Fällt ein Regentropfen auf eine Wasseroberfläche oder platzt dort eine Gasblase, so wird in einem komplizierten strömungsmechanischen Prozess eine Vielzahl kleinster Tröpfchen produziert und in die Luft geschleudert. Diese Tröpfchen können ursprünglich im Wasser vorhandene Mikroplastikpartikel in die Luft übertragen. Da sowohl Regen als auch platzende Gasblasen in natürlichen und technischen Systemen wie Ozeanen, Pfützen oder Kläranlagen extrem häufige Ereignisse sind, liegt hier ein potenziell hochrelevanter Migrationspfad von Mikroplastik aus der Hydro- in die Atmosphäre vor. Dieser Prozess soll im vorliegenden Projekt durch eine Kombination aus Modell-Experimenten und Computersimulationen im Detail untersucht und verstanden werden.
Veränderungen der Ozeanwärme sind eng mit dem Wärmefluss an der Ozean-Atmosphärengrenze verbunden und spielen daher eine wic--htige Rolle bei der Regulierung des Erdklimas. Allerdings weisen in-situ-Messungen immer noch hohe Ungenauigkeiten auf und sind nur in wenigen Regionen in ausreichender Anzahl vorhanden. ROCSTAR wird neue Einsichten in das Energiebudget der Erde durch die verbesserten Schätzungen der ozeanischen Temperatur (T) und des Salzgehalts (S) liefern. Durch die Kombination der geodätischen Raumverfahren mit Argo-Profilen, werden gleichzeitig die Temperatur, der Salzgehalt und regional variierende Meeresspiegelbeiträge ermittelt. Die daraus resultierenden Schätzungen umfassen die gesamte Ozeansäule und die zugehörigen sterischen Änderungen werden sowohl mit dem beobachteten Meeresbodendruck als auch mit den Meeresspiegelanomalien konsistent sein. Vor diesem Hintergrund verfolgt das Projekt folgende Ziele:1. Erhöhung der Genauigkeit der in sich konsistenten T- und S-Felder und Bereitstellung von realistischen Fehlerschätzungen2. Ermittlung der T- und S-Schätzungen in Regionen mit wenigen Beobachtungen und in den Tiefen des Ozeans3. Quantifizierung der Rolle, welche die flachen und tiefen Schichten des Ozeans in der Energiebilanz der Erde und im Meeresspiegel-Budget spielen4. Identifizierung und Untersuchung von Ozeanwärmehotspots und deren Verbindung zum terrestrischen Wasserkreislauf im Südosten Asiens. ROCSTAR wird innerhalb des SPP1189-Schwerpunkts WPA (Ursprung der regionalen Meeresspiegeländerungen) angesiedelt sein. Das Projekt befasst sich mit globalen Beobachtungen, führt aber intensive Untersuchungen im indischen Ozean und Westpazifik durch, welche die Hauptquellen für Feuchtigkeit, Zyklon und Taifun Entwicklung in der südostasiatischen Region darstellen. Darüber hinaus wird ROCSTAR aktiv an den Öffentlichkeitsarbeiten des SPPs teilnehmen und ein konzeptionelles Brettspiel entwickeln, um Nicht-Wissenschaftlern das regionale Meeresspiegelbudget näher zu bringen.
Jüngste Entdeckungen in der chemischen Ozeanographie weisen darauf hin, dass hydrothermales Eisen ein wichtiger Modulator biogeochemischer Stoffkreisläufe im globalen Ozean ist, da die Verfügbarkeit von Eisen oft das Phytoplanktonwachstum und somit die biologische Kohlenstoffpumpe limitiert. Diese neuen Ergebnisse aus dem internationalen GEOTRACES-Programm bestätigen interessanterweise frühere Studien zu Mittelozeanischer Rücken, welche bereits zeigten, dass die hydrothermale Aktivität entlang des Mittelatlantischen Rückens (MAR) und damit auch der hydrothermale Stoffeintrag in den Ozean größer ist, als aufgrund der langsamen Spreizungsraten zu erwarten wäre. Über die Prozesse, welche diesen Stoffeintrag kontrollieren und wie sich diese zwischen mafischen und ultramafischen Hydrothermalsystemen unterscheiden, ist jedoch bisher nur wenig bekannt. Wir werden Transport-Reaktions-Modelle mit IODP-Daten kombinieren, um die kritische Kombination von Parametern zu identifizieren, welche den Salz- und Eisengehalt der an den Hydrothermalfeldern TAG und Rainbow freigesetzten Fluiden maximieren. Wird Seewasser in Hydrothermalsystemen stark erhitzt, so teilt es sich in eine dichte, salzige Sole und eine leichtere, salzarme Dampfphase auf, wobei sich die Metalle in der Sole anreichern. Diese Prozesse, zusammen mit der Ausfällung von eisenreichen hydrothermalen Mineralen entlang der Aufstiegswege, sind der Schlüssel zu einem tieferen Verständnis des hydrothermalen Eisentransport. Wie aber die Fließwege und die Strömungsdynamik dieser beiden Phasen innerhalb der Ozeankruste aussehen, ist bisher weitgehend unklar. Um diese Prozesse zu untersuchen, werden wir zu den einzigartigen Daten aus der ODP-158 Bohrkampagne zum mafischen TAG Hydrothermalfeld zurückkehren und diese mit hydrothermalen Transport-Reaktions-Modellen verbinden. Dieser Ansatz wird uns wichtige neue Einblicke in die Solebildung und den Eisentransport erlauben und so Aufschluss über die Gründe für den hohen Eisenausstoß geben. Diese Arbeiten werden durch eine Studie zum ultramafischen Rainbow Hydrothermalfeld ergänzt werden. Für dieses Hydrothermalfeld bereitet ein internationales Forschungsteam zurzeit einen IODP Bohrantrag vor und wir hoffen diesen durch unsere geplanten Arbeiten unterstützen zu können. Aus der Kombination dieser beiden Fallstudien erwarten wir grundlegende neue Erkenntnisse über die wichtigsten geologischen Prozesse, welche den hydrothermalen Eisenexport an langsamspreizenden Rücken kontrollieren und hoffen so einen wichtigen Beitrag zur Erforschung der Rolle von hydrothermalem Eisen in globalen Stoffkreisläufen leisten zu können.
Der Sauerstoffgehalt der Weltozeane ist notwendig zum Überleben der meisten Organismen und seine Abnahme hat damit einen enormen wirtschaftlichen Einfluss. Weil sich das globale Klima weiter ändert, werden nicht nur die Meere immer wärmer wodurch sie immer weniger Sauerstoff aufnehmen können, auch werden immer mehr Nährstoffe von den Kontinenten in den Meere gespült so dass viele Küstenregionen immer mehr Sauerstoff verlieren. Um den Einfluss des abnehmenden Sauerstoffgehalts auf marine Ökosysteme besser zu verstehen, brauchen wir Rekonstruktionen aus der Vergangenheit um zu verstehen was genau in der Zukunft passieren wird. Foraminiferen sind der ideale 'Proxy' um diese Änderungen zu rekonstruieren, weil sie nicht nur unter niedrigen Sauerstoffbedingungen überleben können sondern sogar auch weiter kalzifizieren, was notwendig ist um die Geochemie der Schalen zu nutzen. Während der Kalzifizierung werden z.B. redox-empfindliche Elemente wie Mangan in den Schalen eingebaut, was als Hinweis für frühere Sauerstoffbedingungen genutzt werden kann. Mit diesem Antrag plane ich, Mn/Ca in Foraminiferen zu nutzen, um zu zeigen wie der Pazifik im späten Pliozän den Großteil seinem Sauerstoffs verloren hat und damit seinen heutigen sauerstoffarmen Zustand erreichte. In diesem Projekt werde ich die nachfolgenden Hypothesen prüfen; zum ersten dass der Pazifik sein Sauerstoffgehalt innerhalb kürzester Zeit, nach dem Beginn der Nordhemisphären Vereisung (ca. 2.7 Ma), durch Wassermassenstratifizierung im Nordpazifik verloren hat; zweitens dass die Stratifizierung im Nordpazifik während des M2-Glazial (ca. 3.3 Ma) für die Abnahme des Sauerstoffgehalts des gesamten Pazifiks verantwortlich war; und drittens dass sich der Sauerstoffgehalt des Pazifik während der ersten Interglaziale (ca. 2.5 Ma) nach dem Beginn der Nordhemisphäre Vereisung zeitweise erholte.
Um regionale Meeresspiegeländerungen und deren Auswirkungen auf die Gesellschaft zu verstehen, müssen neue Formen von integrierter Forschung beschritten werden, die einen weiten, fächerübergreifenden Bogen spannen muss, von physikalischen bis hin zu sozialwissenschaftlichen Disziplinen. Nur ein solches Programm, wie es unter dem SPP 1889 'SeaLevel' etabliert wurde, kann die wissenschaftliche Basis für die Entwicklung von Informationen hervorbringen, die zur Unterstützung von Küstenschutz und Küstenzonen-Management und für die zur Minimierung des Einflusses von ansteigenden Meeresspiegel auf Gesellschaften erforderlich ist. Um ein solches interdisziplinäres Programm zum Erfolg zu führen, ist ein proaktives, ausgedehntes Projektmanagement erforderlich. Dieses gilt für jedes SPP, es gilt um so mehr für interdisziplinäre SPP, wie es das SPP SeaLevel ist. Während der zweiten Förderphase des SPP SeaLevel wird ein Hauptaugenmerk der Koordination darin liegen, eine kontinuierliche interdisziplinäre wissenschaftliche und organisatorische Koordination und Unterstützung aller Projekte bereitzustellen, das bestehende Netzwerk innerhalb des SPP weiter auszubauen, die Öffentlichkeitsarbeit und Gleichstellungsmaßnahmen weiter zu verstärken und in dieser zweiten und letzten Phase besonders auch die Sichtbarkeit und den Nutzen der SPP SeaLevel Ergebnisse zu maximieren. Hierfür wird die Koordination kontinuierlich die Zusammenarbeit aller Projekte und aller involvierten Disziplinen fördern und voranbringen und gewonnenen Informationen innerhalb des SPP und mit der internationalen Community austauschen. Die Koordination wird wie zuvor in allen ihren Aspekten und Modulen in ihrer Verantwortung bei D. Stammer liegen, der die allgemeine Verantwortung für das SPP trägt. D. Stammer wird unterstützt durch die Assistenz von Eleni Tzortzi, die wie in der ersten Phase dem SSP in allen Koordinationsaspekten und Modulen zur Seite stehen wird, die das SPP-Netzwerk weiter fördern wird, die reguläre Projekttreffen organisieren wird und die besonders in dieser zweiten Phase Abschlusskolloquien und Sonderausgaben eines wissenschaftlichen Journals mit unterstützen wird. Ohne diese Vollzeitunterstützung kann eine erforderliche Koordination dieses interdisziplinären SPP nicht garantiert werden.
In der Arktis tritt der der Klimawandel am offensichtlichsten zu Tage. Dies zeigt sich zum Beispiel im starken Rückgang der Meereisbedeckung des arktischen Ozeans, mit Auswirkungen auf die Wärmebilanz der Region und indirekt die Zirkulation in Ozean und Atmosphäre. Die Bildung von Tiefenwasser geht einher mit dem Transport von gelösten Gasen von der Oberfläche in das Innere der Ozeane, auch Ventilation genannt. Die entsprechende Aufnahme von Kohlendioxid, die im arktischen Ozean überproportional ausgeprägt ist, stellt einen wichtigen Puffer für Treibhausgasemissionen dar. Ihre Kenntnis ist entscheidend für aussagekräftige Klimaszenarien.Die Ventilationszeitskalen können über die Messung gewisser Spurenstoffe (Tracer) bestimmt werden, die einem zeitlich variablen Eintrag oder dem radioaktiven Zerfall unterliegen. Allerdings sind klassische Tracer wie Freon-12 und Schwefelhexafluorid (SF6) sowie eine Reihe moderner so genannter „Medusa Tracer“ in den tiefsten Bereichen des arktischen Ozeans nicht nachweisbar. Mit der neuen Atom Trap Trace Analysis (ATTA) Methode ist es nun möglich, das Radioisotop 39Ar in Meerwasser zu messen und damit genau die Zeitskala abzudecken, welche bisher nicht präzise bestimmt werden konnte. Im Zusammenspiel mit den genannten Tracern sowie dem Radiokohlenstoff 14C können somit Altersverteilungsfunktionen und letztlich die Ventilationszeitskalen der gesamten Wassersäule bestimmt werden. Dieser Ansatz wird ergänzt durch Messungen von Edelgasen zur Bestimmung von Sättigungsanomalien an der Oberfläche sowie der langlebigen anthropogenen Radioisotope 236U und 129I, die als Markierung von Atlantikwasser das Studium des Austausches zwischen Nordatlantik und Arktischem Ozean ermöglichen. In diesem Projekt sollen Proben für alle genannten Tracer während einer Expedition auf dem Eisbrecher ODEN im Jahr 2021 in der Zentralarktis genommen und gemessen werden. Die Daten dienen zur Bestimmung von Modellparametern von Aufenthaltszeitverteilungen, die wiederum die Grundlage zur Berechnung des Wassersäuleninventars des anthropogenen Kohlenstoffes bilden. Die Resultate werden mit biogeochemischen Ansätzen verglichen und zur Abschätzung der Ozeanversauerungsrate verwendet. Die weiteren Tracerdaten geben Aufschluss über die Zirkulation im nordatlantischen Raum sowie die Prozesse an der Ozeanoberfläche. Um die aufgrund der klimatischen Effekte zu erwartenden Veränderungen der letzten Jahrzehnte zu bestimmen, werden wir zusätzlich historische Tracermessungen aus der Arktis analysieren.Aus der Kombination unterschiedlicher innovativer Methoden versprechen wir uns darüber hinaus wichtige methodische Erkenntnisse sowie datenbasierte Randbedingungen für Ozeanmodelle. Die Ergebnisse dieses Projekts werden somit umfangreiche Beiträge liefern zum besseren Verständnis der Zirkulation und Ventilation des arktischen Ozeans, der Kohlenstoffaufnahmekapazität der Ozeane und der Konsequenzen des sich ändernden arktischen und globalen Klimas.
Als Teil der globalen thermohalinen Zirkulation transportiert das Antarktische Zwischenwasser (AAIW) Wärme und Salz, es belüftet die intermediären Tiefen des Ozeans, und verteilt Nährstoffe aus dem Südozean (SO) in die nährstoffarmen Tropen. AAIW ist daher von globaler Bedeutung für die marine Biogeochemie und den Kohlenstoffkreislauf. Die Bildung des AAIW ist direkt an die Intensität des Auftriebs von Zirkumpolarem Tiefenwasser im SO gekoppelt und wird moduliert von den Westwinden und saisonaler Aussüßung durch Meereisexport und -abschmelzen. Obwohl es unbestritten ist, dass Transport und Zusammensetzung von AAIW eine wichtige Rolle für die ozeanischen und klimatischen Änderungen der letzten Deglaziation spielten, gibt es bisher nur wenige längere Aufzeichnungen der AAIW-Variabilität. Obwohl noch immer kontrovers, gibt es basierend auf Proxy-Daten zunehmende Einigkeit über einen anhaltenden oder nur leicht abgeschwächten AAIW-Export im Atlantik während des letzten glazialen Maximums. Neodym(Nd)-Isotopendaten, die eine größere und schnelle Variabilität nahelegten, wurden inzwischen sedimentären Überprägungen identifiziert, ein Problem, das auf den kontinentalen Schelfen, von denen diese Daten überwiegend stammen, kaum vermeidbar ist. Um diese Effekte zu umgehen und ein Verständnis der AAIW-Variabilität auf langen Zeitskalen zu erlangen, schlagen wir eine neue Studie vor, die nur Bohrkerne von Lokationen im offenen Ozean im Südatlantik (DSDP Site 516), dem Südostpazifik (ODP Site 1236) und der Tasmansee (DSDP Site 592 und IODP Site U1510) nutzt. Diese Sedimente weisen zwar niedrige Sedimentationsraten auf, vorläufige Daten zeigen aber die erwartete Amplitude benthischer O- und C-Isotopen im Zwischenwasser. Die Sedimente waren durchweg oxisch, was die verlässliche Anwendung von Nd-Isotopen und Seltenerdelement-Proxies für die Wassermassenrekonstruktion erlaubt. Diese Daten werden O- und C- Isotopendate benthischer Foraminiferen und von Spurenmetallproxies für Temperatur (Mg/Ca, Li/Mg) und Nährstoffgehalt (Cd/Ca) vervollständigen. Nach Etablierung einer benthischen Isotopenstratigraphie für jeden Bohrkern sollen glazial-interglaziale Schlüsselintervalle vor, während und nach dem Mittelpleistozänen Übergang (MPT) auf alle Proxies analysiert werden. Diese Aufzeichnungen der Variabilität der Quellen des AAIW, des Nährstoffgehalts und der Temperatur werden die letzten 1,5 Millionen Jahre in verschiedenen Becken abdecken. Dies wird neue Einsichten in die Rolle liefern, die die AAIW-Variabilität für die globale Umwälzzirkulation gespielt hat, die den SO mit den niedrigen Breiten verbindet, wie die Ozeanzirkulation auf Änderungen orbitaler Parameter der Eisschilde reagierte, und welchen Einfluss dies auf den Kohlenstoffkreislauf an glazialen Terminationen des Pleistozäns hatte.
Die Farben unterscheiden sich erheblich in ihrer chemischen Zusammensetzung. Daher besteht das erste Ziel darin, zu bestimmen, welche spezifischen chemischen Eigenschaften der Farben für die wichtigsten mikrobiellen Veränderungen im Meeressediment verantwortlich sind, das den Farbpartikeln ausgesetzt ist. Dies soll mit Hilfe eines Labor-Expositionsexperiments untersucht werden. Sediment, das Farbpartikel unterschiedlicher chemischer Zusammensetzung (einschließlich Antifoulingbestandteile) enthält, wird im Laufe der Zeit inkubiert, und die mikrobielle Gemeinschaft dieses Sediments wird sequenziert. Betreute Ansätze des maschinellen Lernens, wie z.B. randomisierte Wälder, werden verwendet, um zu bestimmen, welche spezifische Farbchemie den größten Einfluss auf die mikrobielle Gemeinschaft hat, insbesondere im Hinblick auf Veränderungen von Taxa, die für die biogeochemischen Prozesse im Sediment wichtig sind. Sobald die chemischen Eigenschaften bekannt sind, wird das zweite Experiment durchgeführt. Mit dem zweiten Experiment soll das zweite Ziel verfolgt werden, nämlich zu bestimmen, wie Farbpartikel die umgebenden Sediment-Mikrobengemeinschaften beeinflussen, und zu modellieren, wie dieser Effekt mit der Farbpartikelkonzentration im Sediment skaliert, um letztendlich zu bestimmen, auf welchem Niveau die Farbpartikelkontamination im Sediment Veränderungen verursacht, die kritisch genug sind, um biogeochemische Prozesse zu implizieren. Speziell entworfene Kammern werden in der Ostsee eingesetzt, die Sediment und unterschiedliche Mengen von Farbpartikeln enthalten (deren Chemie durch das vorherige Experiment vorher festgelegt wurde). Nach einer Expositionszeit werden die Kammern gesammelt und die mikrobiellen Gemeinschaften des Sediments sequenziert. Mit Hilfe von Zufallswäldern wird ein Vorhersagemodell für den Grad der Farbverschmutzung in Abhängigkeit von der Zusammensetzung der mikrobiellen Gemeinschaften erstellt. Zusätzlich werden phylogenetische Distanzbäume der wichtigsten Taxa mit der verfügbaren Literatur kombiniert, um Veränderungen in den mikrobiell vermittelten biogeochemischen Zyklen abzuschätzen. Schätzungen darüber, wie sich Umweltparameter (z.B. Schwefelwasserstoff- oder Eisengehalt) verändern könnten, werden in das Modell einbezogen.Das Endziel ist die Validierung des Modells. Dazu wird eine Reihe von Standorten an der deutschen Ostseeküste beprobt. Die Sedimente werden sowohl auf Farbverschmutzung als auch auf Umweltparameter untersucht. Die mikrobielle Gemeinschaft der Sedimente wird ebenfalls sequenziert, und das Modell wird zur Vorhersage der Farbverschmutzung auf der Grundlage der Zusammensetzung der mikrobiellen Gemeinschaft verwendet. Diese Vorhersage wird mit realen Verschmutzungs- und Umweltdaten verglichen. Auf diese Weise kann das Modell bewertet, angepasst und schließlich validiert werden.
Die Dynamik von Planktongemeinschaften wird durch Einflussfaktoren, die von unten nach oben (Wasserphysik und Chemie) und von oben nach unten (natürliche Feine) wirken, kontrolliert. Die relative Bedeutung und Richtung dieser Effekte auf die Zusammensetzung der Taxa sowie die relative Abundanz sind in natürlichen Gemeinschaften jedoch nicht hinreichend belegt: Sie variieren in Zeit und Raum und hängen auch von physiologischen und ökologischen Wechselwirkungen ab, die durch verschiedene Merkmale beeinflusst werden. Ziel dieses Projektes ist es, die Auswirkungen interagierender Kontrollen (z.B. Temperatur, Verwirbelung, Nährstoffversorgung, Identität von Weidegängern, Dichte und Beuteauswahl) auf Phytoplankton in Seen innerhalb taxonomischer und größenbasierter Kategorien zu quantifizieren, um merkmalbasierte theoretische und datenbasierte Modelle (neu) zu entwickeln, die eine genaue Prognose zu Veränderungen in Plankton-Nahrungsnetzen und somit von Ökosystemprozessen und -dienstleistungen über Umweltgradienten in Raum und Zeit ermöglichen. Dieses Projekt beinhaltet drei miteinander verbundene Arbeitspakete: 1) Anwendung neuer Methoden für In-situ-Monitoring, 2) Datenanalyse (Erforschung von Mustern, Hypothesenüberprüfung und Analyse von Einflussfaktoren), und 3) merkmalbasierte Modellierung (Entwicklung und Überprüfung von Theorien, Prognosen über Raum und Zeit). Dieses Projekt wird Unterwasseraufnahmen als neues Werkzeug für Forschung und routinemäßiges Monitoring evaluieren. Durch die gewonnenen Daten werden wir mittels merkmalbasierter Rahmenbedingungen in der Lage sein, Konzepte und Theorien in der Gemeinschaftsökologie zu präzisieren, insbesondere darüber, wie Chemie und Physik sowie die Wechselbeziehungen zwischen den Arten die Dynamik von Phytoplanktongemeinschaften über Zeit und Raum beeinflussen können. Das quantitative Verständnis von Einflussfaktoren und Mechanismen, die in der Gemeinschaft die Struktur und Abundanz steuern, wird uns Prognosen über Veränderungen in der Biodiversität von Plankton über Umweltgradienten und Algenblüten ermöglichen.
Wir schlagen vor, IODP/ODP-Daten einzusetzen, um numerische Modelle für die Entstehung von Gashydraten in marinen Sedimenten zu kalibrieren. Wir möchten dabei besonders untersuchten, was mit dem Methangas geschieht, das entsteht wenn Gashydrate begraben und unterhalb der Stabilitätszone zersetzt werden. Dieses Gas kann entweder in die Stabilitätszone aufsteigen, um dort neues Hydrat zu bilden oder gemeinsam mit dem Sediment begraben werden. Wenn das Gas in die Stabilitätszone zurückfließt, kann dort sehr viel Hydrat akkumulieren. Ohne diese Rückführung liegt die Hydratsättigung im Porenraum dagegen in der Regel bei kleiner als 1 Prozent . In den Modellen, die bisher genutzt wurden, um die Hydratmenge im globalen Ozean abzuschätzen wurde angenommen, dass das Gas begraben und nicht zurückgeführt wird. Die tatsächliche Hydratmenge könnte sehr viel größer sein als bisher vermutet, falls die Gasrückführung ein weitverbreitetes Phänomen ist. Der Rolle der Gashydrate im Klimasystem und ihr Potential als fossiler Energieträger wären dann größer als bisher vermutet.
| Origin | Count |
|---|---|
| Bund | 39 |
| Type | Count |
|---|---|
| Förderprogramm | 39 |
| License | Count |
|---|---|
| offen | 39 |
| Language | Count |
|---|---|
| Deutsch | 36 |
| Englisch | 39 |
| Resource type | Count |
|---|---|
| Webseite | 39 |
| Topic | Count |
|---|---|
| Boden | 32 |
| Lebewesen und Lebensräume | 30 |
| Luft | 29 |
| Mensch und Umwelt | 39 |
| Wasser | 39 |
| Weitere | 39 |