API src

Found 931 results.

Related terms

Schwerpunktprogramm (SPP) 2238: Dynamik der Erzmetallanreicherung, Teilprojekt: Schwefel-Isotope und ihre Entwicklung in sedimentgebundenen Erzsystemen

Die nachhaltige Entwicklung kritischer Rohstoffe (CRM) ist eine der größten Herausforderungen, vor der unsere Gesellschaft im Zuge des Übergangs zu einer grünen, digitalen und kreislauforientierten Wirtschaft steht. Sedimentgebundene Erzlagerstätten sind gekennzeichnet durch hohe Metallkonzentrationen und einer mittleren bis hohen Fördermenge. Im Vergleich zu anderen Lagerstättentypen können sedimentgebundene Lagerstätten daher umweltfreundlicher abgebaut werden. Die wichtigsten Erze in diesen Lagerstätten bilden die beiden schwefelhaltigen Minerale Zinkblende (ZnS) und Bleiglanz (PbS). Um hochgradige Vorkommen zu bilden, sind daher nicht nur große Mengen an Metallen, sondern auch ebenso große Mengen an reduziertem Schwefel erforderlich. Das Erzvorkommen entsteht in der Regel dort, wo das hydrothermale Fluid, welches Zink (und Blei) transportiert, auf Gestein trifft, das große Mengen an reduziertem Schwefel enthält. Sedimentgebundene Lagerstätten bildeten sich nur in bestimmten Perioden der Erdgeschichte; in den heutigen Ozeanen entstehen keine solchen Lagerstätten mehr. Die Gründe dafür sind unklar, aber wir wissen heute, dass die Erzbildung stark von der Optimierung von Schlüsselprozessen abhängt und in alten Sedimentbecken wahrscheinlich mikrobielle Aktivitäten eine Rolle gespielt haben. Mikroben sind für für die Umwandlung von Sulfat aus altem Meerwasser zu reduziertem Schwefel wichtig, welcher wiederum die Grundlage für die Anreicherung der Metalle und die Erzbildung bildet. In diesem Projekt wollen wir neue Techniken entwickeln, um die mikrobielle Aktivität und die Bildung von reduziertem Schwefel in sedimentgebundenen Erzlagerstätten nachzuweisen. Dies wird uns dabei helfen zu verstehen, warum und wie sich große Lagerstätten bilden und wo sie vorkommen. Unser Projekt hilft somit die Entdeckung neuer Lagerstätten zu verbessern.

Soil water controls on nitrogen oxide fluxes and N2O production and consumption along a rainfall gradient of tropical forests

GRK 2000: Die deutsche Ostseeküste als terrestrisch-marine Schnittstelle für Wasser- und Stoffflüsse - Baltic Transcoast

Baltic TRANSCOAST erforscht die physikalischen, chemischen und biologischen Prozesse am Übergang zwischen Land und Meer. Der landseitige Küstenzonenbereich ist global der am stärksten von Menschen gestaltete und genutzte Raum. Ein fundamentales Verständnis tief gelegener Küstenbereiche, welche vielfältigen Einflüssen des angrenzenden Meeres unterliegen, ist essentiell für zukünftige Nutzungs- und Management-Strategien. Im terrestrisch-marinen Übergangsbereich werden neben der Strömungsdynamik insbesondere Stoffflüsse und Organismen wechselseitig beeinflusst und gesteuert. Von besonderem Forschungsinteresse sind Küstenmoore, deren Oberfläche auf Höhe des Meeresspiegels liegt. Diese stellen in degradiertem Zustand eine Quelle für gelöste und gasförmige Stoffe dar. Baltic TRANSCOAST untersucht in interdisziplinären Forschungsthemen die Wasser- und Stoffflüsse im strandnahen Küstenmoor und im angrenzenden Flachwasser der Ostsee sowie deren Auswirkungen auf die Biota. Rostock ist für das Graduiertenkolleg prädestiniert denn hier können Biologen und Biologinnen, Chemiker und Chemikerinnen, Physiker und Physikerinnen und Umweltforscher und Umweltforscherinnen aus drei Fakultäten der Universität Rostock (UR) und dem Leibniz-Institut für Ostseeforschung Warnemünde (IOW) ihre Stärken bündeln und interdisziplinär die Küstenregion bearbeiten. Das Department Maritime' Systeme' (MTS) der Interdisziplinären Fakultät (INF) der UR, unter dessen Dach alle beteiligten Wissenschaftler und Wissenschaftlerinnen seit sechs Jahren zusammenarbeiten, trägt das Graduiertenkolleg. Die Konzentration auf ein gemeinsames Untersuchungsgebiet, das Hütelmoor bei Rostock, ermöglicht eine echte interdisziplinäre Zusammenarbeit. Der am Standort Rostock neu etablierte Leibniz-Wissenschaftscampus Phosphor ist ebenfalls ein Garant für interdisziplinäre Forschungsarbeiten. Baltic TRANSCOAST bildet mit einem umfassenden innovativen Qualifizierungskonzept Nachwuchswissenschaftler und Nachwuchswissenschaftlerinnen mit breiter und interdisziplinärer Expertise in der Küstenforschung aus. Die Gewinnung von hochqualifizierten Kandidaten und Kandidatinnen, erfolgt im Rahmen von Workshops. Das Studienprogramm ist in sechs Blöcke gegliedert, mit einem sukzessiv steigenden Engagement der Promovierenden. Zwei der Studienblöcke finden bei baltischen Partnern in Stockholm und Oulu statt. Zusätzlich ist eine Session auf einer internationalen Tagung als Ausbildungselement vorgesehen.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Bedeutung der interspezifischen ektomykorrhizalen Pilzdiversität für die Ernährung von Waldökosystemen

Das übergeordnete Ziel dieses Projekts ist es, die interspezifische Diversität von Ektomykorrhizapilzen (EcM) für die Phosphoraufnahme und Ernährung von Bäumen in Pakquirierenden und P-rezyklierenden Ökosystemen zu untersuchen. Der Fokus wird auf der Buche als einer ektomykorrhizalen Hauptbaumart dieser Ökosysteme liegen. Folgende Punkte sollen adressiert werden:(i) Die Pilzgesellschaften P-akquirierender und -rezyklierender Ökosysteme unterscheiden sich, weil in dem ersten Fall P mit Hilfe organischer Exsudate aus Mineralien gelöst werden muss und im zweiten Fall P mit Hilfe saprophytischer Enzyme aus der organischen Materie freigesetzt werden muss, um pflanzenverfügbar zu sein. Um diese Hypothese zu prüfen, werden Pilze in verschiedenen Bodenkompartimenten und Wurzel-assoziierte Pilze mittels Hochdurchsatzsequenzierung erfasst und funktionalen Gruppen zugeordnet. Die aktive EcM Gesellschaft wird durch Kombination von Morphotyping und ITS Sequenzierung quantifiziert. Die Pilzprofile werden in Relation zu Bodenparametern, mikrobieller Aktivität und sekretierten Phosphatasen und Oxalat-produzierenden EcM Aktivitäten analysiert.(ii) Der zeitliche Verlauf des P Bedarfs und der P Aufnahme in Relation zu Phänologie und saisonalen Veränderungen der EcM Gesellschaft ist nicht bekannt. Durch Applikation von radioaktivem Phosphat zu verschiedenen wichtigen Zeitpunkten wie Blattaustrieb, früher Sommer, Spätsommer, Herbst und Winter soll die Aufnahme und pflanzeninterne Allokation von P bestimmt werden. Dabei wird auch die P-Akquisition der EcM Gesellschaft spezifisch erfasst und ihre enzymatischen Aktivitäten untersucht. Des Weiteren werden Biomasse der Pflanze und Morphologie des Wurzelsystems, Gesamt-P sowie der Einbau von P in freie Mikroben untersucht. Mit Hilfe dieser Daten soll ein Modell für die Aufnahme und Allokation von P in Relation zu ektomykorrhizaler, mikrobieller und pflanzlicher Aktivität entwickelt werden.(iii) Um die Beiträge spezifischer EcM für die P Aufnahme zu erfassen, soll eine neue Methode für zeitlich und räumlich aufgelöste Flussmessungen von radioaktivem P etabliert werden. Nach Installation und Kalibrierung der Messanlage mit Hilfe einfacher Modellpflanzen (Pappel), sollen die Beiträge unterschiedlicher EcM Arten für die P Aufnahme und Translokation an jungen Buchen untersucht werden. Dies Daten sollen zur Verbesserung des obigen Modells genutzt werden. Insgesamt werden diese Untersuchungen einen wichtigen Beitrag zur Rolle der EcM Diversität im P Zyklus unterschiedlich P versorgter Ökosysteme liefern.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm, Teilprojekt: Prozesse der Wasserstoffgenese während seismischer Zyklen in aktiven Störungszonen (ProHydroGen)

Wir planen die Nutzung eines U-Tube-KASMA Systems, welches von Prof. Tullis Onstott (Princeton University) in einem 600 m tiefen Bohrloch installiert wird, das eine aktive Störungszone im Roodepoort Quarzit in 3400 m Tiefe in der 'Moab Khotsong gold mine' antrifft. Das Bohrloch ist Teil des ICDP-finanzierten Projektes DSeis und dient der Beobachtung von seismisch ausgelösten in situ geochemischen und isotopischen Änderungen tiefer Fluide sowie mikrobiellen Aktivitäten. Die Kombination unsers Gas-Monitoring-Systems mit der U-Tube-KASMA Installation ergibt die einmalige Möglichkeit, minimal veränderte Geofluide aus einer tiefen aktiven Störungszone zu beproben.Während seismischer Ereignisse entlang der Verwerfungszone erwarten wir die Freisetzung von Geogasen, insbesondere H2, der als Energiequelle für tiefes mikrobielles Leben dienen kann. Das Geogas (inkl. H2 und O3) sollen kontinuierlich mit spezifischen Sensoren eines portablen gasanalytischen Systems detektiert werden, welches direkt an den Gasseparator des automatischen U-Tube-KASMA angeschlossen ist. Durch die chemische und isotopische Charakterisierung der Fluide vor und nach seismischer Aktivität hoffen wir die Herkunft und Genese von H2 aufklären zu können; letztere beruht auf Spaltung der O-H Bindungen von Wasser. In Kombination mit Daten zur Permeabilität und Porosität der Störungszone werden diese Ergebnisse helfen, verschiedene Migrationsmechanismen des Fluids, vom Entstehungsort bis zum Zielhorizont, zu verstehen. Dabei stellt sich die Frage, ob schwache seismische Ereignisse die Konnektivität isoliert bestehender Fluide durch Bildung neuer Wegsamkeiten erhöhen, oder ob frische Mineraloberflächen für Wasser-Gesteinsreaktionen erzeugt werden, die mechano-chemisch neu synthetisierten H2 freisetzen. Die Echtzeit-Analyse der U-Tube Proben vor Ort kann zeigen, wie schnell Änderungen in der Untergrund Gaschemie aufgrund seismischer Aktivität stattfinden. Ein weiteres Ziel ist die Identifizierung der seismischen Momente und der Abstand und die Orientierung des Erdbebenherdes zur Störungszone und dem Bohrloch. Die Probenahme und Analyse in Isotopen-Laboratorien ermöglicht die Abschätzung, in welchem Ausmaß sich die H/D-Isotopie von H2 und CH4, sowie 13CCO2 und 13CCH4 ändert. Es soll geprüft werden, ob sie aus der gleichen Quelle stammen und ob der Isotopenaustausch zwischen diesen Spezies im thermodynamischen Gleichgewicht ist.Edelgasisotopenmessungen erlauben es, die Residenzzeiten der Kluftfluide zu berechnen und könnten die Frage lösen, ob gemessene H2/He-Verhältnisse mit der berechneten radiolytisch/radiogenen Produktionsrate übereinstimmen. Die Daten der gaschemischen Messungen sind wichtige Eingangsparameter für physikalisch-chemische Modelle zur Beschreibung des geochemischen Verhaltens der Fluide. In Kombination mit seismischen Karten tragen sie zur genaueren Bestimmung des globalen Vorkommens von gas-chemischen Produktionsprozessen in Störungszonen bei.

Dynamics of soil structure and physical soil functions and their importance for the acquisition of nutrients from the subsoil

Subsoils are an often neglected nutrient source for crops. The mobilisation and use of this potential nutrient source is an important factor in sustainable land use. Nutrient accessibility, release, and transport are strongly dependent on soil structure and its dynamics controlled by spatiotemporally variable physical functions of the pore network. A well structured soil, for example, with numerous interconnected continuous biopores will enhance root growth and oxygen availability and hence nutrient acquisition. In contrast to soils with a poorly developed structure nutrient acquisition is limited by restricted root growth and reduced aeration. The goal of this research project is to investigate different preceding crops and crop sequences in developing characteristic biopore systems in the subsoil and to elaborate their effect on the functional performance of pore networks with respect to nutrient acquisition. The main research question in this context is how soil structure evolves during cultivation of different plant species and how structure formation influences the interaction of physical (water and oxygen transport, shrinking-swelling) biological (microbial activity, root growth) and geochemical processes (e.g. by creating new accessible reaction interfaces). In order to study and quantify pore network architectures non-invasively and in three dimensions X-ray computed microtomography and 3D image analysis algorithms will be employed. The results will be correlated with small- and mesoscale physical/chemical properties obtained from in situ microsensor (oxygen partial pressure, redox potential, oxygen diffusion rate) and bulk soil measurements (transport functions, stress-strain relationships) of the same samples. This will further our process understanding regarding the ability of various crop sequences to form biopore systems which enhance nutrient acquisition from the subsoil by generating pore network architectures with an efficient interaction of physical, biological and geochemical processes.

Kompensation saurer Eintraege mit verschiedenen Puffersubstanzen zur Minderung der Auswirkungen von Luftschadstoffeintraegen in Waldoekosystemen und zur Stabilisierung und Restauration versauerter Waldboeden

Auswirkungen der Bodenschutzkalkung in Waldoekosystemen: - Wirksamkeit gegenueber Versauerungsprozessen im Boden, - Anregung der biologischen Aktivitaet, dadurch Verbesserung der Stickstoffspeicherfaehigkeit, - Ausgleich schwacher Magnesiumernaehrung der Baeume, - Immobilisierung von Metallkationen und Schwermetallen, - Minimierung oekologischer Risiken, - Stabilisierung von Dreichschichttonmineralen.

Wirkungen wasserlöslicher organischer Substanzen auf die Stabilisierung und den Abbau organischer Bodensubstanz

Mikrobielle Umsetzungsprozesse im Boden verlaufen fast ausschließlich unter Beteiligung einer gelösten Phase, da alle lebenden Zellen von einem Wasserfilm umgeben sind, durch den Substrate hindurchdiffundieren müssen, oder über den Exoenzyme und andere Exsudate abgegeben werden. Bei der Mineralisierung organischer Substanzen kommt daher der gelösten organischen Substanz (DOM) als Substrat für Mikroorganismen eine entscheidende Rolle zu. In dem Vorhaben wird der Frage nachgegangen, ob bestimmte streu- und wurzelbürtige DOM-Komponenten wie Kohlenhydrate oder Phenole darüberhinaus die mikrobielle Aktivität in einem Maße fördern oder hemmen können, daß von ihnen Auswirkungen auf den Abbau oder die Stabilisierung der organischen Bodensubstanz auftreten können. Zur Untersuchung solcher 'Priming Effekte' sollen umfangreiche Inkubationsversuche durchgeführt werden, bei denen die Wirkung unterschiedlicher gelöster 14C-markierter Einzelverbindungen und von DOM-Lösungen unterschiedlicher 13C-Signatur auf die Mineralisierung von Modellsubstanzen und der organischen Substanz verschiedener Bodenproben ermittelt wird. Ein daraus berechneter Priming Index gibt Auskunft darüber, inwieweit es durch die zugesetzten DOM-Lösungen zu einem verstärkten oder vermindertem Abbau der organischen Bodensubstanz kommt

Sonderforschungsbereich 1211 (SFB): Evolution der Erde und des Lebens unter extremer Trockenheit

Ziel dieses Projekts ist es, die Forschung im Bereich der wechselseitigen Beziehung zwischen biologischer Evolution und Landschaftsevolution maßgeblich voranzutreiben. Arbeitsgebiete sind aride bis hyperaride Systeme, in denen sowohl biologische Aktivität als auch Erdoberflächenprozesse vorwiegend und sehr stark durch die Verfügbarkeit von Wasser limitiert sind. In diesem Projekt sollen die Schlüsselmerkmale biologischer Aktivität in extrem wasserlimitierten Habitaten der Erde identifiziert und Erdoberflächenprozesse, die unter nahezu wasserfreien Bedingungen ablaufen, charakterisiert werden. Die Bestimmung kritischer Schwellenwerte der Umweltbedingungen, die eine biologische Kolonisation und/oder Landschaftstransformationen erlauben, stellt ein wesentliches Ziel dar. Das zeitliche und räumliche Muster biologischer Kolonisation und Isolation wird zusammen mit der Chronologie der Landschaftsentwicklung in Bezug zur auschlaggebenden gemeinsamen Triebkraft, dem (Paleo-) Klima, untersucht. Diese Ziele sollen durch: (i) paleoklimatische Rekonstruktion und Observation des gegenwärtigen Klimas, zur Entwicklung geeigneter Klimamodelle, (ii) Erfassung der biogeographischen Migrationsgeschichte, Phylogenie (Pflanzen, Insekten, Protisten und Bakterien) und deren molekularer Datierung und (iii) räumliche Erfassung, Prozesscharakterisierung und Datierung von (fossilen) Landschaftselementen (Entwässerungssysteme, Hänge, fluviale und aeolische Sedimente, Böden), angegangen werden. Die Datierung geologischer Archive (i & iii) erfordert eine innovative (Weiter-) Entwicklung isotopengeologischer Methoden, welche entsprechend durchgeführt werden sollen.Es werden u.a. wesentliche Beiträge zu den sich entwickelnden Konzepten des evolutionären Timelags (Guerreo et al. 2013, PNAS 110, 11469-11474), des Einflusses geographischer Barrieren auf klimabedingte Speziesmigration (Burrows et al. 2014, Nature 507, 492-495), der Biogeomorphologie (Corenbilt et al. 2011, Earth Sci. Rev. 106, 307-331), sowie der Entwicklung neuer Methoden zur Datierung und Prozesscharakterisierung von Erdoberflächenprozessen und biologischer Evolution erwartet.

Aerobic mikrobielle Aktivität in der Tiefsee abyssal Ton

Meeressedimente enthalten schätzungsweise größer als 10^29 mikrobielle Zellen, welche bis zu 2.500 Meter unter dem Meeresboden vorkommen. Mikrobielle Zellen katabolisieren unter diesen sehr stabilen und geologisch alten Bedingungen bis zu einer Million mal langsamer als Modellorganismen in nährstoffreichen Kulturen und wachsen in Zeiträumen von Jahrtausenden, anstelle von Stunden bis Tagen. Aufgrund der extrem niedrigen Aktivitätsraten, ist es eine Herausforderung die metabolische Aktivität von Mikroorganismen unterhalb des Meeresbodens zu untersuchen. Die Transkriptionsaktivität von diesen mikroben kann seit Kurzem metatranskriptomisch untersucht werden, z.B. durch den Einsatz von Hochdurchsatzsequenzierung von aktiv transkribierter Boten-RNA (mRNA), die aus Sedimentproben extrahiert wird. Tiefseetone zeigen ein Eindringen von Sauerstoff bis zum Grundgebirge, welches auf eine geringe Sedimentationsrate im ultra-oligotrophen Ozean zurückzuführen ist. Der Sauerstoffverbrauch wird durch langsam respirierende mikrobielle Gemeinschaften geprägt, deren Zellzahlen und Atmungsraten sehr niedrig gehalten werden durch die äußerst geringe Menge organischer Substanz, die aus dem darüber liegendem extrem oligotrophen Ozean abgelagert wird. Die zellulären Mechanismen dieser aeroben mikroben bleiben unbekannt. Im Jahr 2014 hat eine Expedition erfolgreich Sedimentkerne von sauerstoffangereichertem Tiefseeton genommen. Vorläufige metatranskriptomische Analysen dieser Proben zeigen, dass der metatranskriptomische Ansatz erfolgreich auf die aeroben mikrobiellen Gemeinschaften in diesen Tiefseetonen angewendet werden kann. Wir schlagen daher vor diese Methode mit einem hohen Maß an Replikation, in 300 Proben von vier Standorten, anzuwenden. Dieser Einsatz wird es uns ermöglichen, Hypothesen in Bezug auf zelluläre Aktivitäten unterhalb des Meeresbodens, mit einer beispiellosen statistischen Unterstützung, zu testen.Wir warden den aeroben Stoffwechsel, welcher die langfristige Existenz von Organismen in Tiefseetonen unterstützt, bestimmen, Subsistenzstrategien identifizieren in aeroben und anaeroben Gemeinden unterhalb des Meeresbodens, und extrazelluläre Enzyme und ihr Potenzial für den organischen Substanzabbau charakterisieren. Die folgenden Fragen werden damit beantwortet: Wie das Leben im Untergrund über geologische Zeiträume unter aeroben Bedingungen überlebt? Was die allgegenwärtigen und einzigartigen Mechanismen sind, die langfristiges Überleben in Zellen unter aeroben und anaeroben Bedingungen fördert? Was die Auswirkungen von Sedimenttiefe und Verfügbarkeit von organischer Substanz auf die mikrobielle Produktion von extrazellulären Hydrolasen unter aeroben und anaeroben Bedingungen sind? Dies wird sowohl ein besseres Verständnis dafür liefern, wie mikrobielle Aktivitäten unterhalb des Meeresbodens verteilt sind und was ihre Rolle in biogeochemischen Zyklen ist, als auch wie das Leben über geologische Zeiträume unter extremer Energiebegrenzung überlebt.

1 2 3 4 592 93 94