API src

Found 1059 results.

Similar terms

s/biogene-reststoffe/Biogene Reststoffe/gi

Untersuchungen der energetischen Nutzungsoptionen von Hanffaserreststoffen zur exemplarischen Einbindung in das Energiekonzept eines Verarbeitungsstandorts, Teilvorhaben: Vorbehandlung von Reststoffen der Hanffaserproduktion und Prozesskettenentwicklung für die energetische Verwertung

Die Hanfindustrie hat sich in den vergangenen Jahren aufgrund neuer politischer Rahmenbedingungen und innovativer Produktfelder zu einem stark wachsenden Wirtschaftsbereich entwickelt. Hanfprodukte werden in der Lebensmittel-, Pharma-, Automobil-, Bau-, Textil und Papierindustrie eingesetzt. Das stärkste Wachstum der Hanfindustrie findet in der Produktion von Lebensmittel- und Lebensmittelzusätzen aus Hanfsamen, Hanf- und CBD-Ölen statt. Als Nebenprodukte fallen in diesen Wirtschaftsbereichen Extraktionsreste an, für die es derzeit nur bedingt Verwertungsmöglichkeiten gibt. In der industriellen Hanffaserproduktion werden aus getrocknetem Hanfstroh hochwertige Naturfasern gewonnen, die z.B. im Fahrzeugleichtbau zur Herstellung von Fahrzeugarmaturen und Verkleidungen eingesetzt werden. Hanffasern sind darüber hinaus ein etabliertes ökologisches Dämmstoffmaterial. Hanfdämmstoffe zeichnen sich durch eine bessere CO2 Bilanz gegenüber konventionellen Dämmstoffmaterialien wie Mineralwolle oder Styropor aus und bieten die Möglichkeit CO2 über mehrere Jahrzehnte im Dämmstoff zu fixieren. Im Dämmstoffherstellungsverfahren fallen neben dem Hauptprodukt Hanffasern im etwa gleichen Umfang zellulosehaltige Reststoffe an, die derzeit nur zu einem geringen Teil wirtschaftlich genutzt werden. Im Hinblick auf eine zunehmende regenerative Energieversorgung sowie knapper werdender Ressourcen bzw. der kritischen Diskussion um den Einsatz nachwachsender Rohstoffe zur Energiegewinnung kommt der Erschließung biogener Rest- und Abfallstoffe für die Erzeugung effizienter, speicherbarer, flexibler und dezentraler Bioenergieträger zunehmende Bedeutung zu. Im Vorhaben HanfNRG sollen energetischen Nutzungsoptionen von Reststoffen der Hanfverarbeitung untersucht werden zur exemplarischen Einbindung in das Energiekonzept einer Hanffaserfabrik.

Enzymatische Route zur Valorisierung von Pflanzenschrot für die Polyphosphat-Herstellung, Teilvorhaben 2: Mikrobielle Biotransformation

Ziel des Forschungsvorhabens P2Value ist die Entwicklung eines neuartigen, integrierten und nachhaltigen Technologiekonzepts für die enzymatische Phosphat-Rückgewinnung und die gekoppelte biotechnologische Herstellung von grünen Phosphaten aus Pflanzenschroten sowie biogenen Reststoffen. Im Erfolgsfalle stehen nachhaltige, biotechnologische Verfahren für die Phosphat-Herstellung aus nachwachsenden Rohstoffen zur Verfügung, die in der Lebensmittelherstellung (z.B. als Streichsalze, antibakteriostatische Stoffe, Emulgatoren, Textur) eingesetzt werden. Hervorzuheben ist, dass durch die im Forschungsvorhaben P2Value entwickelte Technologie das enzymatische aus biogenen Reststoffen gewonnene Phosphat frei von Kontamination ist und Umweltressourcen schonend (keine Säuren, keine hohen Temperaturen, keine langen Transportwege) hergestellt wird. Zusätzlich führt das Verfahren zu valorisiertem, Phytin abgereichertem Schrot, das deswegen in höheren Massenanteilen in Tierfutter eingesetzt werden kann (bisher auf 10% limitiert). Das P2Value Verfahren fördert die Unabhängigkeit vom Import und leistet somit einen Beitrag zur P-Kreislaufwirtschaft. Unter anderem wird die Reduktion des Phosphateintrags erreicht und die Umweltbelastung somit reduziert durch Vermeidung der Anreicherung des unverdauten Phytins oder Kontaminationen aus dem Mineraldünger im Boden und in Gewässern. Alleinstellungsmerkmal ist, dass die aus nachwachsenden Rohstoffen biotechnologisch hergestellten Phosphate für die Lebensmittelherstellung in ihren Eigenschaften denen der chemisch hergestellten überlegen sind und neue Möglichkeiten für die Valorisierung der Produkte bieten. Perspektivisch ermöglicht die im Forschungsvorhaben entwickelte Phytase/Hefe Toolbox eine größer als 80 % Gewinnung von Phosphat aus Phytin aus nachwachsenden Rohstoffen und ermöglicht im Pilotmaßstab die Herstellung von grünen Polyphosphaten.

Kunststoffverarbeitung/ Bauteilherstellung, TP3.3: Prozessentwicklung Rohrextrusion von Lüftungsrohren mit inkorporierten biogenen Reststoffen

Reststoffbereitstellung/ Reststoffaufbereitung, TP1.2: Aufbau der Wertschöpfungskette Spreustroh im Technikums Maßstab zur Bereitstellung von Biomassehalbzeugen als Ausgangsbasis für Anwender

Entwicklung einer innovativen Prozesskette zur optimalen Vergärung von Pferdemist zur Produktion von Biomethan als Kraftstoff

Auf dem Gelände der Pferdezucht Gestüt Lewitz in Mecklenburg-Vorpommern soll eine Biomethananlage zur Vergärung von Pferdemist, Geflügelmist und pflanzlichen Reststoffen errichtet werden. Momentan wird ca. 15 - 20 % des auf dem Gestüt Lewitz anfallenden Pferdemists in einer Biogasanlage verwertet. Der Rest wird ohne Behandlung auf die Felder ausgebracht. Das erzeugte Biomethan soll zu LNG verflüssigt werden und im Wesentlichen zur Dekarbonisierung der Unternehmensgruppe dienen. Die Anlage wird eine Produktionsleistung von ca. 1.000 Nm³/h Biomethan aufweisen und ca. 97.500 t/a Substrate verarbeiten. Der Wirtschaftsdüngeranteil liegt bei 80%. Der Anteil Pferdemist an der Gesamtmenge beträgt rund 72%. Die Gemeinde hat schon den Aufstellungsbeschluss für den Bebauungsplan erlassen sowie einen B-Plan-Vorentwurf genehmigt. Die weitere Erstellung des B-Plans ist in Bearbeitung. Antragsteller sind die Schockemöhle Bioenergie GmbH & Co. KG (nachfolgend Schockemöhle BE genannt) und das Institut für Biogas, Kreislaufwirtschaft und Energie (IBKE). Die Schockemöhle BE übernimmt auch die Projektentwicklung und wird die Anlage zukünftig betreiben. Die geplante Biomethananlage wird den anfallenden Pferdemist aus der Pferdezucht der verschiedenen Standorte in der Lewitz vergären. Die wissenschaftliche Begleitung erfolgt durch das IBKE.

Recycling organischer Reststoffe und CO2 zu Kraftstoffen

reTURN wird ein Verfahren zur Herstellung CO2-neutraler synthetischer Kraftstoffe demonstrieren. Dieses beinhaltet nicht nur das Potenzial signifikanter CO2-Reduktionen, sondern auch das Erzielen einer wesentlichen Effizienzsteigerung in der Produktion synthetischer Kraftstoffe und damit eine drastische Kostenreduktion. Im Verfahren werden drei etablierte Prozessschritte erstmalig in einem skalierbaren Einzelreaktor integriert, um auf Basis von rezykliertem CO2 und Biomethan aus organischen landwirtschaftlichen/ städtischen Restabfällen Synthesegas herzustellen: (1) Plasma-Verfahren mittels Biomethanpyrolyse, (2) Boudouard-Reaktion, (3) heterogene Wassergas-Shift-Reaktion mit anschließendem Quenching. Diese Kombination ermöglicht eine flexible Zusammensetzung des entstehenden Synthesegases, sodass nachfolgend verschiedene Konversionstechnologien als vierter Schritt des reTURN Verfahrens eingesetzt und damit verschiedene klimafreundliche Kraftstoffe oder Grundchemikalien produziert werden können. Das Projekt verwendet die Fischer-Tropsch-Synthese, um die gesamte Prozesskette bis hin zu den Endprodukten in einer Testanlage zu erforschen und zu erproben sowie einen Nachweis der technischen Machbarkeit und Massenmarkttauglichkeit zu erbringen. Schwerpunkte von reTURN sind der Bau und Testbetrieb des neuartigen Reaktors, begleitet von verschiedenen Forschungen am Reaktor, wie bspw. Messkampagnen und einer ökologischen Nachhaltigkeitsbetrachtung mit dem Fokus auf CO2 Äquivalenten. reTURN bietet vielfältige Verwertungsmöglichkeiten, insb. neue Geschäftsmodelle für CAPHENIA und Betreiber von Biogas- bzw. Fermentationsanlagen. Mit dem Einsatz erneuerbarer Energie entsteht zudem ein wesentliches Potenzial für eine nachhaltige Sektorenkopplung des Verkehrs- und Stromsektors. Damit stellt reTURN nicht nur ein Vehikel zur Stärkung der nationalen Vorreiterrolle im Nachhaltigkeitskontext bereit, sondern leistet auch einen entscheidenden Beitrag zum weltweiten Klimaschutz.

Entwicklung eines Methanoxidationskatalysators auf Basis von biogenem Silica für die Entfernung von Methan im Abgas von Biogas-BHKW

Das Projekt hat die Entwicklung und Untersuchung eines hinreichend aktiven sowie langzeitstabilen Katalysators zur Oxidation von Methan im Abgas von Biogas-Blockheizkraftwerken (BHKW) zum Ziel. Die Basis dafür bildet pulverförmiges biogenes Silica, welches aus der energetischen Verwertung von biogenen Rest- und Abfallstoffen gewonnen wird. Zusammen mit den aktiven Komponenten wird dies einerseits als Washcoat auf a-Aluminiumoxid Hohlkugeln aufgebracht. Andererseits werden Hohlkugeln aus dem pulverförmigen Katalysator gefertigt. Im Projektverlauf wird die Katalysatorentwicklung ausgehend vom Labormaßstab nach Upscaling auch unter realen Bedingungen abgebildet. Die Untersuchungen sollen unter Praxisbedingungen durchgeführt werden. Dabei soll unter Verwendung einer mobilen Katalysatortestapparatur mit Realabgas und nachfolgend direkt im BHKW-Abgasstrang der Nachweis der Praxistauglichkeit geführt werden.

Entwicklung und Erprobung biogener Brennstoffe als Ersatz für Braunkohle in der Staubfeuerung, Teilvorhaben: Auswahl und Bewertung organsicher Reststoffe sowie analytische Begleitung Mahlung, Rauchgasreinigung und Verbrennung

Eine der größten Herausforderungen im Rahmen der Energiewende ist die CO2-neutrale Versorgung von Industrie und Gewerbe mit Prozesswärme und -kälte. Eine besondere strategische Relevanz gewinnt BioBrauS dadurch, dass nicht nur biogene Reststoffe, die einen überschüssigen und in der Regel unvermeidbaren Stoffstrom darstellen, einer weitergehenden energetischen Verwertung zugänglich gemacht werden, sondern auch der Verbrauch der fossilen Primärressource Braunkohle mit hohen CO2-Aussstoß reduziert wird. Ziel ist die Entwicklung eines Brennstoffes aus aufbereiteten organischen Reststoffen, wie Gärprodukten oder Geflügelmist, mit abgestimmter Verbrennungstechnologie auf Basis der Stabfeuerung zu verwerten. Hierfür soll das Verfahren des Impulsbrenners evaluiert und an die Verbrennung diese Stoffsysteme adaptiert werden. Mit der Auswahl und Bewertung von Gärresten und Geflügelmist als Brennstoff für die Staubfeuerung soll der Grundstein für den Ersatz von Braun- und Steinkohle gelegt werden. Im Fokus stehen deshalb die experimentelle Verfahrensevaluation und Optimierung von Verbrennungseigenschaften und Prozessparameter der Staubfeuerung für den Einsatz landwirtschaftlicher Reststoffe, wie Gärrest und Geflügelmist als Ersatz des bisherigen Energieträgers Braunkohle für Bestands- und Neuanlagen. Auch die biogenen Inputsubstrate sollen für den Einsatz in der Staubfeuerung angepasst (Mahlung, Siebung) und optimiert werden. Schwerpunkt ist die Reduktion von Schad- und Störstoffen sowie die Verbesserung der Brennstoffeigenschaften. Die Entwicklungen sollen dann im technischen Maßstab getestet und bewertet werden. Außerdem soll ein Gesamtkonzept zur technischen Umsetzung und Einsatz der Technologien erarbeitet werden, welches die Logistik der Energie- und Stoffströme sowie deren Verwertung für Bestands- und Neuanlagen beinhaltet. Abschließend wird eine Wirtschaftlichkeitsbetrachtung und LCA mit Ökobilanzierung für den kommerziellen Maßstab durchgeführt.

Entwicklung und Zusammenstellung einer PILOTANLAGE einer containerbasierten Hochleistungsbiogasanlage mit Testeinsatz in realen Umgebungsbedingungen zur Erschließung von biogenen Rest- und Abfallstoffen, Teilvorhaben: Planung, Entwicklung und Bau der Elektroanlage, Automatisierung

Im Projekt 'Modulare Bioenergie' (ModBioEn) wird eine Pilotanlage einer containerbasierten Biogasanlage errichtet. Diese basiert auf den Vorarbeiten von zwei renommierten Forschungseinrichtungen: dem Fraunhofer IKTS und der Hochschule Zittau/Görlitz (HSZG). An der HSZG wurde in den vergangenen vier Jahren eine Hochleistungsbiogasanlage mit Festbett entwickelt. Die entstandene Technikumsanlage wird in Containerbauform gebracht und in eine Pilotanlage überführt. Das Fraunhofer IKTS stellt zusätzlich zwei entwickelte Komponenten in Containerform bereit, die Substrataufbereitung und die Gasreinigung. Die am IKTS vorhandene Technik und die an der HSZG entwickelte MHL-BGA-Techno-logie wird in eine Gesamtanlage mit 4 Containern zusammengesellt. Durch den vorgeschalteten Aufbereitungscontainer (1) mit u.a. einem Extruder kann eine deutliche Er-weiterung des Substrateinsatzspektrums dieser modularen Bioenergieanlage erreicht werden. Bewusst wird im Projekt ModBioEn auf das Ziel 'Erweiterung des Substrateinsatzspektrums für Bioenergieanlagen' des Förderprogrammes 'Energetische Biomassenutzung' eingegangen. Dafür wurden drei regionale Partner gewonnen: A) die Kommune Reichenbach, B) die Brauerei Eibau und C) die Safterei Linke. Zunächst erfolgt der Einsatz am Standort 'Real-Technikum Reichenbach' (A) als Beispiel für einen kommunalen Anwender. Zweiter Standort ist die Brauerei Eibau. Bisher leitet die Brauerei die Reststoffe (Heißtrub, Hefewasser und Biervorlauf), die durch den Brauprozess in größeren Mengen entstehen, energetisch völlig ungenutzt und kostenpflichtig in das Abwasser ein. Es handelt sich somit um wirkliche Rest- und Abfallstoffe im Sinne des Förderprogramms. Dritter Standort ist die Safterei mit Trester als Reststoff. Es erfolgt eine wissenschaftliche Begleitung beim Betrieb der Anlage sowie die Auswertung der Versuchsdaten hinsichtlich Gasquantität und Gasqualität und eine Prozessoptimierung speziell für die einzelnen Reststoffe.

Herstellung von synthetischem Methan und Phosphor aus Klärschlamm, Gärresten und weiteren anderweitig nicht nutzbaren biogenen Rest- und Abfallstoffen, Teilprojekt A

1 2 3 4 5104 105 106