Einer der global größten Kohlenstoffspeicher ist die organische Bodensubstanz (OBS), welche eine zentrale Quelle für die Pflanzennährstoffe Stickstoff (N) und Phosphor (P) darstellt. Bodenmikroorganismen sind die Hauptakteure beim Umsatz der OBS und damit ein zentrales Bindeglied zwischen Kohlenstoff- (C) und Nährstoffkreisläufen. Sie sind jedoch stark durch Phagen (also Viren, die Bakterien befallen) beeinflusst. In Ozeanen sterben täglich 20% der bakteriellen Zellen durch Phagen, was zu einem Umsatzpfad („viral shunt“) führt, der große Mengen organischer Substanz und damit assoziierter Nährstoffe aus bakterieller Biomasse freisetzt. Das erhöht die Produktivität der Ozeane und speichert C in bakteriellen Rückständen. Trotz ihrer hohen Abundanz in Böden wurden Phagen in der Bodenbiogeochemie kaum berücksichtigt. Meine Nachwuchsgruppe wird erstmals untersuchen wie die Biophysik des Mikrohabitats die Infektion durch Phagen und damit bakterielle Sterberaten steuert. Wir werden herausfinden, ob hierdurch ein vergleichbarer „viral shunt“ in Böden vorliegt und quantifizieren dessen Auswirkung auf Nährstoff- und CO2-Feisetzung sowie auch der Speicherung von C. Wir möchten gezielt über phänomenologische Beschreibungen hinausgehen und zugrundeliegende Mechanismen aufklären. Bodenmikrohabitate werden mit modernsten bildgebenden Verfahren zur Aufklärung mikroskaliger Strukturen charakterisiert: 3D Wasserverteilung im Habitat durch synchrotronbasierte Mikrotomographie, Verteilung der OBS mit Rasterelektronenmikroskopie und Mineralogie der Porenoberflächen mittels Raman-Mikrospektroskopie. Phagen aus Böden werden isoliert und ihre Phage-Habitat-Interaktionen erfasst, um so die Relevanz des Mikrohabitats für die Phagenausbreitung zu eruieren. Der Einfluss des Mikrohabitats auf die Infektionsrate und damit auf Stoffkreisläufe wird mittels der Kopplung molekularer Methoden mit Isotopenanwendungen untersucht werden, und zwar i) 18O-DNA Markierung (SIP) zur Erfassung der Phagenbildung sowie des bakteriellen Zellsterbens, ii) der Bestimmung der Abundanz relevanter funktioneller Gene und iii) der Quantifizierung der Mineralisationsraten durch Isotopenverdünnung. Der Einsatz isotopisch markierter Phagen (13C, 15N, 33P) wird die phageninduzierte Änderungen der Elementflüsse aufzeigen. Damit wird erstmal ein mechanistisches Verständnis erlangt, wie Bodenphagen in Interaktion mit ihrem Habitat biogeochemische Kreisläufe von globaler Bedeutung beeinflussen. Des Weiteren wird der Einfluss dynamischer Änderungen des Mikrohabitats auf Phagen untersucht sowie evolutionäre Anpassungen der Phagen an ihre Habitate. Detailliertes Prozessverständnis ist hier von höchster Relevanz um die Auswirkung anthropogener Aktivität oder des Klimawandels auf Bodenphagen vorherzusagen. Daher werden diese Erkenntnisse final in ein dynamisches Modell integriert, um erstmals die Vorhersage phageninduzierter Prozesse in Böden zu ermöglichen - für deren Einsatz in Landnutzung und Landwirtschaft.
Die Halacaridae (Meeresmilben) gehören, mit ihrer Körpergröße von 200-500 mym, zum Meiobenthos. Unter den Milben sind sie die einzigen, die vollständig an ein Leben im Meer angepasst sind; sie besiedeln den Bereich von der oberen Gezeitenlinie bis in die Tiefseegräben. Zur Zeit sind etwa 900 Arten bekannt. Im Vergleich zu den Küsten im Osten und Westen des Nordatlantiks zeichnen sich die Australiens durch eine äußerst artenreiche Halacaridenfauna aus: jede geographische Region entlang der Küste scheint in erster Linie eigene Arten zu beherbergen. Die geplanten Probennahmen bei Dampier an der tropischen Nordwestküste Australiens sollen Daten liefern für einen Vergleich mit den bereits bearbeiteten Faunen von Rottnest Island (Südwestaustralien) und dem Great Barrier Reef (Ostaustralien).
Das Birkhuhn (Tetrao tetrix), einst typischer Bewohner von Moor- und Heidelandschaften, lebt in Deutschland außerhalb der Alpen nur noch in kleinen isolierten Vorkommen. Aufforstungen von Heideflächen und die Entwässerung und Kultivierung von Mooren reduzierten seinen Bestand. Heute steht das Birkhuhn als vom Aussterben bedrohte Art auf der Roten Liste der Brutvögel Deutschlands. Allein in Niedersachsen, wo außerhalb der Alpen noch der größte Birkhuhnbestand lebt, sank die Zahl der Tiere innerhalb der letzten 30 Jahre von rund 4.000 auf heute 200. Das Projekt untersucht die für den Artenschutz zentrale Frage, wie sich die voneinander isolierten Populationen in Deutschland an Veränderungen ihrer Lebensräume anpassen. Daraus sollen dann konkrete Empfehlungen für den Schutz des Birkhuhns abgeleitet werden.
Aphelinus abdominalis, ein Parasitoid der Familie Aphelinidae, wird seit mehreren Jahren als Nützling zur Blattlausbekämpfung in Unterglaskulturen angeboten. Das Potential seiner Effizienz wird aber im Vergleich zu den Blattlausparasitoiden der Aphidiinae häufig unterschätzt. Das Verhalten der Aphelinidae im Wirtshabitat ist in der Literatur gut dokumentiert, doch der Kenntnisstand über ihre Fernorientierung bei der Wirtssuche ist noch lückenhaft. In dem hier beantragten Forschungsvorhaben sollen in einer Verbindung von Laborexperimenten und anwendungsorientierten Gewächshausversuchen die Möglichkeiten für eine Effizienzsteigerung von A. abdominalis ausgelotet werden. Ein Schwerpunkt der geplanten Verhaltensstudien liegt dabei auf einer Aufklärung der Mechanismen des Lernvermögens. In zahlreichen Arbeiten wurde in den vergangenen Jahren gezeigt, daß sich die meisten Parasitoiden flexibel den wechselnden Umweltbedingungen anzupassen vermögen, indem sie bestimmte Duftstoffe ihrer Wirtspflanzen erlernen und für die Wirtssuche nutzen. Da Schlupfwespen mit einem breiten Wirtsspektrum auch im Gewächshaus mit einer Vielzahl unterschiedlicher Pflanze-Wirt-Systeme konfrontiert werden, ist es das Ziel dieses Projekts, anhand den Modellsystems A. abdominalis - Macrosiphum euphorbiae - Paprika/Aubergine sinnvolle Strategien für eine praktische Nutzbarmachung dieser Lernfähigkeit zu erarbeiten.
Wie, warum und wo überleben Baumarten zunehmenden Stress? Das Projekt wird in in Zusammenarbeit mit einem Konsortium europäischer Institutionen durchgeführt.
Es werden Interaktionen zwischen AMP (arbuskulären Mykorrhizapilzen) und Mikroben an Tomate in Hinblick auf die biologische Bekämpfung des Gallennematoden Meloidogyne incognita untersucht. Angestrebt ist (erste Phase), 1-3 Jahr): 1. Isolation und Identifikation von AMP, PHPR (plant health promoting rhizobacteria) und MHB (mycorrhiza helper bacteria) mit biocontrolFähigkeiten. 2. Unterscheidung von Interaktionen in und außerhalb der Wurzel. 3. Auffindung von Synergismen zwischen AMP und anderen Mikroben. 4. Prüfung möglicher Antagonismen. 5.Aufklärung von Wirkungsmechanismen der biologischen Bekämpfung bei Einzel- oder Koinokulation. 6. Erster Nachweis der Effizienz der kombinierten Inokula unter Feldbedingungen in Thailand. In der zweiten Phase (Jahr 4-6) wollen wir formulierte Inokula für Feldversuche in Thailand entwickeln. Ziele werden sein: 1. Adaptation der biocontrol-Organismen in lokale Systeme. 2. Untersuchung von Interaktionen mit anderen Krankheiten z.B. der bakteriellen Welke. 3. Integration der biologischen Bekämpfung in Produktionssystemen in Thailand. 4. Prüfung verschiedener Applikationstechniken. Diese Aspekte werden in Zusammenarbeit mit thailändischen Partnern bearbeitet.
Anthropogene CO2 Emissionen werden zum Teil von den Ozeanen absorbiert und führen zu erniedrigten marinen pH und Karbonatwerten, dieser Prozess wird Ozeanversauerung genannt. Ozeanversauerung geht mit Ozeanerwärmung einher, zusammen bedrohen beide Umweltveränderungen das Leben im Meer. Fische wurden bisher als recht unempfindlich gegenüber diesen Veränderungen im Meerwasser eingeschätzt, da sie über hoch entwickelte Säure-Base- und Ionenregulation verfügen. Daher haben nur wenige physiologische Studien den Einfluss von Hyperkapnie auf die Physiologie und das Verhalten von Fischen untersucht, und häufig wurden dabei auch CO2 Partialdrücke eingesetzt, die weit jenseits der vom IPCC prognostizierten Werte für die nahe Zukunft liegen. Weiterhin wurden bisher nur wenige Lebensstadien untersucht, obwohl es immer mehr Anhaltspunkte dafür gibt, dass besonders die frühen Lebensstadien, die noch nicht über voll ausgeprägte homeostatische Kapazitäten und Verhaltenrepertoire verfügen, besonders empfindliche gegenüber OAW reagieren. Weiterhin lassen viele aktuelle Studien eine integrative Analyse von physiologischen Antworten auf zellulärer, Gewebe- und Ganztierebene vermissen, außerdem fehlt uns ein generelles Verständnis des evolutionären (generationenübergreifenden) Anpassungspotentials von Fischen an den Klimawandel. FITNESS versucht kritische Wissenslücken zu schließen, indem die synergistischen Auswirkungen von OAW auf Zell-, Gewebe- und Ganztierebene an verschiedenen Lebensstadien (Embryonen, Larven, Jungfische und Adulte) an warm-temperaten Wolfsbarschen (Dicentrarchus labrax) untersucht werden. Dabei untersucht FITNESS die physiologischen Reaktionen zwischen F0 und F1 Generationen von Fischen, von denen bereits die Elterntiere verschiedenen OAW-Szenarien ausgesetzt waren; weiterhin werden auch Wildpopulationen untersucht. Damit bereitet FITNESS den Weg für eine ganzheitlichere Analyse der Populationsakklimatisation und -adaptation, indem phänotypische Veränderungen mit Darwin'schen Fitnessfaktoren verknüpft und die Vererbbarkeit physiologischer Schlüsselparameter untersucht werden. Um weiterhin unser Ursache-Wirkungs-Verständnis von OAW voran zu treiben, werden konzeptionelle Modelle eingesetzt, die die Antworten auf Zell-, Gewebe- und Ganztierebene parametrisieren und in physiologisch-bioenergetische Modelle einfließen lassen, um mögliche Anpassungskapazitäten und Abstriche in Wachstum, Reproduktion und Mortalitätsrisiko abzuschätzen. FITNESS profitiert dabei von den großzügigen Aquakulturkapazitäten in Frankreich, in denen eine große Anzahl von Fischen (größer als 1000) über zwei Generationen hinweg sowohl unter Labor- als auch unter Feldbedingungen verfolgt werden kann. Weiterhin kommen FITNESS die enge Zusammenarbeit mit aktuellen Ozeanversauerungsprojekten in Deutschland (BIOACID) und Portugal zugute, die sich mit Kalt- bzw. Warmwasserfischen beschäftigen und somit Vergleiche über einen weiten Bereich von Temperaturfenstern erlauben.
Der Extrazellularraum (Apoplast) der hoeheren Pflanze ist fuer das Wachstum und die Anpassung an Umweltbedingungen von zentraler Bedeutung. Stressoren wie Schwermetalle, erhoehter Salzgehalt des Bodens oder Luftschadstoffe fuehren zu Stoerungen in der Biochemie des Apoplasten und induzieren Anpassungsreaktionen, die wiederum das Wachstum hemmen oder unter den Stressbedingungen foerdern koennen. Die bisherigen Untersuchungen zeigen, dass die verschiedenen Umweltstressoren im Apoplasten aehnliche Reaktionen induzieren, die molekularbiologisch und biochemisch detailliert untersucht werden muessen, um das Wachstum und Ueberleben von Pflanzen unter Stressbedingungen zu verstehen.
Während der Tiefsee-Expedition SO 158 mit F.S 'Sonne' in das Gebiet zwischen Galapagosspreizungszentrum und -plattform sollen bodenlebende Meeresorganismen gesammelt werden. Die Auswertung wird sich auf die Schlüsselgruppen Kinorhyncha, Loricifera, Copepoda, Brachiopoda und Porifera konzentrieren, die nach den Erfahrungen bei früheren Tiefsee-Expeditionen in genügend hoher Anzahl im Weichboden und auf Steinen zu erwarten sind. Die großräumige Variabilität von Tiefsee-Tiergemeinschaften im Ostpazifik soll untersucht werden, um Aussagen über das Verbreitungsareal von Tierarten in der Tiefsee und über den Einfluß von geomorphologischen Strukturen wie dem Spreizungszentrum treffen zu können. Außerdem sollen potentielle Anpassungen (Sinnesorgane, endosymbiontische Bakterien in Darm oder Integument?) an das Leben in der Tiefsee bei den mikroskopischen Kinorhyncha und Loricifera ultastrukturell geprüft werden. Elektronenmikroskopische Arbeiten bei Kinorhyncha, Loricifera und Brachiopoda tragen zudem dazu bei, die Evolution dieser Tiergruppen besser zu verstehen.
| Origin | Count |
|---|---|
| Bund | 439 |
| Land | 2 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Förderprogramm | 438 |
| Text | 1 |
| unbekannt | 2 |
| License | Count |
|---|---|
| geschlossen | 2 |
| offen | 440 |
| Language | Count |
|---|---|
| Deutsch | 390 |
| Englisch | 121 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Dokument | 2 |
| Keine | 294 |
| Webseite | 145 |
| Topic | Count |
|---|---|
| Boden | 369 |
| Lebewesen und Lebensräume | 429 |
| Luft | 295 |
| Mensch und Umwelt | 441 |
| Wasser | 294 |
| Weitere | 442 |