API src

Found 468 results.

Related terms

Der Teufel steckt im Detail: Kontrolle phageninduzierter Stoffkreisläufe in Böden durch das Mikrohabitat

Einer der global größten Kohlenstoffspeicher ist die organische Bodensubstanz (OBS), welche eine zentrale Quelle für die Pflanzennährstoffe Stickstoff (N) und Phosphor (P) darstellt. Bodenmikroorganismen sind die Hauptakteure beim Umsatz der OBS und damit ein zentrales Bindeglied zwischen Kohlenstoff- (C) und Nährstoffkreisläufen. Sie sind jedoch stark durch Phagen (also Viren, die Bakterien befallen) beeinflusst. In Ozeanen sterben täglich 20% der bakteriellen Zellen durch Phagen, was zu einem Umsatzpfad („viral shunt“) führt, der große Mengen organischer Substanz und damit assoziierter Nährstoffe aus bakterieller Biomasse freisetzt. Das erhöht die Produktivität der Ozeane und speichert C in bakteriellen Rückständen. Trotz ihrer hohen Abundanz in Böden wurden Phagen in der Bodenbiogeochemie kaum berücksichtigt. Meine Nachwuchsgruppe wird erstmals untersuchen wie die Biophysik des Mikrohabitats die Infektion durch Phagen und damit bakterielle Sterberaten steuert. Wir werden herausfinden, ob hierdurch ein vergleichbarer „viral shunt“ in Böden vorliegt und quantifizieren dessen Auswirkung auf Nährstoff- und CO2-Feisetzung sowie auch der Speicherung von C. Wir möchten gezielt über phänomenologische Beschreibungen hinausgehen und zugrundeliegende Mechanismen aufklären. Bodenmikrohabitate werden mit modernsten bildgebenden Verfahren zur Aufklärung mikroskaliger Strukturen charakterisiert: 3D Wasserverteilung im Habitat durch synchrotronbasierte Mikrotomographie, Verteilung der OBS mit Rasterelektronenmikroskopie und Mineralogie der Porenoberflächen mittels Raman-Mikrospektroskopie. Phagen aus Böden werden isoliert und ihre Phage-Habitat-Interaktionen erfasst, um so die Relevanz des Mikrohabitats für die Phagenausbreitung zu eruieren. Der Einfluss des Mikrohabitats auf die Infektionsrate und damit auf Stoffkreisläufe wird mittels der Kopplung molekularer Methoden mit Isotopenanwendungen untersucht werden, und zwar i) 18O-DNA Markierung (SIP) zur Erfassung der Phagenbildung sowie des bakteriellen Zellsterbens, ii) der Bestimmung der Abundanz relevanter funktioneller Gene und iii) der Quantifizierung der Mineralisationsraten durch Isotopenverdünnung. Der Einsatz isotopisch markierter Phagen (13C, 15N, 33P) wird die phageninduzierte Änderungen der Elementflüsse aufzeigen. Damit wird erstmal ein mechanistisches Verständnis erlangt, wie Bodenphagen in Interaktion mit ihrem Habitat biogeochemische Kreisläufe von globaler Bedeutung beeinflussen. Des Weiteren wird der Einfluss dynamischer Änderungen des Mikrohabitats auf Phagen untersucht sowie evolutionäre Anpassungen der Phagen an ihre Habitate. Detailliertes Prozessverständnis ist hier von höchster Relevanz um die Auswirkung anthropogener Aktivität oder des Klimawandels auf Bodenphagen vorherzusagen. Daher werden diese Erkenntnisse final in ein dynamisches Modell integriert, um erstmals die Vorhersage phageninduzierter Prozesse in Böden zu ermöglichen - für deren Einsatz in Landnutzung und Landwirtschaft.

Schwerpunktprogramm (SPP) 2322: Systemökologie von Böden - das Mikrobiom und die Randbedingungen modulieren die Energieentladung, Teilprojekt: Der Einfluss räuberischer Myxobakterien auf die Komplexität des Bodenmikrobioms, Energiefluß und Nekromassenzusammensetzung

Böden beherbergen die komplexesten Lebensgemeinschaften der Erde und sind lebenswichtige Ressourcen, die der Menschheit wichtige Ökosystemleistungen und Ernährungssicherheit bieten. Aufgrund der Komplexität der Böden und der immensen organismischen Vielfalt wurden bisher für keinen Boden eindeutige Zusammenhänge zwischen der Zusammensetzung des Mikrobioms (sowohl taxonomisch als auch funktionell), der mikrobiellen Physiologie und den Energieflüssen hergestellt. Tatsächlich gab es keine einzige Methode, um die Diversität, Abundanz und Gemeinschaftszusammensetzung der Bodenmikrobiota und der Bodenfauna mit hoher taxonomischer Auflösung zu bewerten. Die Doppel-RNA-Metatranskriptomik ermöglicht nun solche ganzheitlichen Zählungen über phylogenetische Domänen und trophische Ebenen hinweg auf der Grundlage von rRNA und mRNA. Dies hat das Potenzial, mechanistische Verbindungen zwischen trophischen Interaktionen im Mikrobiom und Energie- und Kohlenstoffflüssen entlang der bakteriellen und pilzlichen Energiekanäle herzustellen. MYXED-UP 2 sieht die Untersuchung einer vernachlässigten Gruppe von Mikroorganismen im Nahrungsnetz des Bodens vor: die räuberischen Bakterien. Wir wollen die Rolle der räuberischen Myxobakterien im Nahrungsnetz des Bodens und ihre Fähigkeit, das Mikrobiom sowie die Energie- und Stoffflüsse zu modulieren, explizit identifizieren. Zu diesem Zweck haben wir uns zu einem interdisziplinären Konsortium aus insgesamt fünf Arbeitsgruppen aus den Bereichen Bodenbiologie, Biogeochemie, Mikrobiologie und Modellierung zusammengetan, das sich dieser Herausforderung durch eine einzigartige Kombination von Fachwissen und zentralen Laborexperimenten stellen wird. In Experimenten mit natürlichen mikrobiellen Konsortien werden wir die Auswirkungen von Nematoden und Myxobakterien auf die Struktur des Mikrobioms und die Energie- und Stoffflüsse untersuchen. Die hochintegrierten Experimente werden reichhaltige und heterogene Datensätze liefern, die letztlich in die Modellierung des mikrobiellen Wachstums und des Umsatzes spezifischer funktioneller Gilden in den Mikrokosmen einfließen werden. Im Rahmen der gemeinsamen Forschung wird MYXED-UP2 mit Hilfe der quantitativen Metatranskriptomik einen umfassenden Einblick in Mikrobiome geben, der Verbindungen zwischen Mikrobiom-Mitgliedern und Thermodynamik herstellen wird. In Arbeitspaket 2 wollen wir die Auswirkungen der “Death pathways” (räuberische Myxobakterien vs. Bakteriophagen) auf die Zusammensetzung der bakteriellen und pilzlichen Nekromasse verstehen.

Biologische Bodenzustandserhebung deutscher Wälder, Teilvorhaben 1: Beprobung von Flächen des forstlichen Umweltmonitorings und integrierende Auswertung von Biodiversität und Standortsfaktoren

Die Vielfalt und Aktivität der Bodengemeinschaften aus Pilzen, Bakterien, Archaeen und anderen Einzellern ist wichtig für Funktionen wie die C Speicherung, die Resilienz von Bäumen gegenüber dem Klimawandel und den Umsatz von organischen Bestandteilen. Es gibt zwar mit der Bodenzustandserhebung im Wald (BZE) ein bundesweites Monitoring, welches Auskunft über die Vitalität der Bäume und den physikochemischen Bodenzustand gibt. Die Bodenbiologie wird dabei allerdings nicht berücksichtigt. Ein erweitertes systematisches Monitoring kann helfen, Zusammenhänge zwischen standörtlichen Gegebenheiten und Bodenorganismen und deren Funktionen besser zu verstehen. Dieses Projekt zielt daher darauf ab, die umfangreichen Daten der BZE mit neu erhobenen Daten zu Biodiversität und biologische Aktivität im Boden zu verknüpfen. Im Zuge der dritten BZE soll eine deutschlandweite Probennahme an BZE-Punkten und auf Flächen des Level-II-Intensivmonitorings stattfinden. Die Proben sollen hinsichtlich der Biodiversität mithilfe molekularer und komplementärer Verfahren zur Messung von Biomasse und Aktivität analysiert werden. Ziel ist ein besseres prozessbasiertes Verständnis des Beitrags von Wäldern und Waldböden zu ausgeglichenen und nachhaltigen biogeochemischen Kreisläufen. Daraus lassen sich waldbauliche Handlungsempfehlungen zur Vorbeugung und Anpassung an den globalen Wandel entwickeln. Gleichzeitig kann eine Wissenslücke zum Zustand der Biodiversität in Deutschlands Waldböden geschlossen werden.

Biologische Bodenzustandserhebung deutscher Wälder

Die Vielfalt und Aktivität der Bodengemeinschaften aus Pilzen, Bakterien, Archaeen und anderen Einzellern ist wichtig für Funktionen wie die C Speicherung, die Resilienz von Bäumen gegenüber dem Klimawandel und den Umsatz von organischen Bestandteilen. Es gibt zwar mit der Bodenzustandserhebung im Wald (BZE) ein bundesweites Monitoring, welches Auskunft über die Vitalität der Bäume und den physikochemischen Bodenzustand gibt. Die Bodenbiologie wird dabei allerdings nicht berücksichtigt. Ein erweitertes systematisches Monitoring kann helfen, Zusammenhänge zwischen standörtlichen Gegebenheiten und Bodenorganismen und deren Funktionen besser zu verstehen. Dieses Projekt zielt daher darauf ab, die umfangreichen Daten der BZE mit neu erhobenen Daten zu Biodiversität und biologische Aktivität im Boden zu verknüpfen. Im Zuge der dritten BZE soll eine deutschlandweite Probennahme an BZE-Punkten und auf Flächen des Level-II-Intensivmonitorings stattfinden. Die Proben sollen hinsichtlich der Biodiversität mithilfe molekularer und komplementärer Verfahren zur Messung von Biomasse und Aktivität analysiert werden. Ziel ist ein besseres prozessbasiertes Verständnis des Beitrags von Wäldern und Waldböden zu ausgeglichenen und nachhaltigen biogeochemischen Kreisläufen. Daraus lassen sich waldbauliche Handlungsempfehlungen zur Vorbeugung und Anpassung an den globalen Wandel entwickeln. Gleichzeitig kann eine Wissenslücke zum Zustand der Biodiversität in Deutschlands Waldböden geschlossen werden.

Biogeochemie von Spurenmetallen und deren Isotope im Südindischen Ozean

Biogeochemie des Kohlenstoffs und Stickstoffs im Arabischen Meer - ein Beitrag zur Internationalen Indian Ocean Expedition 2, Vorhaben: Die winterlichen Partikelflüsse innerhalb der Sauerstoff-Minimumzone SMZ vor Pakistan

Analyse des Kohlenstoffkreislaufs eines artenreichen tropischen Savannenökosystems, das bisher nur wenig untersucht wurde

Biogeochemie des Kohlenstoffs und Stickstoffs im Arabischen Meer - ein Beitrag zur Internationalen Indian Ocean Expedition 2, Vorhaben: Entwicklung der Sauerstoffminimumzone

Bewertung der Umweltauswirkungen von Tiefseebergbau von Manganknollen und Massivsulfiden, Vorhaben: Benthische Organismen, Biogeochemie und natürliche Radioaktivität

Biogeochemie von Spurenmetallen und deren Isotope im Südindischen Ozean, Vorhaben: Produktivität des Oberflächenwassers und deren Kohlenstoff- und Stickstoffkreisläufe

1 2 3 4 545 46 47