Das Projekt "Teilprojekt MIKRO: Räumliche Verteilung und Aktivität von mikrobiellen Lebensgemeinschaften in urbanen Böden" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Berlin, Institut für Technischen Umweltschutz, Fachgebiet Umweltmikrobiologie.In Böden spielen Biofilme und bakterielle Aggregate eine große Rolle für die Struktur und die physiko-chemischen Eigenschaften der Bodenmatrix. Hierfür sind vor allem makromolekulare Substanzen verantwortlich, die von Mikroorganismen und Bodentieren produziert werden. Im vorliegenden Projekt soll das Vorkommen, die Struktur und Dichte, sowie die Bedeutung von mikrobiellen Biofilmen für die Wasser- und Stofflüsse in urbanen Böden untersucht werden, die im Hinblick auf Trockenheit, Schadstoff- und Salzeintrag häufig Extremstandorte darstellen. Bei den Untersuchungen an Feldproben soll mit mikroskopischen Methoden, in Verbindung mit molekularen Methoden (FISH), die Struktur und räumliche Verteilung der detektierbaren Bakteriengruppen ermittelt werden. Außerdem soll an suspendierten Bakterien aus der Bodenprobe mittels FISH die phylogenetische Diversität der vorhandenen Population bestimmt werden. Daneben werden aus den untersuchten Böden relevante Bakterienarten isoliert. Proben aus den experimentellen Bodensäulen sollen hinsichtlich der gleichen Parameter wie die Freilandproben untersucht werden, um in Kooperation mit den anderen Teilprojekten die kombinierten Effekte von Huminstoffen, Mikroorganismen und Bodentieren zu ermitteln. Ursächliche Zusammenhänge, die aufgrund der verschiedenen Untersuchungen an den Bodenproben vermutet werden, sollen dann in definierten Systemen (Biofilmreaktoren) weiter überprüft werden.
Das Projekt "Mikrobielle Biofabriken: Kontinuierliche Bioproduktion mit maßgeschneiderten Biokatalysatoren in Bioelektrochemischen Fermentern" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Engler-Bunte-Institut, Lehrstuhl für Wasserchemie und Wassertechnologie.
Das Projekt "Mikrobielle Biofabriken: Kontinuierliche Bioproduktion mit maßgeschneiderten Biokatalysatoren in Bioelektrochemischen Fermentern, Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität Hamburg, Institut für Technische Mikrobiologie V-7.
Das Projekt "Mikrobielle Biofabriken: Kontinuierliche Bioproduktion mit maßgeschneiderten Biokatalysatoren in Bioelektrochemischen Fermentern, Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Engler-Bunte-Institut, Lehrstuhl für Wasserchemie und Wassertechnologie.
Das Projekt "Interne Elimination von Ammoniak und Aerosolen aus der Stallluft mithilfe eines Moving Bed Biofilm-Reaktors (EliAAS), Teilprojekt 3" wird/wurde gefördert durch: Bundesministerium der Justiz und für Verbraucherschutz. Es wird/wurde ausgeführt durch: Kunststoff-Spranger GmbH.Vorhabenbeschreibung: Ziel des Vorhabens ist die experimentelle Entwicklung eines innovativen, auf Basis eines Moving Bed Biofilm- Reaktors (MBBR) in Kombination mit einem Luftwäscher arbeitenden Verfahrens zur Elimination von Ammoniak und Aerosolen aus der Stallluft bei Haltung landwirtschaftlicher Nutztiere. MBBR haben sich in Kreislaufsystemen zur Aufzucht aquatischer Organismen sowie in der kommunalen Klärtechnik als leistungsfähige Wasseraufbereitungskomponenten bewährt. Es ist zu erwarten, dass ein hinreichend dimensionierter Luftwäscher neben Ammoniak auch Aerosole aus der Stallluft eliminiert, die einerseits zu einer hinreichenden Versorgung der Nitrifikanten und Denitrifikanten im MBBR mit den neben Ammonium/Ammoniak/Nitrit/Nitrat benötigten Nährstoffen führt. Sich im Füllkörperbett des MBBR ansiedelnde heterotrophe Bakterien werden andererseits zur Mineralisation der organischen Substanz aus Aerosolen führen und sie somit ebenfalls im Ablaufwasser bzw. Sediment des MBBR binden. Gelingt die praktische Umsetzung, stellt die Innovation einen Beitrag zur Reduzierung von Emissionen aus der Nutztierhaltung dar. Aufgrund der geringen Platzansprüche des angestrebten Verfahrens ist es vorgesehen, Luftwäscher und MBBR innerhalb der Stallhülle zu platzieren und die Stallluft kontinuierlich durch das System zu rezirkulieren. Das Konzept kann somit auch dazu beitragen geringe Ammoniak- und Aerosolkonzentrationen innerhalb des Stalles zu realisieren. Durch diese Verbesserung der Stallluftqualität kann auch ein Beitrag zu mehr Tierwohl in der Nutztierhaltung und zu einem verbesserten Arbeitsschutz erbracht werden. Der MBBR soll so ausgelegt werden, dass auch Betriebszustände mit intermittierenden Denitrifikationsphasen gefahren werden können. Hierdurch besteht gegenüber konventionellen Luftwäschern die Möglichkeit der Überführung von Ammoniak in nach Umweltgesichtspunkten unproblematischen gasförmigen Stickstoff.
Das Projekt "IBÖ-07: BIOBED - Erweiterung des kultivierbaren Algenspektrums um bisher nicht im industriellen Maßstab produzierbare Mikroalgen. Hierfür werden benthische Kieselalgenarten auf bioaktive Eigenschaften gescreent, sowie eine mehrstufige integrierte Photobioreaktoranlage für deren Kultivierung entwickelt." wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.
Das Projekt "Interne Elimination von Ammoniak und Aerosolen aus der Stallluft mithilfe eines Moving Bed Biofilm-Reaktors (EliAAS), Teilprojekt 1" wird/wurde gefördert durch: Bundesministerium der Justiz und für Verbraucherschutz. Es wird/wurde ausgeführt durch: Institut für Binnenfischerei e.V., Potsdam-Sacrow.Ziel des Vorhabens ist die experimentelle Entwicklung eines innovativen, auf Basis eines Moving Bed Biofilm- Reaktors (MBBR) in Kombination mit einem Luftwäscher arbeitenden Verfahrens zur Elimination von Ammoniak und Aerosolen aus der Stallluft bei Haltung landwirtschaftlicher Nutztiere. MBBR haben sich in Kreislaufsystemen zur Aufzucht aquatischer Organismen sowie in der kommunalen Klärtechnik als leistungsfähige Wasseraufbereitungskomponenten bewährt. Es ist zu erwarten, dass ein hinreichend dimensionierter Luftwäscher neben Ammoniak auch Aerosole aus der Stallluft eliminiert, die einerseits zu einer hinreichenden Versorgung der Nitrifikanten und Denitrifikanten im MBBR mit den neben Ammonium/Ammoniak/Nitrit/Nitrat benötigten Nährstoffen führt. Sich im Füllkörperbett des MBBR ansiedelnde heterotrophe Bakterien werden andererseits zur Mineralisation der organischen Substanz aus Aerosolen führen und sie somit ebenfalls im Ablaufwasser bzw. Sediment des MBBR binden. Gelingt die praktische Umsetzung, stellt die Innovation einen Beitrag zur Reduzierung von Emissionen aus der Nutztierhaltung dar. Aufgrund der geringen Platzansprüche des angestrebten Verfahrens ist es vorgesehen, Luftwäscher und MBBR innerhalb der Stallhülle zu platzieren und die Stallluft kontinuierlich durch das System zu rezirkulieren. Das Konzept kann somit auch dazu beitragen geringe Ammoniak- und Aerosolkonzentrationen innerhalb des Stalles zu realisieren. Durch diese Verbesserung der Stallluftqualität kann auch ein Beitrag zu mehr Tierwohl in der Nutztierhaltung und zu einem verbesserten Arbeitsschutz erbracht werden. Der MBBR soll so ausgelegt werden, dass auch Betriebszustände mit intermittierenden Denitrifikationsphasen gefahren werden können. Hierdurch besteht gegenüber konventionellen Luftwäschern die Möglichkeit der Überführung von Ammoniak in nach Umweltgesichtspunkten unproblematischen gasförmigen Stickstoff.
Das Projekt "BioElektroGas - Bioelektrochemische Produktion von hochreinem Biogas aus Abfallstoffen, Teil 1" wird/wurde gefördert durch: Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Es wird/wurde ausgeführt durch: Universität Hohenheim, Landesanstalt für Agrartechnik und Bioenergie (740).Ziel des Forschungsvorhabens ist die Entwicklung eines vollkommen neuen Verfahrens zur Erzeugung von gasförmigen Kraftstoffen aus organischen Abfallstoffen. Dazu werden erstmals fermentative Verfahren und bio-elektrische Systeme zu einem neuen Prozess kombiniert. In diesem Prozess werden die Abfallstoffe zunächst in einem 'dark fermentation reactor' fermentativ in organische Säuren umgewandelt und anschließend einer bio-elektrochemischen Konversion, bestehend aus einer Anoden- und einer Kathodenkammer zugeführt werden. An der Anode werden die gelösten organischen Säuren durch exoelektrogene Bakterien zu CO2, H+ und e- oxidiert. Während die Protonen durch eine PEM (proton exchange membrane) der Kathode zugeführt werden, geben die Bakterien die freiwerdenden Elektronen an die Anode ab, so dass diese über eine elektrische Verbindung an die Kathode weiter geleitet werden. Das gebildete CO2 wird ergänzend bedarfsgerecht der Kathode zugeführt. Die Einzelziele des Projektes sind wie folgt definiert: - Entwicklung und Erprobung eines geeigneten Anoden- und Kathodenmaterials und Optimierung der Elektrodenstruktur - Untersuchung der biologischen Diversität der Mikroorganismen an den Elektroden - Optimierung des fermentativ bioelektrochemischen Gesamtverfahrens unter technischen Aspekten im Labormaßstab. Im Berichtszeitraum wurden im Wesentlichen folgende Arbeiten durchgeführt: Ausgehend von Vorarbeiten zur Wasserstoffproduktion mit Edelstahlkathoden in dem für die Methanogenen geeigneten Kulturmedium, wurde iterativ ein auf die Anforderungen der Kathodenentwicklung hin optimiertes Reaktorkonzept entwickelt. Eine Hauptanforderung an den Reaktor ist dabei die integrierte CO2-Versorgung. Hinsichtlich der Entwicklung eines geeigneten Biofilm-Trägermaterials wurden vergleichende Untersuchungen mit Glasfasern und Nanofasern aus Polyacrylnitril (PAN) in einer Kultur von M. barkeri durchgeführt. Die PAN-Nanofasern wurden teilweise zusätzlich mit (3-Aminopropyl)triethoxysilan (ATPES) behandelt, um deren Oberfläche mit positiven Ladungen auszurüsten und so die Biofilmansiedlung zu verbessern. In verschiedenen Langzeitexperimenten mit bioelektrochemischen Systemen, die mit Perkolat als Substrat betrieben wurden, konnte gezeigt werden, dass die bereits im Perkolat bestehende Community an Organismen in der Lage ist, die enthaltenen organischen Säuren komplett zu oxidieren. Dabei konnten Stromstärken von bis zu 0,5 mA/cm2 Anodenfläche gemessen werden. Die durchgeführten Untersuchungen zum fermentativen Aufschluss der Abfallstoffe belegen, dass die gewählten Substrate sehr gut in organische Säuren überführt werden können. Es traten keinerlei Prozessstörungen auf. In HPLC-Untersuchungen konnten keine Alkohole und Zucker im Perkolat nachgewiesen werden. Die Untersuchung des Perkolats zeigte für pH-6,0 die höchsten Konzentrationen an organischen Säuren, besonders die Gehalte an Essigsäure und Buttersäure lagen im Vergleich deutlich über den Werten bei pH-5,5.
Das Projekt "Interne Elimination von Ammoniak und Aerosolen aus der Stallluft mithilfe eines Moving Bed Biofilm-Reaktors (EliAAS), Teilprojekt 2" wird/wurde gefördert durch: Bundesministerium der Justiz und für Verbraucherschutz. Es wird/wurde ausgeführt durch: Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Agrartechnologie.Ziel des Vorhabens ist die experimentelle Entwicklung eines innovativen, auf Basis eines Moving Bed Biofilm- Reaktors (MBBR) in Kombination mit einem Luftwäscher arbeitenden Verfahrens zur Elimination von Ammoniak und Aerosolen aus der Stallluft bei Haltung landwirtschaftlicher Nutztiere. MBBR haben sich in Kreislaufsystemen zur Aufzucht aquatischer Organismen sowie in der kommunalen Klärtechnik als leistungsfähige Wasseraufbereitungskomponenten bewährt. Es ist zu erwarten, dass ein hinreichend dimensionierter Luftwäscher neben Ammoniak auch Aerosole aus der Stallluft eliminiert, die einerseits zu einer hinreichenden Versorgung der Nitrifikanten und Denitrifikanten im MBBR mit den neben Ammonium/Ammoniak/Nitrit/Nitrat benötigten Nährstoffen führt. Sich im Füllkörperbett des MBBR ansiedelnde heterotrophe Bakterien werden andererseits zur Mineralisation der organischen Substanz aus Aerosolen führen und sie somit ebenfalls im Ablaufwasser bzw. Sediment des MBBR binden. Gelingt die praktische Umsetzung, stellt die Innovation einen Beitrag zur Reduzierung von Emissionen aus der Nutztierhaltung dar. Aufgrund der geringen Platzansprüche des angestrebten Verfahrens ist es vorgesehen, Luftwäscher und MBBR innerhalb der Stallhülle zu platzieren und die Stallluft kontinuierlich durch das System zu rezirkulieren. Das Konzept kann somit auch dazu beitragen geringe Ammoniak- und Aerosolkonzentrationen innerhalb des Stalles zu realisieren. Durch diese Verbesserung der Stallluftqualität kann auch ein Beitrag zu mehr Tierwohl in der Nutztierhaltung und zu einem verbesserten Arbeitsschutz erbracht werden. Der MBBR soll so ausgelegt werden, dass auch Betriebszustände mit intermittierenden Denitrifikationsphasen gefahren werden können. Hierdurch besteht gegenüber konventionellen Luftwäschern die Möglichkeit der Überführung von Ammoniak in nach Umweltgesichtspunkten unproblematischen gasförmigen Stickstoff.
Das Projekt "Einsatz eines bioelektrochemischen Systems zur Urinbehandlung auf Großveranstaltungen (PeePower-OpenAir)" wird/wurde gefördert durch: Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Es wird/wurde ausgeführt durch: DVGW-Forschungsstelle am Engler-Bunte-Institut des Karlsruher Instituts für Technologie (KIT), Lehrstuhl für Wasserchemie und Wassertechnologie.Das beantragte Forschungsvorhaben hat zum Ziel, die Rahmenbedingungen für die großtechnische Behandlung des urinhaltigen Teilstroms aus Besuchertoiletten von Großveranstaltungen mittels mikrobieller Elektrolysezellen bzw. mikrobieller Brennstoffzellen zu ermitteln. Dabei soll zunächst der Anfall und die Zusammensetzung des Urins näher beschrieben bzw. quantifiziert werden. Dies soll konkret pro Urinal bzw. pro Trenntoilette ermittelt werden. Die so ermittelten Daten sollen dann für die Planung bzw. Auslegung eines bioelektrochemischen Behandlungskonzepts herangezogen werden. Des Weiteren sollen die verfügbare Literatur und laufende bzw. abgeschlossene Forschungsvorhaben ausgewertet werden. Am Ende des Vorhabens sollen konkrete Vorschläge für das Design des Reaktortyps (bioelektrochemischer Biofilmreaktor) gemacht werden. Darüber hinaus werden Daten zur Auslegung zu Elektrodenmaterial und -potential, Anordnung der Elektroden, Elektrodenfläche pro Volumen Urin gemacht. Die mögliche Strom- bzw. Wasserstoffausbeute wird berechnet und Vorschläge zur Verwendung der Produkte werden angegeben.
Origin | Count |
---|---|
Bund | 76 |
Land | 2 |
Type | Count |
---|---|
Förderprogramm | 76 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 2 |
offen | 76 |
Language | Count |
---|---|
Deutsch | 76 |
Englisch | 10 |
Resource type | Count |
---|---|
Keine | 40 |
Webseite | 38 |
Topic | Count |
---|---|
Boden | 53 |
Lebewesen & Lebensräume | 70 |
Luft | 32 |
Mensch & Umwelt | 78 |
Wasser | 67 |
Weitere | 78 |