutzteils des BEK 2030 erfolgte seit Herbst 2021 im Rahmen eines partizipativen Prozesses unter Beteiligung unterschiedlichster Stakeholder und der Stadtgesellschaft sowie unter Einbindung eines koordinierenden Fachkonsortiums, das im Juni 2022 seine Ergebnisse vorgestellt hatte. Weitere Informationen zum Beteiligungsprozess inklusive des Abschlussberichts finden sich auf der Seite Erarbeitungs- und Beteiligungsprozess . Auf Grundlage des Endberichts des Fachkonsortiums hat die für das BEK fachzuständige Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und Klimaschutz eine Vorlage erarbeitet, in der auch die Empfehlungen des Berliner Klimabürger*innenrates berücksichtigt wurden. Im Berliner Klimabürger:innenrat hatten parallel im Zeitraum von April bis Juni 2022 einhundert zufällig ausgeloste Berlinerinnen und Berliner in acht wissenschaftlich begleiteten Sitzungen stellvertretend für die Stadtgesellschaft Herausforderungen beim Klimaschutz diskutiert und 47 konkrete Handlungsempfehlungen an den Senat erarbeitet. Auch die Fortschreibung des Berliner Energie- und Klimaschutzprogramms vereint die Themen Klimaschutz und Klimaanpassung, wobei der Klimaanpassungsteil parallel in einem verwaltungsinternen Prozess von der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt unter Einbeziehung zahlreicher Senatsverwaltungen sowie nachgelagerten Behörden entwickelt wurde. Mit der Fortschreibung des BEK 2030 für den Umsetzungszeitraum 2022 bis 2026 wurden erstmals Sektorziele zur Emissionsminderung für die Handlungsfelder Energie, Gebäude, Verkehr und Wirtschaft festgelegt. Als weitere Neuerung wurden zur besseren Bewertung und zeitnahen Nachsteuerung für die Maßnahmen weitestgehend konkrete, quantitative Ziele und Indikatoren bzw. Umsetzungszeitpunkte definiert. Im Bereich Klimaschutz wurden 71 Maßnahmen im Bereich Klimaschutz und identifiziert, die der Senat in den nächsten Jahren umsetzen soll, um die CO 2 -Emissionen zu verringern. Im Klimaschutzbereich kommt im Handlungsfeld Energie der Umstellung auf fossilfreie Energieträger in der Strom- und Wärmeversorgung eine zentrale Rolle zu. Es gilt, alle verfügbaren Potentiale an erneuerbaren Energien in den Bereichen Solar, Wind, Abwärme, Geothermie und Bioenergie bestmöglich zu erschließen und entsprechende Infrastrukturen für Speicherlösungen aufzubauen. Wichtige Maßnahmen sind die Weiterentwicklung und Umsetzung des Masterplans Solarcity und die kommunale Wärmeplanung. Im Handlungsfeld Gebäude sind die Steigerung der energetischen Sanierungsrate im Bestand, der klimaneutrale Neubau sowie der Ausstieg aus fossilen Brennstoffen für die Versorgung der Gebäude als zentrale Schlüsselfaktoren benannt. Wichtige Maßnahmen sind hier die Entwicklung einer räumlichen Wärmeplanung sowie der Ausbau von Beratungsangeboten und Landesförderprogrammen für Gebäudeeigentümer*innen. Das Land Berlin wird zudem die sozialverträgliche Umsetzung von Sanierungspflichten im Gebäudebestand auf der Bundesebene befürworten. Im Handlungsfeld Verkehr gilt es, Maßnahmen für eine Mobilitätswende zu implementieren und umzusetzen. Dies ist im Personenverkehr der Ausbau von Rad- und Fußverkehrsinfrastrukturen oder die qualitative Verbesserung und quantitative Ausweitung des Angebotes öffentlicher Verkehrsmittel. Die Umstellung der kommunalen Fahrzeugflotte auf klimaschonende Antriebe soll dabei beispielgebend sein. Als neue Maßnahmen werden u.a. die Einrichtung einer Null-Emissionszone innerhalb des S-Bahn-Rings und eine Neuaufteilung des öffentlichen Straßenraums, die dem Umweltverbund, aber auch Stadtgrün und Aufenthaltsmöglichkeiten, Vorrang vor dem motorisierten Individualverkehr einräumt, angegangen. Die Klimaanpassung wurde im Zuge der Fortschreibung des BEK 2030 inhaltlich gestärkt und umfasst nun 53 Maßnahmen. Hier wurden die bisherigen acht Handlungsfelder Gesundheit, Stadtentwicklung und Stadtgrün, Wasser, Boden, Forstwirtschaft, Mobilität, Industrie und Gewerbe und Bevölkerungsschutz um die zwei neuen Handlungsfelder Biologische Vielfalt sowie Tourismus, Sport und Kultur erweitert. Im Handlungsfeld (HF) Gesundheit liegt der Fokus auf der Entwicklung und Etablierung eines Hitzeaktionsplanes (HAP) für das Land Berlin, verbunden mit Maßnahmen zur Sensibilisierung der Bevölkerung und einer Stärkung der Eigenvorsorge sowie die Schaffung zielgruppenspezifischer Informationen zu Hitze und UV-Strahlung. Im HF Stadtentwicklung sollen neben der Klimaanpassung in der Planung und bei der Errichtung neuer Stadtquartiere auch die Klimaanpassung im Gebäudebestand entsprechend berücksichtigt werden. Eine klimatische Qualifizierung der Stadtoberfläche soll zudem im HF Boden durch massive Entsieglung vorangetrieben werden. Als strategisches Ziel wird dabei eine Netto-Null-Versiegelung bis 2030 angestrebt. Dem gleichermaßen massiv vom Klimawandel betroffenen Stadtgrün kommt ebenfalls eine Schlüsselrolle zu, da es essentielle Ökosystemleistungen (Verschattung und Verdunstungskühlung, Luft- und Wasserfilterung, Bodenneubildung und Erhöhung der Biodiversität) erbringt. Deshalb muss das Stadtgrün klimaresilient gestaltet, entsprechend gepflegt und geschützt werden. Dafür sollen neben einer nachhaltigen Grünanlagenentwicklung u.a. das Berliner Mischwald-Programm (HF Forstwirtschaft) und die Stadtbaumkampagne konsequent fortgeführt werden. In Ergänzung dazu wird im HF Wasser eine Neuausrichtung der Regenwasserbewirtschaftung im öffentliche Raum angestrebt. Neben den spezifischen Klimaschutz- und Klimaanpassungsmaßnahmen gibt es ein neues Handlungsfeld, in dem übergreifende Themen und Herausforderungen wie Fachkräftemangel, bezirklicher Klimaschutz, Klimabildung oder bürgerschaftliches Engagement adressiert werden. Bild: SenMVKU Klimabürger:innenrat Hintergrundinformationen zum Verfahren des „Berliner Klimabürger:innenrats“. Weitere Informationen Bild: Thomas Imo (photothek) Erarbeitungs- und Beteiligungsprozess Hintergrundinformationen zum Erarbeitungsprozess des Berliner Energie- und Klimaschutzprogramms (BEK 2030) (Umsetzungszeitraum 2022-2026) Weitere Informationen Bild: SenUMVK Berichte Berichte zu Monitoring und Umsetzung des BEK 2030 sowie zur Sektorzielerreichung Weitere Informationen

Die vertikale Dimension des Naturschutzes: Ein kostengünstiger Plan zur Einbeziehung unterirdischer Ökosysteme in die Biodiversitäts- und Klimaschutzagenden nach 2020

Subterrane Ökosysteme beherbergen eine breite Vielfalt spezialisierter und endemischer Organismen, die einen einzigartigen Bruchteil der globalen Vielfalt ausmachen. Darüber hinaus leisten sie entscheidende Beiträge der Natur für die Menschen – insbesondere die Bereitstellung von Trinkwasser für mehr als die Hälfte der Weltbevölkerung. Diese unsichtbaren Ökosysteme werden jedoch bei den Biodiversitäts- und Klimaschutzzielen für die Zeit nach 2020 übersehen. Nur 6,9 % der bekannten subterranen Ökosysteme überschneiden sich mit dem ´Netzwerk von Schutzgebieten. Zwei Haupthindernisse sind für diesen Mangel an Schutz verantwortlich. Erstens bleiben subterrane Biodiversitätsmuster weitgehend unkartiert. Zweitens fehlt uns ein mechanistisches Verständnis der Reaktion subterraner Arten auf vom Menschen verursachte Störungen. Das DarCo-Projekt zielt darauf ab, subterrane Biodiversität in ganz Europa zu kartieren und einen expliziten Plan zur Einbeziehung subterraner Ökosysteme in die Biodiversitätsstrategie der Europäischen Union (EU) für 2030 zu entwickeln. Zu diesem Zweck haben wir ein multidisziplinäres Team führender Wissenschaftler in subterraner Biologie und Makroökologie zusammengestellt und Naturschutz aus einem breiten Spektrum europäischer Länder. Das Projekt gliedert sich in drei Arbeitspakete, die der direkten Forschung gewidmet sind (WP2-4), plus ein viertes (WP5), das darauf abzielt, die Verbreitung der Ergebnisse und das Engagement der Interessengruppen für die praktische Umsetzung des Naturschutzes zu maximieren. Zunächst werden wir durch die Zusammenstellung bestehender Datenbanken und die Nutzung eines kapillaren Netzwerks internationaler Mitarbeiter Verbreitungsdaten, Merkmale und Phylogenien für alle wichtigen subterranen Tiergruppen sammeln, einschließlich Krebstiere, Mollusken, Insekten und Wirbeltiere (WP2). Diese Daten werden dazu dienen, die Reaktionen von Arten auf menschliche Bedrohungen mithilfe der hierarchischen Modellierung von Artengemeinschaften (WP3) vorherzusagen. Die Vorhersagen der Modelle zur Veränderung der biologischen Vielfalt werden die Grundlage für eine erste dynamische Kartierung des subterranen Lebens in Europa bilden. Durch die Verschneidung von Karten von Diversitätsmustern, Bedrohungen und Schutzgebieten werden wir einen Plan zum Schutz der subterranen Biodiversität entwerfen, der das aktuelle EU-Netzwerk von Schutzgebieten (Natura 2000) ergänzt und gleichzeitig klimabedingte Veränderungen in subterranen Ökoregionen berücksichtigt (WP4). Schließlich versuchen wir durch gezielte Aktivitäten in WP5, das gesellschaftliche Bewusstsein für subterrane Ökosysteme zu schärfen und Interessengruppen einzuladen, die subterrane Biodiversität in multilaterale Vereinbarungen einzubeziehen. In Übereinstimmung mit dem europäischen Plan S werden wir alle Daten offen und wiederverwendbar machen, indem wir eine zentralisierte und offene Datenbank zum subterranen Leben entwickeln – die Subterranean Biodiversity Platform.

SYNTHESYS+ - Sub project: NA3.1

SYNTHESYS+(link is external) creates an integrated European infrastructure for natural history collections. Within SYNTHESYS+, subproject NA3.1, led (for GGBN) by ZFMK, performs a landscape analysis of biodiversity and environmental biobanks and their standards and practices, investigates commonalities and differences, and identifies missing standards. Environmental and biodiversity biobanks often follow very similar goals, and many parallels exist among their respective practices. However, the dialogue between the various biobank or repository types is limited. We aim at opening up interfaces by collecting and sharing information on workflows and standard operating procedures.

Ressortforschungsplan 2024, Empfehlungen zur Umsetzung der Anforderungen gemäß Richtlinie (EU) 2023/2413 Artikel 29 -31 a, Anhang V und VI sowie der Durchführungsverordnungen (EU) 2022/996 und (EU) 2022/2448

Mit Inkrafttreten der überarbeiteten Richtlinie (EU) 2023/2413 für erneuerbare Energien (RED) am 20. November 2023 wurden unter anderem neue Anforderungen an die Nachhaltigkeitskriterien und die Vorgaben zur Treibhausgaseinsparung bei der Förderung von Stromerzeugung und der Herstellung von Kraftstoffen aus Biomasse aufgestellt. Zur nationalen Umsetzung müssen die Biostrom-Nachhaltigkeits-VO (BioSt-NachV) und die Biokraftstoff-Nachhaltigkeits-VO (Biokraft-NachV) angepasst werden. Dazu sollen EU-rechtlich unbedingt erforderlichen Anpassungserfordernisse, sowie der Handlungsspielraum für national darüberhinausgehende Regelungen ermittelt werden. Es sind die jeweiligen Auswirkungen der Regelungsoptionen auf die Nutzung relevanter Biomasseströme sowie auf Biodiversität, Luft- und Bodenqualität abzuschätzen. Darüber hinaus sollen vor dem Hintergrund des Biodieselskandals und der vermuteten Betrugsfälle bei der Biokraftstoffdeklaration in 2023 Möglichkeiten geprüft werden, das nationale Zertifizierungs- und Nachhaltigkeitsnachweisverfahren im Hinblick auf eine verbesserte Betrugsprävention auszugestalten.Unter enger Einbindung der Branche sollen konkrete Umsetzungsempfehlungen anhand von Praxisbeispielen erarbeitet werden.Im Sinne einer Optimierung des bestehenden Systems soll darüber hinaus das bestehende Verfahren zur Aufnahme eines Rohstoffes in Codeliste das nachhaltigen Biomassesystems NABISY (Nabisy-Biomasse-Codeliste) qualitativ verbessert und damit nachvollziehbarer und nachhaltiger gestaltet werden. Darüber hinaus sollen Vorschläge für Inhalt und Format einer regelmäßigen Evaluierung der Nachhaltigkeitsverordnungen erarbeitet werden. Dies schließt auch Vorschläge zur Revision der bisherigen Fortschrittsberichte der BLE ein.

Biodiversity Exploratories Information System

BExIS is the online data repository and information system of the Biodiversity Exploratories Project (BE). The BE is a German network of biodiversity-related working groups from areas such as vegetation and soil science, zoology and forestry. Up to three years after data acquisition, the data use is restricted to members of the BE. Thereafter, the data is usually publicly available (https://www.bexis.uni-jena.de/ddm/publicsearch/index).

Valve behavior of the European flat oyster Ostrea edulis and associated underwater sound and temperature data, recorded during a 18-month in situ experiment in Helgoland, Germany

Once widespread across European coasts, the native flat oyster Ostrea edulis has now disappeared from most of its historical range and is officially recognized as threatened. As a key ecological engineer, this species supports biodiversity by filtering water, stabilizing sediments, and providing complex reef habitats. Understanding and evaluating its behavior and biological rhythms in a natural environment before reintroduction, and how it responds to natural geophysical cycles, is essential to support effective restoration strategies. However, current knowledge on O. edulis remains limited, with most studies focusing primarily on reproduction under aquaculture or laboratory conditions. To help fill this gap, we conducted a 18-month in situ study to assess the valve behavior of Ostrea edulis in the field. The experiment took place at the Margate site (54.19°, 7.88°) near the island of Helgoland (Germany) from the 11th of March 2023 to the 31st of August 2024. The experimental setup consisted of 16 oysters disposed on individual cages in a customized oyster basket placed on a lander, a metallic structure immersed at 10m depth. Their valve behavior was continuously measured during 18 months using a High-Frequency Non-Invasive (HFNI) valvometer biosensor (Tran et al. 2023; Le Moal et al. 2023 for further details). Briefly, a pair of lightweight electrodes (<100 mg) was glued on each half-shell of each oyster and was linked to the HFNI valvometer by a flexible wire, allowing undisturbed oyster valve movement. An electromagnetic field was generated between the electrodes, allowing the measurement of the distance between each oyster's valve in continuous mode. In addition to the oyster behavior, environmental parameters were continuously measured underwater by the HFNI valvometer biosensor during the experiment, such as temperature and sound pressure magnitude. This compilation of datasets gives an overview of environmental parameters and behavioral data collected during this experiment.

1 2 3 4 5782 783 784