API src

Found 913 results.

Related terms

Organischer Kohlenstoff in Flüssen - Charakterisierung, Herkunft und Abbaubarkeit

Veranlassung Der gelöste und der partikuläre organische Kohlenstoff (dissolved organic carbon, DOC und particulate organic carbon, POC) sind zentrale Komponenten im Naturhaushalt von Gewässern. Die Akkumulation von organischem Kohlenstoff - beziehungsweise die damit verbundene hohe Sauerstoffzehrung - ist insbesondere in den Ästuaren ein wichtiger Belastungsfaktor für den Sauerstoffhaushalt und trägt damit zu deren schlechtem ökologischem Zustand bei. Die Bewertung der zu erwartenden Sauerstoffzehrung kann aber nur mit umfassender Kenntnis der Qualität der organischen Kohlenstoffgehalte in gelöster Form oder als Bestandteil der Schwebstoffe erreicht werden. Des Weiteren spielt die Zusammensetzung des organischen Materials eine wichtige Rolle bei der Sorption und dem Transport von Schadstoffen, sodass eine umfassende Beschreibung des organischen Kohlenstoffs auch die Vorhersage der Ausbreitung von Schadstoffen ermöglicht. Im Projekt OrgCarbon soll eine umfassende Charakterisierung des organischen Kohlenstoffs jenseits der traditionell erfassten Parameter (TOC, DOC und POC) stattfinden, da bekannt ist, dass sowohl POC als auch DOC eine komplexe, bisher wenig erforschte Vielzahl unterschiedlicher Stoffklassen beinhaltet. In einem ersten Schritt erfolgt eine Fraktionierung von partikulärem und gelöstem organischem Material, basierend auf der chemischen Zusammensetzung und mikrobiellen Abbaubarkeit. Wichtige Parameter wie Sauerstoffverbrauch, mikrobielle Atmung, chemische Zusammensetzung und die Herkunft des organischen Materials werden für jede Kohlenstofffraktion bestimmt. Durch die daraus resultierende Verbesserung des Verständnisses bezüglich organischem Kohlenstoff in Ästuaren und Flüssen zielt das OrgCarbon-Projekt darauf ab, zu besseren Umweltmanagement- und Naturschutzstrategien für die Bundeswasserstraßen beizutragen. Ziele Ein zentrales Ziel des OrgCarbon-Projekts ist es, eine Vielzahl interdisziplinärer Methoden zu testen, um die vielfältigen Eigenschaften des Kohlenstoffes zu erfassen. Es werden verschiedene chemisch-analytische Verfahren mit Messungen zur biologischen Aktivität und Abbaubarkeit des Kohlenstoffs sowie mit mineralogischen Untersuchungen kombiniert. Dadurch lässt sich ein Set an Methoden identifizieren, das zukünftig auch mit weniger Aufwand eine detaillierte Charakterisierung des Kohlenstoffs ermöglicht. Als Ergebnis von OrgCarbon angestrebt ist die Entwicklung eines standardisierten Protokolls, das den gesamten Prozess von der Probenahme über die Kohlenstofffraktionierung bis hin zur Analyse und Datenauswertung umfasst. Dieses ermöglicht es, die Qualität des organischen Kohlenstoffs sowie dessen Eigenschaften und Abbaubarkeit in Zukunft besser abzuschätzen und gemeinsam zu interpretieren. Dieses Protokoll soll in bestehende Messprogramme der BfG integriert werden, um regelmäßig die Herkunft, das Sorptionspotenzial für Schadstoffe sowie die Abbaubarkeit und die Sauerstoffzehrung von organischem Kohlenstoff zu bestimmen. Organischer Kohlenstoff spielt eine entscheidende Rolle in Ästuaren und Flüssen. Seine Zusammensetzung beeinflusst Prozesse wie die (mikro)biologische Produktivität, den Sauerstoffverbrauch, den Schadstofftransport und die Agglomeration von Schwebstoffen. Die Bestimmung erfolgt routinemäßig nur als Summenparameter (total organic carbon, TOC) weshalb über die Zusammensetzung des organischen Materials, dessen Abbauverhalten und Quellen meist wenig bekannt ist. Darüber hinaus reicht die Betrachtung des Gesamtkohlenstoffgehalts in vielen Fällen nicht aus, um eine Vergleichbarkeit von Schwebstoffen aus unterschiedlichen Quellen zu gewährleisten. Das OrgCarbon-Projekt widmet sich darum einer umfassenden Analyse des organischen Kohlenstoffs in Feldproben aus Ästuaren und Flüssen mit unterschiedlichen Kohlenstoffgehalten und Zusammensetzungen, wie der Tide-Ems und der Tide-Elbe. (Text gekürzt)

Bodenrestauration beim Umbau von Fichte in Buche

Um eine nachhaltige forstwirtschaftliche Nutzung bei gleichzeitiger Sicherung der Schutz- und Erholungsfunktionen des Waldes zu gewaehrleisten, muessen die Reglerfunktionen des Waldbodens erhalten bzw. wiederhergestellt werden (Waldbodenrestauration). Das Spektrum der moeglichen Waldbodenrestaurationsmassnahmen laesst sich idealtypisch den drei Gruppen 'chemisch-technische Waldbodenrestauration', 'chemische Waldbodenrestauration' und 'biologische Waldbodenrestauration' zuordnen. Es wird ein Restaurationskonzept untersucht, das auf biologischen Prozessen aufbaut (Foerderung grosskroniger, vitaler Baeume mit leicht zersetzlicher Streu und intensiver Tiefendurchwurzelung, Erziehung strukturreicher Bestaende, Umbau von Nadelholzreinbestaenden in laubbaumreiche Bestockungen, Verbesserung des Humuszustandes und Verteilung von Basen ueber die Wurzel- und Blattstreu eingebrachter Laubbaeume) und diese, soweit erforderlich, baumarten- und standortabhaengig mit technischen (Pflanzloch/Pflanzstreifen-/Saatbettmeliorationen) und chemischen Mitteln (wiederholte Bodenschutzkalkungen auf versauerungsgefaehrdeten Standorten, ggf. ergaenzt durch die kleinflaechige, am Einzelbestand orientierte Ausbringung von Mangelnaehrelementen) unterstuetzt. Besonderer Untersuchungsbedarf besteht insbesondere im Hinblick auf die Frage, unter welchen Bedingungen plaetzeweise Bodenmeliorationen (z.B. in Pflanzloechern, Saatplaetzen oder Pflanzstreifen) in Ergaenzung der Oberflaechenkalkungen notwendig sind. Zu ueberpruefen ist, in welchem Umfang kleinflaechige Meliorationen (Pflanzloch, Pflanzstreifen, Saatbett) die Biomasseproduktion der eingebrachten Laubbaeume (und damit den gewuenschten Effekt) erhoehen und die Wurzelbiomasse und vor allem deren Tiefenverteilung beeinflussen. Untersuchungsbedarf besteht weiterhin im Hinblick auf die Frage, ob es so gelingt, eine ausreichende Phosphor-, Kalium- oder Spurenelementversorgung von anspruchsvolleren (Laub-)Baeumen dauerhaft zu erreichen. Desgleichen muessen die oekosystemaren Auswirkungen der Einbringungstechniken untersucht werden.

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Bedeutung der interspezifischen ektomykorrhizalen Pilzdiversität für die Ernährung von Waldökosystemen

Das übergeordnete Ziel dieses Projekts ist es, die interspezifische Diversität von Ektomykorrhizapilzen (EcM) für die Phosphoraufnahme und Ernährung von Bäumen in Pakquirierenden und P-rezyklierenden Ökosystemen zu untersuchen. Der Fokus wird auf der Buche als einer ektomykorrhizalen Hauptbaumart dieser Ökosysteme liegen. Folgende Punkte sollen adressiert werden:(i) Die Pilzgesellschaften P-akquirierender und -rezyklierender Ökosysteme unterscheiden sich, weil in dem ersten Fall P mit Hilfe organischer Exsudate aus Mineralien gelöst werden muss und im zweiten Fall P mit Hilfe saprophytischer Enzyme aus der organischen Materie freigesetzt werden muss, um pflanzenverfügbar zu sein. Um diese Hypothese zu prüfen, werden Pilze in verschiedenen Bodenkompartimenten und Wurzel-assoziierte Pilze mittels Hochdurchsatzsequenzierung erfasst und funktionalen Gruppen zugeordnet. Die aktive EcM Gesellschaft wird durch Kombination von Morphotyping und ITS Sequenzierung quantifiziert. Die Pilzprofile werden in Relation zu Bodenparametern, mikrobieller Aktivität und sekretierten Phosphatasen und Oxalat-produzierenden EcM Aktivitäten analysiert.(ii) Der zeitliche Verlauf des P Bedarfs und der P Aufnahme in Relation zu Phänologie und saisonalen Veränderungen der EcM Gesellschaft ist nicht bekannt. Durch Applikation von radioaktivem Phosphat zu verschiedenen wichtigen Zeitpunkten wie Blattaustrieb, früher Sommer, Spätsommer, Herbst und Winter soll die Aufnahme und pflanzeninterne Allokation von P bestimmt werden. Dabei wird auch die P-Akquisition der EcM Gesellschaft spezifisch erfasst und ihre enzymatischen Aktivitäten untersucht. Des Weiteren werden Biomasse der Pflanze und Morphologie des Wurzelsystems, Gesamt-P sowie der Einbau von P in freie Mikroben untersucht. Mit Hilfe dieser Daten soll ein Modell für die Aufnahme und Allokation von P in Relation zu ektomykorrhizaler, mikrobieller und pflanzlicher Aktivität entwickelt werden.(iii) Um die Beiträge spezifischer EcM für die P Aufnahme zu erfassen, soll eine neue Methode für zeitlich und räumlich aufgelöste Flussmessungen von radioaktivem P etabliert werden. Nach Installation und Kalibrierung der Messanlage mit Hilfe einfacher Modellpflanzen (Pappel), sollen die Beiträge unterschiedlicher EcM Arten für die P Aufnahme und Translokation an jungen Buchen untersucht werden. Dies Daten sollen zur Verbesserung des obigen Modells genutzt werden. Insgesamt werden diese Untersuchungen einen wichtigen Beitrag zur Rolle der EcM Diversität im P Zyklus unterschiedlich P versorgter Ökosysteme liefern.

Aerobic mikrobielle Aktivität in der Tiefsee abyssal Ton

Meeressedimente enthalten schätzungsweise größer als 10^29 mikrobielle Zellen, welche bis zu 2.500 Meter unter dem Meeresboden vorkommen. Mikrobielle Zellen katabolisieren unter diesen sehr stabilen und geologisch alten Bedingungen bis zu einer Million mal langsamer als Modellorganismen in nährstoffreichen Kulturen und wachsen in Zeiträumen von Jahrtausenden, anstelle von Stunden bis Tagen. Aufgrund der extrem niedrigen Aktivitätsraten, ist es eine Herausforderung die metabolische Aktivität von Mikroorganismen unterhalb des Meeresbodens zu untersuchen. Die Transkriptionsaktivität von diesen mikroben kann seit Kurzem metatranskriptomisch untersucht werden, z.B. durch den Einsatz von Hochdurchsatzsequenzierung von aktiv transkribierter Boten-RNA (mRNA), die aus Sedimentproben extrahiert wird. Tiefseetone zeigen ein Eindringen von Sauerstoff bis zum Grundgebirge, welches auf eine geringe Sedimentationsrate im ultra-oligotrophen Ozean zurückzuführen ist. Der Sauerstoffverbrauch wird durch langsam respirierende mikrobielle Gemeinschaften geprägt, deren Zellzahlen und Atmungsraten sehr niedrig gehalten werden durch die äußerst geringe Menge organischer Substanz, die aus dem darüber liegendem extrem oligotrophen Ozean abgelagert wird. Die zellulären Mechanismen dieser aeroben mikroben bleiben unbekannt. Im Jahr 2014 hat eine Expedition erfolgreich Sedimentkerne von sauerstoffangereichertem Tiefseeton genommen. Vorläufige metatranskriptomische Analysen dieser Proben zeigen, dass der metatranskriptomische Ansatz erfolgreich auf die aeroben mikrobiellen Gemeinschaften in diesen Tiefseetonen angewendet werden kann. Wir schlagen daher vor diese Methode mit einem hohen Maß an Replikation, in 300 Proben von vier Standorten, anzuwenden. Dieser Einsatz wird es uns ermöglichen, Hypothesen in Bezug auf zelluläre Aktivitäten unterhalb des Meeresbodens, mit einer beispiellosen statistischen Unterstützung, zu testen.Wir warden den aeroben Stoffwechsel, welcher die langfristige Existenz von Organismen in Tiefseetonen unterstützt, bestimmen, Subsistenzstrategien identifizieren in aeroben und anaeroben Gemeinden unterhalb des Meeresbodens, und extrazelluläre Enzyme und ihr Potenzial für den organischen Substanzabbau charakterisieren. Die folgenden Fragen werden damit beantwortet: Wie das Leben im Untergrund über geologische Zeiträume unter aeroben Bedingungen überlebt? Was die allgegenwärtigen und einzigartigen Mechanismen sind, die langfristiges Überleben in Zellen unter aeroben und anaeroben Bedingungen fördert? Was die Auswirkungen von Sedimenttiefe und Verfügbarkeit von organischer Substanz auf die mikrobielle Produktion von extrazellulären Hydrolasen unter aeroben und anaeroben Bedingungen sind? Dies wird sowohl ein besseres Verständnis dafür liefern, wie mikrobielle Aktivitäten unterhalb des Meeresbodens verteilt sind und was ihre Rolle in biogeochemischen Zyklen ist, als auch wie das Leben über geologische Zeiträume unter extremer Energiebegrenzung überlebt.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Der Einfluß von Landnutzungsintensität auf die Biodiversität und funktionelle Rolle biologischer Bodenkrusten unter besonderer Berücksichtigung der biogeochemischen Kreisläufe von Kohlenstoff, Stickstoff und Phosphor - CRUSTFUNCTION III

Biologische Bodenkrusten (Biokrusten) sind Hotspots an mikrobieller Diversität und Aktivität, die als 'Ökosystemingenieure' biogeochemische Kreisläufe (N, P) kontrollieren und die Bodenoberfläche stabilisieren. Biokrusten sind ein komplexes Netzwerk vielfältiger, interagierender Mikroorganismen mit verschiedensten Lebensweisen. In den gemäßigten Breiten ist wenig über die Einflussfaktoren auf Struktur und Funktion der Biokrusten bekannt. Daher wollen wir die Diversität der Mikroorganismen in Biokrusten (Bakterien, Protisten, Pilze und Algen) und ihre biogeochemische Funktion in den Waldflächen der Biodiversitätsexploratorien (BE) entlang von Landnutzungsgradienten untersuchen, um deren Beeinflussung durch Landnutzung und Umweltfaktoren zu verstehen.Das zentral organisierte, neue Störexperiment in den Waldflächen ist eine hervorragende Möglichkeit, um die Entwicklung einer Biokruste unter natürlichen Bedingungen nach einer starken Störung zu verfolgen. Eine Teilfläche simuliert Kahlschlag (die Stämme werden entfernt), die andere Teilfläche einen zukünftig häufiger auftretenden Orkan (Stämme verbleiben auf der Fläche). Wir werden die Entwicklung der Bodenkrusten von einem jungen zu einem reifen Stadium visuell (Flächenbedeckung) und durch Probenahme (Biomasse, Nährstoffe, Bodenorganik, Mikrobiota) mittels Feld-, analytischen und molekularen Methoden regelmäßig über zwei Jahre verfolgen. Außerdem werden wir an der zentralen Bodenbeprobungskampagne in allen 150 Waldflächen teilnehmen und parallel Biokrusten sammeln. Wir werden die mikrobielle Biomasse in der Biokruste quantifizieren, ihre Gemeinschaftsstruktur mittels Hochdurchsatzsequenzierung beschreiben und dies mit dem Umsatz von Stickstoff- und Phosphorverbindungen verschneiden. Um Schlüsselorganismen dieser Prozesse zu identifizieren und in hoher räumlicher Auflösung zu visualisieren, wird zusätzlich ein Laborexperiment unter Anwendung von stable isotope probing und NanoSims durchgeführt. Die Daten zur Biodiversität und funktionellen Genomik werden mit den Nährstoffstatus der Biokrusten (Konzentration und chemische Speziierung von C, N und P) verknüpft. Das Laborexperiment mit stabilen Isotopen wird unser Verständnis von Biokrusten Schlüsselorganismen im N- und P-Nährstoffkreislauf und den Einfluss der räumlichen Heterogenität fundamental verbessern. Diese Daten erlauben zum ersten Mal die quantitative und qualitative Rekonstruktion der wichtigsten Stoffkreisläufe und mikrobiellen Interaktionsmuster in Biokrusten als Reaktion auf Landnutzung und Störung. Abschließend werden die ermittelten Daten in das gemeinsame bodenkundliche Netzwerk der BE integriert und dienen dann als Keimzelle für ein Synthese-Vorschlag mit dem Ziel, die Leistung der Biokruste quantitativ und qualitativ mit anderen Hotspots in Böden, wie Detritus- oder Rhizosphäre, zu vergleichen.

FZT 15: Der Ozean im Erdsystem; Ocean Margins - Research Topics in Marine Geosciences for the 21st Century, Sub project: Infrastructure, Support and Central Management

The research centre 'Ocean Margins' at the University of Bremen was established in July 2001 to geoscientifically investigate the transitional zones between the oceans and the continents. The work of the research centre is a cooperative effort, with expertise provided by the geosciences department and other departments of the university, as well as by MARUM (Center for Marine Environmental Sciences), the Alfred Wegener Institute for Polar and Marine Research, the Max Planck Institute for Marine Microbiology, the Center for Marine Tropical Ecology, and the Senckenberg Research Institute in Wilhelmshaven. Funded by the DFG, the studies focus on four main research fields: Paleoenvironment, Biogeochemical processes, Sedimentation Processes, and Environmental Impact Research. The term 'Ocean Margin' encompasses the region from the coast, across the shelf and continental slope, to the foot of the slope. Over 60 percent of the world's population live in coastal regions. These people have a long history of exploitation of coastal waters, including the recovery of raw materials and food. Human activity has recently been expanding ever farther out into the ocean, where the ocean margins have become more attractive as centers for hydrocarbon exploration, industrial fishing, and other purposes. The research themes of the centre range from environmental changes in the Tertiary to the impact of recent coastal construction, and from microbial degradation in the sediment to large-scale sediment mass wasting along continental margins. New full professorships and junior professorships have been established within the framework of this research centre. In addition to the primary research activities, a research infrastructure will be made available to outside researchers. Graduate education and the public understanding of science also play an important role. In the course of the first two rounds of the Excellence Initiative, the Research Centre was promoted to that status of a cluster of excellence, which has increased the amount of funding it receives up to the average amount of 6.5 million per annum received by clusters of excellence.

Biologische Bodenzustandserhebung deutscher Wälder, Teilvorhaben 1: Beprobung von Flächen des forstlichen Umweltmonitorings und integrierende Auswertung von Biodiversität und Standortsfaktoren

Die Vielfalt und Aktivität der Bodengemeinschaften aus Pilzen, Bakterien, Archaeen und anderen Einzellern ist wichtig für Funktionen wie die C Speicherung, die Resilienz von Bäumen gegenüber dem Klimawandel und den Umsatz von organischen Bestandteilen. Es gibt zwar mit der Bodenzustandserhebung im Wald (BZE) ein bundesweites Monitoring, welches Auskunft über die Vitalität der Bäume und den physikochemischen Bodenzustand gibt. Die Bodenbiologie wird dabei allerdings nicht berücksichtigt. Ein erweitertes systematisches Monitoring kann helfen, Zusammenhänge zwischen standörtlichen Gegebenheiten und Bodenorganismen und deren Funktionen besser zu verstehen. Dieses Projekt zielt daher darauf ab, die umfangreichen Daten der BZE mit neu erhobenen Daten zu Biodiversität und biologische Aktivität im Boden zu verknüpfen. Im Zuge der dritten BZE soll eine deutschlandweite Probennahme an BZE-Punkten und auf Flächen des Level-II-Intensivmonitorings stattfinden. Die Proben sollen hinsichtlich der Biodiversität mithilfe molekularer und komplementärer Verfahren zur Messung von Biomasse und Aktivität analysiert werden. Ziel ist ein besseres prozessbasiertes Verständnis des Beitrags von Wäldern und Waldböden zu ausgeglichenen und nachhaltigen biogeochemischen Kreisläufen. Daraus lassen sich waldbauliche Handlungsempfehlungen zur Vorbeugung und Anpassung an den globalen Wandel entwickeln. Gleichzeitig kann eine Wissenslücke zum Zustand der Biodiversität in Deutschlands Waldböden geschlossen werden.

Biologische Bodenzustandserhebung deutscher Wälder

Die Vielfalt und Aktivität der Bodengemeinschaften aus Pilzen, Bakterien, Archaeen und anderen Einzellern ist wichtig für Funktionen wie die C Speicherung, die Resilienz von Bäumen gegenüber dem Klimawandel und den Umsatz von organischen Bestandteilen. Es gibt zwar mit der Bodenzustandserhebung im Wald (BZE) ein bundesweites Monitoring, welches Auskunft über die Vitalität der Bäume und den physikochemischen Bodenzustand gibt. Die Bodenbiologie wird dabei allerdings nicht berücksichtigt. Ein erweitertes systematisches Monitoring kann helfen, Zusammenhänge zwischen standörtlichen Gegebenheiten und Bodenorganismen und deren Funktionen besser zu verstehen. Dieses Projekt zielt daher darauf ab, die umfangreichen Daten der BZE mit neu erhobenen Daten zu Biodiversität und biologische Aktivität im Boden zu verknüpfen. Im Zuge der dritten BZE soll eine deutschlandweite Probennahme an BZE-Punkten und auf Flächen des Level-II-Intensivmonitorings stattfinden. Die Proben sollen hinsichtlich der Biodiversität mithilfe molekularer und komplementärer Verfahren zur Messung von Biomasse und Aktivität analysiert werden. Ziel ist ein besseres prozessbasiertes Verständnis des Beitrags von Wäldern und Waldböden zu ausgeglichenen und nachhaltigen biogeochemischen Kreisläufen. Daraus lassen sich waldbauliche Handlungsempfehlungen zur Vorbeugung und Anpassung an den globalen Wandel entwickeln. Gleichzeitig kann eine Wissenslücke zum Zustand der Biodiversität in Deutschlands Waldböden geschlossen werden.

Die Rolle von NO in der Signaltransduktion bei pflanzlichen Abwehrreaktionen

Pflanzen verfügen über vielfältige Mechanismen zum Schutz vor Pathogenbefall oder Umweltstress. Dabei weisen pflanzliche Abwehrsysteme Ähnlichkeiten zum angeborenen Immunsytem von Säugern auf, bei dem Stickoxid (NO) eine Schlüsselrolle spielt. Auch in Pflanzen finden sich wichtige Komponenten der durch NO induzierten Signalübertragung. NO aktiviert Abwehrgene und ist beteiligt an programmiertem Zelltod und an der Abwehr von Pathogenen. Das vorgeschlagene Projekt hat zum Ziel, die Signalübertragung durch NO in Tabak und Arabidopsis zu erforschen und die Rolle von NO bei der Abwehr von Pathogenen zu klären. (1) Ein Schwerpunkt soll in der Aufklärung der Signalübertragung durch NO und der Aktivierung von Abwehrgenen liegen. Es soll geklärt werden, ob NO als mobiles Signal dient, und ob andere Signalmoleküle (z.B. Salicylsäure) in die NO-Signalübertragung integriert sind. (2) Um die Bedeutung von NO für die Regulation von Abwehrmechanismen zu klären, sollen Expressionsprofil und Expressionsdynamik von NO-induzierten Genen durch DNA-ChipTechnologie analysiert werden. Diese neuartige Technik wird auch Aufschluss über eine etwaige Vernetzung der NO-Signalübertragung mit pflanzlichen Hormonsystemen liefern. Die Erforschung der Signalübertragung durch NO in Pflanzen kann unser Verständnis von Resistenzmechanismen vertiefen und zur Entwicklung pathogen-resistenter Pflanzen beitragen.

Erhöhung des Resistenzpotentials der Gerste - Ein interdisziplinärer Ansatz unter besonderer Berücksichtigung der Resistenzaktivierung, Molekulare Untersuchungen zum Einfluss wurzelbesiedelnder Pilze auf Resistenz und Suszeptibilität in Gersteblättern

Arbuskuläre Mykorrhizen erhöhen zwar die Resistenz von Pflanzen gegenüber pilzlichen Wurzelpathogenen und Bodennematoden, in oberirdischen Pflanzenteilen scheinen aber die Verteidigungsmechanismen unterdrückt zu werden. Auf der anderen Seite gibt es Hinweise, dass Blätter von Pflanzen, die mit dem Wurzelendophyt Piriformospora indica besiedelt sind, weniger stark von Blattpathogenen befallen werden. Diese Phänomene sollen auf cytologischer und molekulargenetischer Ebene untersucht werden. Der Einfluss des Mykorrhizapilzes Glomus spec. und des Wurzelendophyten Piriformospora indica auf die Infektion von Blättern und Wurzeln der Gerste mit nekrotrophen und biotrophen pilzlichen Pathogenen wird einmal makro- und mikroskopisch untersucht. Außerdem sollen Gene isoliert und charakterisiert werden, deren Expression (1) in den Blättern durch die Besiedelung der Wurzel mit Glomus spec. und P. indica oder (2) in den Wurzeln durch gleichzeitige Besiedelung mit Glomus spec. oder P. indica und mit einem Pathogen induziert ist. Als dritten gilt es, Gene zu identifizieren, bei denen durch die Anwesenheit eines Mykorrhizapilzes in der Wurzel die chemische Induktion ihrer Expression in den Blättern inhibiert ist.

1 2 3 4 590 91 92